-
Notifications
You must be signed in to change notification settings - Fork 1
/
NeuralNetReg.py
251 lines (188 loc) · 9.33 KB
/
NeuralNetReg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""
Artificial Neural Network Regression Code v1.1 (Feed-forward neural network)
By: Rui Nian
Date of last edit: January 3rd, 2018
Patch Notes: Added RMSE, R2
Added Train / Test Accuracy during runtime
Added Live evaluation with batch normalization
Known Issues: -
Features:
"""
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
import pickle
from sklearn.model_selection import train_test_split
from EVAL_ValveVsPress import ValvePresEval
import gc
from copy import deepcopy
import warnings
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
seed = 1
np.random.seed(seed)
tf.set_random_seed(seed)
# Min max normalization
class MinMaxNormalization:
"""
Inputs
-----
data: Input feature vectors from the training data
Attributes
-----
col_min: The minimum value per feature
col_max: The maximum value per feature
denominator: col_max - col_min
Methods
-----
init: Builds the col_min, col_max, and denominator
call: Normalizes data based on init attributes
"""
def __init__(self, data):
self.col_min = np.min(data, axis=0).reshape(1, data.shape[1])
self.col_max = np.max(data, axis=0).reshape(1, data.shape[1])
self.denominator = abs(self.col_max - self.col_min)
# Fix divide by zero, replace value with 1 because these usually happen for boolean columns
for index, value in enumerate(self.denominator[0]):
if value == 0:
self.denominator[0][index] = 1
def __call__(self, data):
return np.divide((data - self.col_min), self.denominator)
def unnormalize(self, data):
return np.multiply((data + self.col_min), self.denominator)
# Load data
# path = '/Users/ruinian/Documents/Willowglen/valve_pressure_data/'
path = '/home/rui/Documents/Willowglen/'
raw_data = pd.read_csv(path + 'valve_pressure_data/valve_pressure_data.csv')
raw_data.sort_values(by=['175642874_630'], inplace=True)
raw_data = raw_data.values
assert(not np.isnan(raw_data).any())
train_X, test_X, train_y, test_y = train_test_split(raw_data[:, 1], raw_data[:, 0],
test_size=0.1, random_state=1, shuffle=True)
# Reshaping data to ensure compatibility with tensorflow
train_X = train_X.reshape(-1, 1)
test_X = test_X.reshape(-1, 1)
train_y = train_y.reshape(-1, 1)
test_y = test_y.reshape(-1, 1)
# Normalization of input space
pickle_in = open(path + 'neural_net_tf/pickles/norm_reg.pickle', 'rb')
min_max_normalization = pickle.load(pickle_in)
# min_max_normalization = MinMaxNormalization(train_X)
train_X = min_max_normalization(train_X)
test_X = min_max_normalization(test_X)
input_size = train_y.shape[1]
h1_nodes = 30
h2_nodes = 30
h3_nodes = 30
output_size = 1
batch_size = 256
total_batch_number = int(train_X.shape[0] / batch_size)
X = tf.placeholder(dtype=tf.float32, shape=[None, input_size])
y = tf.placeholder(dtype=tf.float32, shape=[None, output_size])
# Batch normalization
training = False
is_train = tf.placeholder(dtype=tf.bool, name='is_train')
hidden_layer_1 = {'weights': tf.get_variable('h1_weights', shape=[input_size, h1_nodes],
initializer=tf.contrib.layers.variance_scaling_initializer()),
'biases': tf.get_variable('h1_biases', shape=[h1_nodes],
initializer=tf.contrib.layers.variance_scaling_initializer())}
hidden_layer_2 = {'weights': tf.get_variable('h2_weights', shape=[h1_nodes, h2_nodes],
initializer=tf.contrib.layers.variance_scaling_initializer()),
'biases': tf.get_variable('h2_biases', shape=[h2_nodes],
initializer=tf.contrib.layers.variance_scaling_initializer())}
hidden_layer_3 = {'weights': tf.get_variable('h3_weights', shape=[h2_nodes, h3_nodes],
initializer=tf.contrib.layers.variance_scaling_initializer()),
'biases': tf.get_variable('h3_biases', shape=[h3_nodes],
initializer=tf.contrib.layers.variance_scaling_initializer())}
output_layer = {'weights': tf.get_variable('output_weights', shape=[h3_nodes, output_size],
initializer=tf.contrib.layers.variance_scaling_initializer()),
'biases': tf.get_variable('output_biases', shape=[output_size],
initializer=tf.contrib.layers.variance_scaling_initializer())}
l1 = tf.add(tf.matmul(X, hidden_layer_1['weights']), hidden_layer_1['biases'])
l1 = tf.nn.relu(l1)
l1 = tf.layers.batch_normalization(l1, training=is_train)
l2 = tf.add(tf.matmul(l1, hidden_layer_2['weights']), hidden_layer_2['biases'])
l2 = tf.nn.relu(l2)
l2 = tf.layers.batch_normalization(l2, training=is_train)
l3 = tf.add(tf.matmul(l2, hidden_layer_3['weights']), hidden_layer_3['biases'])
l3 = tf.nn.relu(l3)
l3 = tf.layers.batch_normalization(l3, training=is_train)
output = tf.add(tf.matmul(l3, output_layer['weights']), output_layer['biases'])
# L2 Regularization
lambd = 0.01
trainable_vars = tf.trainable_variables()
lossL2 = tf.add_n([tf.nn.l2_loss(v) for v in trainable_vars if 'bias' not in v.name])
loss = tf.math.sqrt(tf.reduce_mean(tf.losses.mean_squared_error(labels=y, predictions=output)))
# Batch Normalization
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optimizer = tf.train.AdamOptimizer(learning_rate=0.0005).minimize(loss)
# Evaluation metrics
RMSE = tf.reduce_mean(tf.math.square(tf.math.subtract(y, output)))
MSE = tf.reduce_sum(tf.math.square(tf.math.subtract(y, output)))
Syy = tf.reduce_sum(tf.math.square(tf.math.subtract(y, tf.reduce_mean(y))))
R2 = 1 - np.divide(MSE, Syy)
init = tf.global_variables_initializer()
epochs = 1
loss_history = []
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, path + 'neural_net_tf/checkpoints/test_reg.ckpt')
# sess.run(init)
#
# for epoch in range(epochs):
#
# for i in range(total_batch_number + 1):
#
# # If the batch size is too big for the last bit of data
# if i == total_batch_number:
# batch_X = train_X[i * batch_size:, :]
# batch_y = train_y[i * batch_size:, :]
# else:
# batch_index = i * batch_size
# batch_X = train_X[batch_index:batch_index + batch_size, :]
# batch_y = train_y[batch_index:batch_index + batch_size, :]
#
# sess.run(optimizer, feed_dict={X: batch_X, y: batch_y, is_train: training})
# current_loss = sess.run(loss, feed_dict={X: batch_X, y: batch_y, is_train: training})
# loss_history.append(current_loss)
#
# if i % 100 == 0:
# train_RMSE = sess.run(RMSE, feed_dict={X: train_X, y: train_y, is_train: training})
# test_RMSE = sess.run(RMSE, feed_dict={X: test_X, y: test_y, is_train: training})
# print('Epoch: {} | Loss: {:5f} | Train RMSE: {:5f} | Test RMSE: {:5f}'.format(epoch, current_loss,
# train_RMSE, test_RMSE))
# Save Model
# saver.save(sess, path + 'neural_net_tf/checkpoints/test_reg.ckpt')
# Overall performance metrics
overall_X = raw_data[:, 1].reshape(-1, 1)
overall_X = min_max_normalization(overall_X)
overall_y = raw_data[:, 0].reshape(-1, 1)
# predictions = sess.run(output, feed_dict={X: overall_X, y: overall_y,
# is_train: training})
# Evaluation, broken into pieces because of batch normalization
predictions = tf.constant([], shape=(0, 1))
for i in range(int(raw_data.shape[0] / batch_size) + 1):
# If the batch size is too big for the last bit of data
if i == (int(raw_data.shape[0] / batch_size)):
batch_X = overall_X[i * batch_size:, :]
batch_y = overall_y[i * batch_size:, :]
else:
batch_index = i * batch_size
batch_X = overall_X[batch_index:batch_index + batch_size, :]
batch_y = overall_y[batch_index:batch_index + batch_size, :]
prediction = sess.run(output, feed_dict={X: batch_X, y: batch_y,
is_train: training})
predictions = tf.concat([predictions, prediction], axis=0)
predictions = sess.run(predictions)
print('Overall R2: {:5f} | Overall RMSE: {:5f}'.format(sess.run(R2, feed_dict={X: overall_X,
y: overall_y,
is_train: training}),
sess.run(RMSE, feed_dict={X: overall_X,
y: overall_y,
is_train: training})))
# Unnormalize the features
overall_X = min_max_normalization.unnormalize(overall_X)
Online_Eval = ValvePresEval(overall_X, predictions)
Online_Eval.live_plots(overall_X, overall_y, time_start=500000, time_end=510000)