A Mobile-First Disconnected Data Distribution
Network

1% Shashank Hegde 2" Deepak Munagala

31 Aditya Singhania 4™ Ben Reed

Computer Science Department Computer Science Department Computer Science Department Computer Science Department

San Jose State University
San Jose, California
shashank.hegde @sjsu.edu

San Jose State University
San Jose, California
deepak.munagala@sjsu.edu

Abstract—Previous attempts to bring the data of the Internet
to environments that do not have continuous connectivity to the
Internet have made use of special hardware, which requires
an additional expenditure on installation. Instead of acquiring
special hardware, we take advantage of the ubiquity of Android
smartphones and build a secure, software-only infrastructure on
top of it called Disconnected Data Distribution (DDD) to exchange
application data between disconnected Android phones and
corresponding Internet services. Although DDD draws ideas from
Delay Tolerant Networking (DTN), we show how our internet
data distribution approach simplifies the DTN architecture while
providing stronger guarantees than standard DTN approaches.
We design DDD to be inexpensive to deploy and maintain,
so it takes an entirely software-only approach to build the
infrastructure. The data transporters and clients all run on
unmodified Android phones.

Index Terms—mobile computing, village network, delay-
tolerant network, Android, Wi-Fi Direct, network delivery guar-
antees

I. INTRODUCTION

Over the past few decades, the Internet has become in-
creasingly essential in our day-to-day tasks. The Internet is
heavily used for information dissemination. Many routine
aspects of life, such as e-commerce, electronic payments,
social media, email, and navigation, depend on Internet con-
nectivity. Digital connectivity also fulfills social, economic,
and even emotional needs. The indispensability of internet
connectivity was especially evident during the COVID-19
pandemic shutdowns when in-person activities or events had
to be conducted online. However, about 37% of the world
population, i.e., 2.9 billion people, have never been online,
and out of the connected users, hundreds of millions of people
had connectivity which was intermittent or had speeds that
limited the usefulness of the connectivity [1]. Another report
by United Nations International Children’s Emergency Fund
(UNICEF) claimed that two-thirds of the world’s children
lack internet access, which negatively impacts their learning
capability and access to education [2]. According to an article
by the International Monetary Fund (IMF) [3], low internet
connectivity has led to widening income inequality both within
and between countries, and less than half the population in
developing countries has internet access.

There have been efforts in the past to solve these problems
with delay-resilient networks known as a Delay Tolerant

San Jose State University
San Jose, California
aditya.singhania@sjsu.edu

San Jose State University
San Jose, California
ben.reed @sjsu.edu

Network (DTN) [4]. It allows devices in disconnected regions
to gain access to information on the Internet. This is a store-
and-forward approach that uses intermediate devices, known
as transports, for physically moving data between the client
device in the disconnected region and the source in the
connected region containing information.

In this paper, we focus on building an infrastructure called
Disconnected Data Distribution (DDD) for bringing data
from the Internet to disconnected areas to enable connectivity
in disconnected areas. DDD has the following goals:

o Software-only solution: This solution will be entirely
software-based, using standard Android phones and
cloud-based servers. We leverage the ubiquity of Android
phones rather than using additional hardware.

o Support for current internet services: We want to bring
the services that the rest of the world uses to disconnected
areas. For example, we want to transparently integrate
with existing messaging, video, and information services.

o Delivery guarantees: We assume that the data we send
to and from disconnected areas can be lost, corrupted,
or delivered out of order. To overcome this, applications
that use the DDD architecture can expect certain deliv-
ery guarantees like deduplication, in-order delivery, and
reliable delivery of application data.

o Security: We assume that the data we send to and from
disconnected areas can be mutated, fabricated, replayed,
and collected by malicious actors in the infrastructure.
The DDD infrastructure will support end-to-end encryp-
tion of exchanged application data to preserve privacy.
The devices carrying the data cannot see the source or
destination of the data they are transporting.

In this paper, we describe DDD and how it implements its
goals of a software-only solution, support for current internet
services, and delivery guarantees. We will not go into the
details of how DDD achieves the security goal.

In this paper, we test our DDD implementation by using
the open-source Signal Android application, a highly popular
messaging application with over 100 million downloads as
of July 2023 [5]. Signal is an open-source multi-platform
instant messaging service that strongly emphasizes end-to-end
encryption. Our modifications to Signal Android to use DDD

show the feasibility of this approach and provide a design
that other applications can follow to enable connectivity in
disconnected regions.

II. RELATED WORKS

Previous attempts to set up an infrastructure to enable data
exchange between disconnected and connected areas have
required special hardware which requires additional costs [6]
[7]. DakNet [6] enables low-cost digital communication by
transmitting data over short distances between kiosks located
across villages using portable storage devices mounted on
modes of transport and using cheap Wi-Fi radio transceivers
for data transfer. When the device is near a kiosk, it performs
a high bandwidth data synchronization thereby providing a
high data throughput using a store and forward delay tolerant
infrastructure.

S. Guo et al. introduced the KioskNet system [7] which
builds on the ideas of DakNet. In KioskNet, common access
points using shared terminals at kiosks in rural areas are the
entry points for users. The kiosk is equipped with customized
kiosk controller hardware and terminals which are made up of
reused computer parts. KioskNet focuses on ferries that like
MAPs in DakNet also require customized hardware in the form
of a single-board computer with around 20-40 GB of storage.
The authors also note in the paper that it was a problem for
them to convince drivers to have these single-board computers
mounted below their dashboard which was one of the major
motivations for transitioning to V-link [8]. These issues can
be tackled by leveraging advancements in mobile technology
which already has storage available and onboard hardware for
creating access points. Since almost everyone travels with a
smartphone these days, less convincing will be required.

For applications to use the Internet, a network should be
able to provide good delivery guarantees. Bundle Protocol
[9] is the protocol used in Delay-Tolerant Network (DTN)
architectures. Custody transfer [10] is a mechanism where a
bundle node transfers the responsibility of reliable delivery
of data to a bundle node further along the path and deletes
its copy of the data. Bundle Layer End-to-End Reliability
(BLER) [11] uses a combination of custody transfer with end-
to-end acknowledgment for reliable delivery of data. BLER
attempts transmission with custody transfer enabled. After the
data reaches its destination, the destination sends an end-to-end
acknowledgment record to the sender. Delay Tolerant Payload
Conditioning (DTPC) [12] provides a transport layer for DTNs
over the Bundle Protocol providing certain delivery guarantees
like reliable delivery, in-order delivery, and deduplication on
its protocol data unit. Rather than using the bundle protocol
and above mentioned delivery mechanisms that are built on
top of it, we have developed a novel data delivery mechanism
with certain delivery guarantees by building on the insights
offered by the above approaches.

III. DDD OVERVIEW

DDD takes advantage of the structure of modern internet
services. With the advent of NAT firewalls and mobile clients,

internet services have evolved to a model of servers at well-
known network locations and clients at arbitrary locations. Fig.
1 shows an example of such a service. The client may move
to arbitrary locations on the network, but the mail server is
always accessible from a fixed location.

We extend this model to the disconnected environment by
extending the mobility of clients. We take advantage of people
moving between connected and disconnected regions, called
transports, to transport data to and from disconnected clients.
Examples of such people include bus drivers, train conductors,
truck drivers, commuters, postal workers, etc. To transport
DDD data, transports need only to install a DDD transport
app on their Android phone. They do not need any technical
knowledge to be a part of DDD. They may need to pay for
extended phone storage or internet services. They might have
the incentive to be a part of DDD as they can use it as an
opportunity to attract customers who want to use the services
of DDD.

As the devices in the disconnected region need to com-
municate with each other without using the Internet, we
look at short-range wireless methods using built-in Wi-Fi
Direct functionality to establish temporary Wi-Fi connections
between transports and disconnected users without requiring
any additional hardware. We prefer Wi-Fi Direct as multiple
clients can connect wirelessly and transfer data simultaneously.
The only hardware required in disconnected areas is standard
Android phones. The users and transports install our apps as
standard Android applications which implement the delivery
service offered by our infrastructure.

Data security is one of the goals of DDD. All data trans-
missions are end-to-end encrypted. A client identifies itself
using a public key that it generates. This public key is the
basis for end-to-end encryption for data sent from the client
to the service on the Internet. This encryption, the details of
which are not in the scope of this paper, allows us to preserve
the confidentiality of the data that flows through the DDD
architecture. We also keep the identity of clients hidden from
the transport by not using persistent addresses for clients or
servers. All data sent by a client will go to the server. Rather
than send data to a particular client, the server will generate
data with an ID in a pseudorandom sequence that the client
expects. Because a particular client is always looking for a
random 1id, transport will not be able to know that the client
it interacts with in one exchange is the same client in another
exchange.

IV. DDD ARCHITECTURE

In DDD, the unit of data transmission between devices is
called a bundle. A bundle is an encapsulation of data from
several applications, metadata, and some data about the state of
the communication for a given client. Section IV-A talks about
bundles in more detail. Fig. 2 depicts the DDD architecture.

The applications that form our infrastructure are: 1) Bundle
Transport, 2) Bundle Client, and 3) Bundle Server. Bundle
Transport is the Android application that will be installed by
transports. Bundle Client is an Android application that clients,

eMail Provider

— > N -
o . ’/
(Ipternet)\
\ / / -
/ e
_ / } L
T~/ — N
S
T

— A

eMail Provider

A
Internet ~)
‘.}_7_, .,

Fig. 1: The left figure shows a client using an email provider over the cellular network. On the right, the client uses home
WiFi. The client will be using different IP addresses but still expects the same service.

B ®

(©)

Connected region

Bundle Server

Collecting/Distributing data
from/to apps.

Bundle Pack/Unpack
Bundle

Bundle Pack/Unpack

Disconnected region
Bundle Client
4 Bundie

Collecting/Distributing data .
- Bundle Transport .
grec || || wrec
(el | . |Sendlreceive bundle over (he‘

Send/receive bundle using
Wi-Fi Direct

from/to apps
|) l internet
DIRECT

TCP/IP

Fig. 2: DDD Architecture

i.e. disconnected users, will install. It stores the data received
from applications on the disconnected user’s phone, and it
packages the application data. When a Bundle Client detects
the presence of a Bundle Transport, it attempts to send and
receive data to the latter using gRPC over Wi-Fi Direct. When
Bundle Transport reaches an area with internet connectivity,
it sends the data to the Bundle Server over TCP/IP. Bundle
Server is a gRPC server that unpacks the packages and routes
the received application data to the application servers. It also
packages application data for clients to send to the Bundle
Transport, which can deliver the packages to the Bundle
Clients for which the data is intended.

A. Bundle

In DDD, we collect and store data from applications in
chunks which we call application data units (ADUs). A
DDD ADU is a self-contained atomic chunk of application
data. This might correspond to data sent between applications
and their application servers. One or more ADUs from various
applications are encapsulated in a packet which we call a
bundle. DDD adopts the terms ‘bundle’ and ADU’ from
the Bundle Protocol [9]. A bundle has a unique bundle ID
which is a combination of the client’s identifier and a counter.
It is unique across all clients. Note that given a bundle ID
generated by a given Bundle Client, only the Bundle Server
can get the client ID and counter from the bundle ID. Details
of ID generation overlap with how DDD achieves the security
goal which we will not cover.

A bundle is a zip file consisting of a few files which
constitute the bundle header and another encrypted zip file for
the payload. The bundle header consists of files for the bundle
ID and information for decrypting the bundle payload. The
bundle payload consists of an acknowledgment record, a set
of ADUs of one or more applications, and some information
required for routing in a zip file. Each ADU is assigned a
unique identifier ADU_ID. An ADU also has an application
ID linked to it, which is unique for each application on the
Android OS.

Bundle Packing is the process of generating the bundle
payload zip, encrypting it, and packing it with the bundle
header into a zip file which is the bundle. Bundle Unpacking
is the inverse of the Bundle Packing process. During Bundle
Packing, all ADUs that are not known to be received by the
receiver are included in the payload. Consider the following
example: if a sender packs ADUs al and a2 of an application
in a bundle with bundle ID B1. Next time a transport arrives,
ADUs al and a2 will again be packed with any new ADU
a3 in the next bundle with bundle ID B2. ADUs al and a2
will be packed in all new bundles till an acknowledgment
record for bundle Bl is received. All subsequent bundles
after receiving the acknowledgment will have ADUs starting
from a3. This applies to ADUs of all applications. We cover
acknowledgment records in more detail in section IV-E. De-
tails of our approach for encryption/decryption of the bundle
payload during Bundle Packing are beyond the scope of this
paper. We place limits on the size of a bundle and the total
size of ADUs of a given application. We fix the limits to
arbitrary values for the first version of DDD. However, in the
future, there might be strategies to determine the appropriate
size limits.

B. Bundle Client

When the Bundle Client detects the arrival of a transport, it
establishes a connection with the Bundle Transport application
running on the transport. The client then carries out two tasks
in sequence: A) Receive bundles from the Bundle Transport,
B) Send a bundle to the Bundle Transport. Section IV-B1 and
IV-B2 cover flows A and B respectively.

1) Receiving Bundles from the Bundle Transport: All Bun-
dle Clients in the disconnected region maintain a window of
bundle IDs that they can receive from the Bundle Server, which
is known as receive window. The Bundle Clients maintain a
receive window of 10 counters which correspond to the Bundle
Server’s sender window for the client '. The Bundle Server
maintains a sender window of 10 counters for each Bundle
Client. In this way, even though the bundle IDs for incoming
bundles are generated by the Bundle Server, the client can
calculate the bundle IDs of those bundles using its client ID
and the window of 10 counters. The Bundle Client requests
the Bundle Transport application for bundles sent for it by
providing these 10 bundle IDs. Consider the example shown in

[e O 0 [|
Received Windovw

transition
counter 1

Fig. 3: Receive Window

Fig. 3. The client’s receive window initially consists of bundle
IDs with counters 0, 1, 2, and 3. In this example, we consider
a window of size 4 for simplicity. The figure only shows the
counters for clarity. After the client receives a bundle with a
bundle ID whose counter is 1, the window slides over 0 and
1, and new bundle IDs with counters 4 and 5 are added to the
window. Note that if a bundle whose ID has a counter < 2 is
received at this point, it will not be requested by the Bundle
Client since they are not present in the receive window. The
Bundle Client would not lose any data in doing so because that
data has already been received. In general, when the Bundle
Client receives a bundle with counter X, it updates its receiver
window to start from x+1, so that when the next transport
arrives, the client asks for bundles with counter ¢ such that
x+1 < ¢ < x+10. It is possible that Bundle Transport brings
a bundle with counter < x+1 after the window is updated.
Howeyver, since such a bundle is a subset of the bundle with
counter c, the client will not lose any data by not asking for
the bundle with counter < x+1.

When the Bundle Client receives a bundle, it does Bundle
Unpacking to get an acknowledgment record and ADUs.
ADUs are then pushed to the applications on the device with
the help of Android Intents. In DDD, we send data from
the Bundle Client to other applications by specifying the
application ID, which is unique for each application on the
Android OS.

Bundle Client uses ADU_ID to identify duplicate ADUs
received and discard them. Moreover, if bundles are received
out-of-order, i.e. a bundle having a bundle ID with a higher
counter is received before a bundle having a bundle ID with a
lower counter value, the receiver would have already received
all ADUs present in the bundle with a lower counter value
from the bundle with larger counter. Consider the example in

I'The constant was picked to balance the number of bundles that the Bundle
Client expects with the ability to utilize the high bandwidth of the network
and have multiple bundles in flight

IV-A. The bundle with bundle ID B2 has all the ADUs (al
and a2) that were packed in the bundle with bundle ID BI1.
Therefore, if the bundle B2 is received before the bundle B1,
the receiver can safely discard the latter. Thus, the incremental
nature of bundle packing helps ensure that deduplication and
in-order delivery of ADUs are guaranteed by DDD.

2) Sending a Bundle to the Bundle Transport: When a
DDD-enabled application wants to send some data to its server,
and it detects that there is no internet connection, it will send
the data to the Bundle Client with the help of a content
provider [13] with a CRUD interface, which is hosted by
the Bundle Client. The Bundle Client makes sure that any
data that applications send does not cross a predetermined
size limit. The Bundle Client then assigns an ADU_ID to
each piece of data it receives. This ADU is then stored in the
Bundle Client’s storage. When the client detects the arrival of
a Bundle Transport, it does Bundle Packing to send a bundle
to the Bundle Transport. During Bundle Packing, it is possible
that the payload data is the same as that of the last bundle sent.
This could happen if no acknowledgment has been received
from the Bundle Server after the last bundle was sent and one
of the following three cases occurs: 1) there is no new ADU
to send, or 2) the application size limit was reached for an
application that has new ADUs to send, or 3) the bundle size
limit was reached. In those cases, the bundle ID of the last sent
bundle is reused. Otherwise, a new bundle ID is generated and
assigned to this bundle. The generated bundle is then sent to
Bundle Transport.

C. Bundle Transport

As shown in Fig. 4, the Bundle Transport application, which
resides on the data transport device, physically moves the
bundle between the connected and disconnected regions. It
leverages gRPC over Wi-Fi Direct to exchange data in the
disconnected region. A Bundle Transport acts both as a gRPC
server for the Bundle Client and as a gRPC client for the
Bundle Server (as we shall see in IV-D).

WIFI DIRECT Internet TCP/IP

Bundle Client BUNDLE
TRANSPORT

Fig. 4: Transport System Design

gRPC Server

Bundle Server

Following subsections describe some key considerations in
Bundle Transport design.

1) Memory management in transport device: Since Bundle
Transport stores bundles from multiple disconnected users, the
user of this device can choose to store them in internal storage
or SD card storage. The application will also use scoped
storage [14] introduced in Android 11 which prevents other
applications from accessing application-specific data. Android
devices have constrained storage when compared to dedicated

hardware and it is crucial to delete inessential and redundant
bundles for optimal space usage. The Bundle Transport deletes
bundles received from a Bundle Client once they have been
delivered to the Bundle Server. The bundles destined for the
clients are not deleted unless instructed by the server. This is
because the Bundle Transport does not know the destination
clients for the bundles and any client can request bundles
provided they know the bundle ID for the request. If the
Bundle Transport deletes the bundle right after delivery then
a malicious Bundle Client could receive all the bundles and
deny service to the Bundle Client who should receive those
bundles. Note that even if a malicious Bundle Client receives
bundles, it will not be able to decrypt the data without the
private key for the destined Bundle Client.

2) Security over Wi-Fi Direct: The Bundle transport is
untrusted and works under the assumption that the data it
carries can be altered, fabricated, replayed, and intercepted by
malicious actors. The data transport cannot identify the source
or destination of the data that they are transporting. Similarly,
Bundle Clients do not need to authenticate data transports
because data bundles themselves are opaque to the transport,
i.e. transports cannot differentiate valid bundles from random
data as a result of end-to-end encryption using signatures
and public keys by the Bundle Client and Bundle Server.
The Bundle Transport generates a public/private key pair [15]
which will serve as a self-certified identifier, i.e. the transport
ID when communicating with the Bundle Server.

D. Bundle Server

When a transport arrives in an internet-connected region,
the Bundle Transport application running on the transport
connects to the Bundle Server running a gRPC server. Bundle
Transport carries out two tasks in sequence. The tasks from
the perspective of the Bundle Server are: A) Receive bundles
from the Bundle Transport, B) Send bundles to the Bundle
Transport. Bundle Transport provides its transport ID in all
requests to the Bundle Server.

1) Receiving Bundles from the Bundle Transport: Bundle
Transport sends the bundles it collected from clients to the
Bundle Server. Unlike the Bundle Client, there is no receiver
window on the Bundle Server. The Bundle Server accepts all
the bundles sent by Bundle Transport. It identifies the client
who sent a bundle from the bundle ID. For each client, if a
received bundle has a larger counter than the bundle received
so far, the server stores this bundle ID to include it in the
acknowledgment record which it will pack in the next bundle
it generates for this client. The server does Bundle Unpacking,
after which it gets from the acknowledgment record, the most
recent Bundle ID that the client has received from Bundle
Server. This bundle ID is used to determine the ADUs to be
sent in the next bundle to be sent to the same client and to
slide the server’s sender window for the same client.

Any received bundle has an acknowledgment record and
might have ADUs. Bundle Server implements deduplication
and in-order delivery guarantees on ADUs in the same way
that Bundle Clients do (refer IV-B1). The ADUs are stored

to be delivered to the application servers asynchronously. The
application servers may generate some data in response to the
data sent by the user. This data is stored with the application
server until the transport device is ready to accept bundles to
send to clients.

2) Sending Bundles to the Bundle Transport: Bundle Trans-
port requests the Bundle Server for bundles to be delivered to
Bundle Clients. Bundle Server maintains a routing table map-
ping transport ID to a list of client IDs that a Bundle Transport
with a given transport ID can reach. Bundle Server updates
the list of client IDs reachable from a Bundle Transport each
time a bundle is received from a Bundle Transport. Using
the transport ID provided by Bundle Transport in the request,
Bundle Server identifies the Bundle Clients that the transport
can reach using the routing table. The Bundle Server then
generates at most one bundle for each client that the transport
can reach. As mentioned earlier, the server maintains a sender
window of 10 counters per client which it uses for the next
ten bundles it sends for a given client. As in the case of the
client, the server only includes as much data as is allowed by
the bundle size limit during Bundle Packing.

When sending a bundle, the Bundle Server takes into con-
sideration the bundles already present with Bundle Transport.
A bundle that is already present on the Bundle Transport
should not be sent to save on the bandwidth available to the
transport. Therefore, the Bundle Server does not even generate
such a bundle. If any bundle that the server would generate
for the transport is a more recent version of a bundle already
present on the transport, then the bundle on the transport
is obsolete and needs to be deleted from the transport. The
Bundle Server instructs the Bundle Transport to delete those
bundles.

Note that the DDD delivery mechanism ensures that the
sender and receiver windows overlap on at least one counter
at all times. Moreover, the windows achieve complete overlap
eventually when all ADUs have been successfully received by
the receiver.

E. Acknowledgment Records

An acknowledgment record contains the bundle ID having
the largest counter out of all bundles the receiver received
from the sender. It is present in all bundles, irrespective of the
sender. As mentioned in Section IV-A, the sender (whether
a client or the server) uses an acknowledgment record to
determine the next set of ADUs to be sent to the receiver.
The acknowledgment record coming from a client also serves
as a heartbeat to the server allowing the server to detect the
presence and location (in terms of reachable transport) of the
client. If the client did not receive any bundle from the server,
this record will contain a constant ‘heartbeat’ message. Even
if the client has no ADUs to send, the generated bundle will
have an acknowledgment record containing a bundle ID or a
constant ‘heartbeat’” message thus ensuring that a heartbeat is
sent by the client any time a transport is available.

Apart from determining which ADUs to pack in a bundle,
the server additionally uses the bundle ID in the acknowl-

edgment record to slide the sender window. When the server
receives an acknowledgment for a bundle ID with counter c,
the server slides the window to start from c+1 till c+10. This
update allows the server to add new bundles which did not
overlap with the previous sender window to the new sender
window.

F. Demonstration of Delivery Guarantees

With the help of an example scenario, this section shows
how a Bundle Client and the Bundle Server interoperate to
deliver ADUs demonstrating delivery guarantees under the
constraints of the underlying network. In this scenario, just
one application has been considered without loss of generality
i.e., any given bundle will have ADUs corresponding to a
single application in the payload. In practice, the payload can
include ADUs from multiple applications at the same time.
The rectangular boxes represent bundles. Only the content
of the bundle payload is shown. An acknowledgment record
is shown as a white box within the bundle. The sender and
receiver window sizes are 2. Client and server refer to a Bundle
Client and the Bundle Server respectively.

Client Server
o o [Gow] o
(2) e co | S0
. \ /
@ HB Jata2as | —aix \/ Bee— |[C2] 1
\
(5) c2 HB | ala2a3 /N ‘ (18 Jata2 ‘ 3]
(6) s1 [c2 c2 | s1

M c3 S a4

Fig. 5: Bundle Transmission Scenario

In the scenario shown in Fig. 5, the Bundle Client sends
application data to the Bundle Server which responds with
acknowledgments and no additional data. Note that in practice,
the bundles sent by the Bundle Server will have ADUs but we
have only considered 1-way ADU transfer in this example
for ease of understanding. Following are the explanations
corresponding to line numbers (1) through (7): (1) The Bundle
client sends a bundle with ADU al and an acknowledgment
record containing a heartbeat message denoted by ‘HB’. The
bundle is successfully delivered to the Bundle Server. At this
step, the Bundle Server unpacks the bundle and stores al to
be delivered to the receiver application’s server later. (2) The
Bundle Server sends a bundle with an acknowledgment record
containing bundle ID CO which is the bundle ID with the
largest counter received so far. This bundle is lost midway.
This represents situations where the Bundle Transport carrying
the bundle delivers corrupted data to the Bundle Client, loses
data, or simply does not go back to the Bundle Client again. (3)
Since the Bundle Client did not receive an acknowledgment
for CO, it includes al along with new ADU a2 and a heartbeat

in the new bundle C1 which is generated when a Bundle
Transport arrives. (4) The Bundle Client generates a new
bundle with a heartbeat and a new ADU a3 along with previous
ADUs al and a2. This bundle is lost. (5) At this point, the
Bundle Client does not have any new ADU to send. This
can happen when either the application has not provided
any new ADU, or the application/bundle size limit has been
reached. The Bundle Client sends the last bundle C2. When
the Bundle Server unpacks C2, it finds that the bundle has
new ADUs a2 and a3 along with a previously received ADU
al. The Bundle Server stores a2 and a3 to be delivered to
the application’s server and discards duplicate ADU al. As
shown in (4), the Bundle Server sends a new bundle S1 with
an acknowledgment containing C2. This bundle is lost. At
this point, Bundle Server’s sender window is full, and it will
retransmit S1 until it receives an acknowledgment allowing it
to slide the window. The Bundle Server also received bundle
C1 in (5). However, since C1 is smaller than C2, which is
the bundle ID with the largest counter received so far, the
Bundle Server discards C1. This is how out-of-order bundles
are discarded. C2 corresponds to the bundle ID that will be
sent in all acknowledgments from the client until a bundle
with a bundle ID with a bigger counter is received. (6) The
Bundle Server retransmits S1 with an acknowledgment record
containing C2 which is received by the Bundle Client. At this
point, the Bundle Client changes its receiver window from
[SO, S1] to [S2, S3] because it received S1. Note that S1 is
sufficient to slide the window even if SO was not received.
(7) At this point, the client has a new ADU a4 to send. On
getting the acknowledgment for C2, the Bundle Client also
finds out that al, a2, and a3 have been successfully delivered
since C2 included Al, A2, and A3. Therefore, the Bundle
Client includes only a4 in the new bundle (bundle ID C3)
with an acknowledgment record containing S1, the bundle ID
with the largest counter received so far from the server. On
receiving the bundle, the Bundle Server stores the new ADU
a4. Since the Bundle Server received the acknowledgment for
S1, the Bundle Server now slides the window from [SO, S1]
to [S2, S3] which is the same as the Bundle Client’s receiver
window.

As we can see, ADUs sent by the client - al, a2, a3, a4
were received by the Bundle Server in order in spite of the
loss of bundles and out-of-order bundle delivery. The Bundle
Server discarded an ADU al (in step (3)) that was already
received thus demonstrating the deduplication guarantee.

V. RESULTS

As part of DDD, we implemented a set of delivery guar-
antees. We conducted some experiments to test the delivery
guarantees and the performance of our infrastructure in car-
rying out its goal of delivering data to disconnected Android
applications. In this section, we describe how we tested our
approach and summarize our results.

Chats Q 7

Some of your contacts are already on Signal,

including Shubham (dato), Aditya Singhania
SJSU and Alex Aizman

Take privacy with you.
Be yourself in every
message.

Get started

g

New group Add Photo

Fig. 6: Signal Regis-
tration Page

Fig. 7: Signal Home
Page

A. Implementation with Signal

In order to test the infrastructure end-to-end, i.e. pack-
ing/unpacking of application data, the transmission of bundles
over Wi-Fi Direct and TCP, and the delivery guarantees, we
chose Signal, a real-world application for instant messaging.
We installed Signal on an Android phone and switched off
its connection to the Internet to simulate a disconnected user.
We used another Android phone running the Bundle Transport
application and had the Bundle Server running on a PC.

When the Signal Android application is downloaded, the
first step after opening the Signal Android application is to
start Signal’s registration process. Here, we clicked on the
”Continue” button to proceed with registration, as shown in
Fig. 6. On this button press, a part of the registration process
was executed, generating some data unique to the device
that the Signal’s server requires for registering the user. The
generated data was sent to the Bundle Client and stored as
an ADU file. We brought the phone with Bundle Transport
near the Bundle Client and initiated the delivery process. The
Bundle Client packed the ADU into a bundle and transferred
it to the Bundle Transport. When we connected the Bundle
Transport to the Internet to simulate it entering a connected
region, it transmitted the bundle to the Bundle Server. When
this data reaches the Bundle Server via a transport device,
the Bundle Server does Bundle Unpacking and forwards the
received ADU to the Signal Server, which registers the user
and generates a confirmation message as a response. When
this response made its way back to the Signal application on
the user’s phone via Bundle Transport, we observed that the
user was successfully registered and could then see the home
page in the Signal application without ever connecting to the
Internet, as shown in Fig. 7. If the Signal server received any
data for this user, it could send the data to the Bundle Server.
We found the registration to work even when the bundles were
dropped by the Bundle Transport, sent twice to the Bundle
Server, or delivered out of order to the Bundle Server thus
confirming the delivery guarantees.

TABLE 1
GRPC THROUGHPUT

[Phone | Chunk Size [Time (seconds) | Rate (MB/sec) |

Pl 16 KB 2.83 24.8

Pl 32 KB 2.46 28.5

Pl 64 KB 2.54 2.76

P1 1 MB 2.07 33.9

Pl 3 MB 2.11 332
TABLE II

GRPC THROUGHPUT: SINGLE DEVICE CONNECTION

[Phone | Chunk Size [Time (seconds) | Rate (MB/sec) |

P1 512 KB 2.85 26.3
P1 1 MB 2.52 29.7
P1 4 MB 2.19 34.25
P2 4 MB 1.51 49.6

B. Network Throughput over Wi-Fi Direct

We ran experiments to check if file type, phone hardware,
and message size will affect gRPC throughput. We use two
different devices as clients: P1 — Samsung Galaxy S9 and P2
— Google Pixel 4A. The server was running on a One Plus
6T device. P1 is a 2018 model, P2 is a 2020 model and the
server device is a 2018 model. P1 is running Android 10, P2 is
running Android 11 and the server phone is running Android
11. There is no internet connection on any of the devices. This
setup will also help us demonstrate the effect on performance
with different hardware.

Now, we connect a single client to the server device over
Wi-Fi Direct and use gRPC to send a .flac file of size 70.2
MB with different chunk sizes. We observe from the table I
that the throughput is affected by changes in chunk size, i.e.
as the chunk size increases the throughput improves. This is
probably because with larger chunks the number of times that
gRPC has to serialize and de-serialize messages is decreased.

Next, we change the file type to .zip which is a 7SMB file
consisting of (.flac, .txt, .jpg) multiple file types. This is more
in line with what our DDD network will be dealing with. This
time we connect to devices one after the other. We observe
from the throughput values in table II that file type has no
effect on throughput probably because we are streaming bytes.
The device with newer hardware (P2) performs better probably
due to a better Wi-Fi chipset installed on it.

In the DDD system, multiple devices can connect with the
transport device using Wi-Fi Direct. In this test, we connect
both devices P1 and P2 simultaneously to the client. We send
the same .zip file used in the previous run at the same time
from both devices. We see from the throughput values and
chunk sizes in table III that the trend of P2 performing better
than P1 is still observed. However, the overall throughput of
both devices is lower.

As more and more devices will connect to the network the
throughput will go down. We can expect around 25 devices
to perform transfers simultaneously. Devices with the latest

TABLE III
GRPC THROUGHPUT: MULTIPLE DEVICE CONNECTION

[Phone | Chunk Size [Time (seconds) | Rate (MB/sec) |

P1 512 KB 3.67 20.4
P2 512 KB 2.47 30.3
P1 1 MB 3.87 19.37
P2 1 MB 2.47 30.3
P2 4 MB 3.19 24.1

hardware seem to give better performance and we observe
the best performance with larger chunks as it decreases the
overhead involved with serializing and deserializing messages.

CONCLUSION

We solve the problem of bringing data from the Internet
to disconnected regions by creating Disconnected Data Distri-
bution (DDD), a software-only infrastructure for transporting
data between the phones of users in disconnected areas and the
Internet. The infrastructure exchanges data between Android
applications on a disconnected phone to the corresponding
application servers on the Internet through an intermediate
carrier phone which travels between the disconnected area and
an area with internet connectivity. At the ends of the DDD
infrastructure, Bundle Client and Bundle Server implement a
mechanism for application data packaging and transmission of
application data between a disconnected client and application
servers such that it is resilient to loss, reordering, duplication,
and corruption. DDD’s infrastructure and functionality are
built on a foundation of privacy: data transports are not trusted
and do not have information about the users or services from
the data they transport. Bundle Client and Bundle Server can
see which services are used by the users but do not have access
to the data payloads. Our software-only solution provides
a path for quick provisioning and sustainable deployments.
Rather than requiring services to be built for DDD, the
DDD infrastructure works well with current internet services
as demonstrated using the Signal application. DDD has the
potential to bring the benefits of the internet to areas of the
world that may never have internet connectivity.

REFERENCES

[1] UN. (2023) Itu: 2.9 billion people still offline. [Online]. Available:
https://www.un.org/en/delegate/itu-29-billion-people-still-offline

[2] “Two thirds of the world’s school-age children have no internet access
at home, new unicef-itu report says,” Nov 2020. [Online]. Avail-
able: https://www.unicef.org/press-releases/two-thirds-worlds-school-
age-children-have-no-internet-access-home-new-unicef-itu

[3] M. Garcia-Escribano, “Low internet access driv-
ing inequality,” Jun 2020. [Online]. Avail-
able: https://www.imf.org/en/Blogs/Articles/2020/06/29/low-internet-

access-driving-inequality

[4] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott,
and H. Weiss, “Delay-tolerant networking: an approach to interplanetary
internet,” IEEE Communications Magazine, vol. 41, no. 6, pp. 128-136,
2003.

[5]1 S. Foundation. (2023) Signal private messenger. [Online]. Available:
play.google.com/store/apps/details? id=org.thoughtcrime.securesms

[6]
[7]

[8]

[9]

[10]

(11]

(12]

[13]
[14]

[15]

A. Pentland, R. Fletcher, and A. Hasson, “Daknet: Rethinking connec-
tivity in developing nations,” Computer, vol. 37, pp. 78-83, 02 2004.
S. Guo, M. Derakhshani, M. Falaki, U. Ismail, R. Luk, E. Oliver,
S. U. Rahman, A. Seth, M. Zaharia, S. Keshav, and et al., “Design and
implementation of the kiosknet system,” Computer Networks, vol. 55,
no. 1, p. 264-281, 2011.

“Vlink.” [Online].
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/VLink
S. Burleigh, K. Fall, and E. J. Birrane, “Bundle Protocol Version
77 RFC 9171, Jan. 2022. [Online]. Available: https://www.rfc-
editor.org/info/rfc9171

K. Fall, W. Hong, and S. Madden, “Custody transfer for reliable delivery
in delay tolerant networks,” IRB-TR-03-030, July, vol. 198, 2003.

E. Koutsogiannis, F. Tsapeli, and V. Tsaoussidis, “Bundle layer end-
to-end retransmission mechanism,” in 2011 Baltic Congress on Future
Internet and Communications. 1EEE, 2011, pp. 109-115.

G. Papastergiou, 1. Alexiadis, S. Burleigh, and V. Tsaoussidis, “Delay
tolerant payload conditioning protocol,” Computer Networks, vol. 59,
pp. 244-263, 2014.

“Content provider android,” 2023. [Online]. Available:
https://developer.android.com/guide/topics/providers/content-providers
“Scoped storage : Android open source project.” [Online]. Available:
https://source.android.com/docs/core/storage/scoped

A. Salomaa, “Public-key cryptography,” 1996.

Available:

