diff --git a/README.md b/README.md index 9751b4fd3..a101817cc 100644 --- a/README.md +++ b/README.md @@ -5,7 +5,7 @@ -
@@ -41,23 +41,31 @@ Aqueduct's Python native API allows you to define ML tasks in regular Python cod For example, we can define a pipeline that trains a model on Kubernetes using a GPU and validates that model in AWS Lambda in a few lines of Python: ```python +# Use an existing LLM. +vicuna = aq.llm_op('vicuna_7b', engine='eks-us-east-2') +features = vicuna( + raw_logs, + { + prompt: + "Turn this log entry into a CSV: {text}" + } +) + +# Or write a custom op on your favorite infrastructure! @op( - engine='eks-us-east-2', + engine='kubernetes', + # Get a GPU. resources={'gpu_resource_name': 'nvidia.com/gpu'} ) -def train(features): - return model.train(features) - -@metric(engine='lambda-us-east-2') -def validate(model): - return validation_test(model) +def train(featurized_logs): + return model.train(features) # Train your model. -validate(train(features)) +train(features) ``` Once you publish this workflow to Aqueduct, you can see it on the UI: -![image](https://user-images.githubusercontent.com/867892/228295996-4ba3de23-3106-431d-93a9-afd8d77a707b.png) +![image](https://github.com/aqueducthq/aqueduct/assets/867892/d0561772-8799-4046-92ae-3c975d70e47d) To see how to build your first workflow, check out our **[quickstart guide! β](https://docs.aqueducthq.com/quickstart-guide)**