From 83f21ac199351c4f5014bbffa0e2a7219bfb2aa3 Mon Sep 17 00:00:00 2001 From: Vikram Sreekanti Date: Tue, 9 May 2023 23:36:19 -0700 Subject: [PATCH] Update README.md --- README.md | 30 +++++++++++++++++++----------- 1 file changed, 19 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index 9751b4fd3..a101817cc 100644 --- a/README.md +++ b/README.md @@ -5,7 +5,7 @@ -

The Python API to run machine learning in your cloud

+

Run LLMs and ML on any cloud infrastructure

### πŸ“’ [Slack](https://slack.aqueducthq.com)  |  πŸ—ΊοΈ [Roadmap](https://roadmap.aqueducthq.com)  |  πŸž [Report a bug](https://github.com/aqueducthq/aqueduct/issues/new?assignees=&labels=bug&template=bug_report.md&title=%5BBUG%5D)  |  βœοΈ [Blog](https://blog.aqueducthq.com) @@ -18,7 +18,7 @@ [![Tests](https://github.com/aqueducthq/aqueduct/actions/workflows/integration-tests.yml/badge.svg)](https://github.com/aqueducthq/aqueduct/actions/workflows/integration-tests.yml) -**Aqueduct enables you to easily define, run, and manage AI & ML tasks on any cloud infrastructure. [Check out our quickstart guide! β†’](https://docs.aqueducthq.com/quickstart-guide)** +**Aqueduct is an MLOps framework that allows you to define and deploy machine learning and LLM workloads on any cloud infrastructure. [Check out our quickstart guide! β†’](https://docs.aqueducthq.com/quickstart-guide)**

@@ -41,23 +41,31 @@ Aqueduct's Python native API allows you to define ML tasks in regular Python cod For example, we can define a pipeline that trains a model on Kubernetes using a GPU and validates that model in AWS Lambda in a few lines of Python: ```python +# Use an existing LLM. +vicuna = aq.llm_op('vicuna_7b', engine='eks-us-east-2') +features = vicuna( + raw_logs, + { + prompt: + "Turn this log entry into a CSV: {text}" + } +) + +# Or write a custom op on your favorite infrastructure! @op( - engine='eks-us-east-2', + engine='kubernetes', + # Get a GPU. resources={'gpu_resource_name': 'nvidia.com/gpu'} ) -def train(features): - return model.train(features) - -@metric(engine='lambda-us-east-2') -def validate(model): - return validation_test(model) +def train(featurized_logs): + return model.train(features) # Train your model. -validate(train(features)) +train(features) ``` Once you publish this workflow to Aqueduct, you can see it on the UI: -![image](https://user-images.githubusercontent.com/867892/228295996-4ba3de23-3106-431d-93a9-afd8d77a707b.png) +![image](https://github.com/aqueducthq/aqueduct/assets/867892/d0561772-8799-4046-92ae-3c975d70e47d) To see how to build your first workflow, check out our **[quickstart guide! β†’](https://docs.aqueducthq.com/quickstart-guide)**