-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_small_batch.py
262 lines (239 loc) · 8.54 KB
/
main_small_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""
main_small_batch.py
This file contains the main function to solve the small batch problem with different approaches.
References:
- Kocis, G. R.; Grossmann, I. E. Global Optimization of Nonconvex Mixed-Integer Nonlinear Programming (MINLP) Problems in Process Synthesis. Ind. Eng. Chem. Res. 1988, 27 (8), 1407–1421.
"""
import csv
import logging
import os
from math import ceil, fabs
import time
import pyomo.environ as pe
from pyomo.gdp import Disjunct, Disjunction
from pyomo.util.infeasible import log_infeasible_constraints
from gdp.dsda.dsda_functions import (
external_ref,
generate_initialization,
get_external_information,
initialize_model,
solve_complete_external_enumeration,
solve_subproblem,
solve_with_dsda,
solve_with_gdpopt,
solve_with_minlp,
visualize_dsda,
)
from gdp.small_batch.gdp_small_batch import build_small_batch
def problem_logic_batch(m):
"""
This function returns the logic expressions to be used in the disjunctive constraints of the D-SDA approach for the small batch problem.
Args:
m (pyomo.ConcreteModel): Pyomo model of the small batch problem
Return:
logic_expr (list): List of logic expressions to be used in the disjunctive constraints
"""
logic_expr = []
for k in m.k:
for j in m.j:
logic_expr.append([m.Y[k, j], m.Y_exists[k, j].indicator_var])
logic_expr.append([~m.Y[k, j], m.Y_not_exists[k, j].indicator_var])
return logic_expr
if __name__ == "__main__":
# Inputs
timelimit = 900
model_args = {}
starting_point = [3, 3, 3]
globaltee = True
# Setting logging level to ERROR to avoid printing FBBT warning of some constraints not implemented
logging.basicConfig(level=logging.ERROR)
csv_columns = [
'Method',
'Approach',
'Solver',
'Objective',
'Time',
'Status',
'User_time',
]
dict_data = []
dir_path = os.path.dirname(os.path.abspath(__file__))
csv_file = os.path.join(dir_path, "results", "small_batch_results.csv")
nlps = ['knitro', 'baron'] # 'msnlp']
nlp_opts = dict((nlp, {}) for nlp in nlps)
# nlp_opts['msnlp']['add_options'] = [
# 'GAMS_MODEL.optfile = 1;'
# '\n'
# '$onecho > msnlp.opt \n'
# 'nlpsolver knitro \n'
# '$offecho \n'
# ]
minlps = ['antigone', 'baron', 'scip', 'dicopt', 'sbb', 'knitro']
minlps_opts = dict((minlp, {}) for minlp in minlps)
minlps_opts['dicopt']['add_options'] = [
'GAMS_MODEL.optfile = 1;'
'\n'
'$onecho > dicopt.opt \n'
'stop 0 \n'
'relaxed 2 \n'
'maxcycles 10000 \n'
'nlpsolver knitro \n'
'$offecho \n'
]
minlps_opts['sbb']['add_options'] = [
'GAMS_MODEL.optfile = 1;'
'\n'
'$onecho > sbb.opt \n'
'rootsolver knitro \n'
'subsolver knitro \n'
'$offecho \n'
]
transformations = ['bigm', 'hull']
ks = ['Infinity', '2']
strategies = ['LOA', 'LBB']
# Initializations
json_file = os.path.join(dir_path, "gdp/dsda/", "small_batch_initialization.json")
if os.path.exists(json_file):
init_path = json_file
else:
m = build_small_batch()
ext_ref = {m.Y: m.k}
(
reformulation_dict,
number_of_external_variables,
lower_bounds,
upper_bounds,
) = get_external_information(m, ext_ref, tee=globaltee)
m_fixed = external_ref(
m=m,
x=starting_point,
extra_logic_function=problem_logic_batch,
dict_extvar=reformulation_dict,
tee=globaltee,
)
m_solved = solve_subproblem(
m=m_fixed, subproblem_solver='baron', timelimit=100, tee=globaltee
)
init_path = generate_initialization(
m=m_solved, starting_initialization=True, model_name='small_batch'
)
# MINLP
for solver in minlps:
for transformation in transformations:
new_result = {}
m = build_small_batch()
m_init = initialize_model(m, json_path=init_path)
m_solved = solve_with_minlp(
m_init,
transformation=transformation,
minlp=solver,
minlp_options=minlps_opts[solver],
timelimit=timelimit,
gams_output=False,
tee=globaltee,
)
new_result = {
'Method': 'MINLP',
'Approach': transformation,
'Solver': solver,
'Objective': pe.value(m_solved.obj),
'Time': m_solved.results.solver.user_time,
'Status': m_solved.results.solver.termination_condition,
'User_time': 'NA',
}
dict_data.append(new_result)
print(new_result)
# # GDPopt
# for solver in nlps:
# for strategy in strategies:
# new_result = {}
# m = build_small_batch()
# m_init = initialize_model(m, json_path=init_path)
# m_solved = solve_with_gdpopt(
# m_init,
# mip='cplex',
# nlp=solver,
# nlp_options=nlp_opts[solver],
# timelimit=timelimit,
# strategy=strategy,
# tee=globaltee,
# )
# new_result = {
# 'Method': 'GDPopt',
# 'Approach': strategy,
# 'Solver': solver,
# 'Objective': pe.value(m_solved.obj),
# 'Time': m_solved.results.solver.user_time,
# 'Status': m_solved.results.solver.termination_condition,
# 'User_time': 'NA',
# }
# dict_data.append(new_result)
# print(new_result)
# D-SDA - MINLP
m = build_small_batch()
ext_ref = {m.Y: m.k}
get_external_information(m, ext_ref, tee=globaltee)
for solver in nlps:
for k in ks:
for transformation in transformations:
new_result = {}
m_solved, _, _ = solve_with_dsda(
model_function=build_small_batch,
model_args={},
starting_point=starting_point,
ext_dict=ext_ref,
mip_transformation=True,
transformation=transformation,
ext_logic=problem_logic_batch,
k=k,
provide_starting_initialization=True,
feasible_model='small_batch',
subproblem_solver=solver,
subproblem_solver_options=nlp_opts[solver],
iter_timelimit=timelimit,
timelimit=timelimit,
gams_output=False,
tee=globaltee,
global_tee=globaltee,
)
new_result = {
'Method': str('D-SDA_MIP_' + transformation),
'Approach': str('k=' + k),
'Solver': solver,
'Objective': pe.value(m_solved.obj),
'Time': m_solved.dsda_time,
'Status': m_solved.dsda_status,
'User_time': m_solved.dsda_usertime,
}
dict_data.append(new_result)
print(new_result)
try:
with open(csv_file, 'w') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=csv_columns)
writer.writeheader()
for data in dict_data:
writer.writerow(data)
except IOError:
print("I/O error")
# # Complete enumeration
# for transformation in transformations:
# for solver in ['knitro', 'baron']:
# m = build_small_batch()
# ext_ref = {m.Y: m.k}
# get_external_information(m, ext_ref, tee=False)
# m_solved = solve_complete_external_enumeration(
# model_function=build_small_batch,
# model_args={},
# ext_dict=ext_ref,
# ext_logic=problem_logic_batch,
# feasible_model='small_batch',
# mip_transformation=True,
# transformation=transformation,
# subproblem_solver=solver,
# subproblem_solver_options=nlp_opts[solver],
# iter_timelimit=900,
# gams_output=False,
# tee=globaltee,
# global_tee=globaltee,
# export_csv=True,
# )