-
Notifications
You must be signed in to change notification settings - Fork 2
/
cancellation.tex
235 lines (208 loc) · 11.4 KB
/
cancellation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
\documentclass{article}
\usepackage{latexsym}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{mathpazo}
\newcommand{\zeroty}{\mathsf{void}}
\newcommand{\abort}[1]{\mathsf{abort}(#1)}
\newcommand{\sumty}[2]{{#1}+{#2}}
\newcommand{\inleft}[1]{\mathsf{inl}(#1)}
\newcommand{\inright}[1]{\mathsf{inr}{(#1)}}
\newcommand{\sumcase}[5]{\mathsf{case}({#1};{#2}{.}{#3};{#4}{.}{#5})}
\newcommand{\idty}[3]{{#2}\mathbin{=_{#1}}{#3}}
\newcommand{\refl}[2]{\mathsf{refl}_{#1}({#2})}
\newcommand{\idelim}[4]{\mathsf{J}[{#1}]({#2};{#3}{.}{#4})}
\newcommand{\family}[2]{{#1}.{#2}}
\newcommand{\familytwo}[3]{\family{#1}{\family{#2}{#3}}}
\newcommand{\familythree}[4]{\family{#1}{\familytwo{#2}{#3}{#4}}}
\newcommand{\prodty}[3]{\prod_{{#1}{:}{#2}}{#3}}
\newcommand{\sigty}[3]{\sum_{{#1}{:}{#2}}{#3}}
\newcommand{\lam}[2]{\lambda {#1}{.}{#2}}
\newcommand{\app}[2]{{#1}({#2})}
\newcommand{\pa}[1]{\mathsf{ap}_{#1}}
\newcommand{\univty}{\mathcal{U}}
\newcommand{\iv}[1]{#1^{-1}}
\newcommand{\concat}[2]{{#1}\cdot{#2}}
\newcommand{\transport}[2]{\mathsf{trans}[#1](#2)}
\newtheorem{theorem}{Theorem}
\newtheorem{defn}[theorem]{Definition}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\title{The Cancellation Method}
\date{Fall Semester, 2013}
\begin{document}
\maketitle{}
\section{Co-product Paths}
As in the HoTT book, we wish to prove the following characterization of paths in a coproduct type $A+B$:
\begin{enumerate}
\item $\idty{\sumty{A}{B}}{\inleft{M}}{\inleft{M'}} \simeq \idty{A}{M}{M'}$;
\item $\idty{\sumty{A}{B}}{\inright{N}}{\inright{N'}} \simeq \idty{B}{N}{N'}$;
\item $\idty{\sumty{A}{B}}{\inleft{\_}}{\inright{\_}} \simeq \zeroty$;
\item $\idty{\sumty{A}{B}}{\inright{\_}}{\inleft{\_}} \simeq \zeroty$.
\end{enumerate}
Define the family $$u:\sumty{A}{B},v:\sumty{A}{B}\vdash F[u,v]:\univty$$ so that the following definitional equivalences hold:
\begin{enumerate}
\item $F[\inleft{M},\inleft{M'}]\equiv \idty{A}{M}{M'}$;
\item $F[\inright{M},\inright{M'}]\equiv \idty{A}{M}{M'}$;
\item $F[\inleft{\_},\inright{\_}]\equiv\zeroty$;
\item $F[\inright{\_},\inleft{\_}]\equiv\zeroty$.
\end{enumerate}
This is easily achieved by a nested case analysis on $u$ and $v$, respectively, with motive $\univty$ in each case. The correspondence between the defnition of $F$ and the desired theorem is evident. The point is that $F$ cancels the injections definitionally, so that no particular mention need be made of this in the proof.
\begin{lemma}
\label{L-lemma}
There is a term $L$ of type $\prodty{z}{\sumty{A}{B}}{F[z,z]}$ such that $\app{L}{\inleft{x}}\equiv \refl{A}{x}$ and $\app{L}{\inright{y}}\equiv \refl{B}{y}$.
\end{lemma}
\begin{proof}
Construct $L$ by abstracting over $z$, then performing a case analysis on $z$:
\begin{enumerate}
\item $x:A\vdash \refl{A}{x}:F[\inleft{x},\inleft{x}]$.
\item $y:B\vdash \refl{A}{y}:F[\inright{y},\inright{y}]$.
\end{enumerate}
\end{proof}
We wish to show that $$\prodty{z,z'}{\sumty{A}{B}}{\idty{\sumty{A}{B}}{z}{z'}}\simeq F[z,z'],$$ from which the desired result follows immediately by definition of $F$.
First we exhibit the function
$$f:\prodty{z}{\sumty{A}{B}}{\prodty{z'}{\sumty{A}{B}}{\idty{\sumty{A}{B}}{z}{z'}\to F[z,z']}}$$
given as follows:
$$\lam{z}{\lam{z'}{\lam{p}{\idelim{\familythree{u}{v}{\_}{F[u,v]}}{p}{x}{\app{L}{x}}}}}.$$
Lemma~\ref{L-lemma} does all the work: if $M:\sumty{A}{B}$, then $$\app{\app{\app{f}{M}}{M}}{\refl{\sumty{A}{B}}{M}}\equiv \app{L}{M}.$$
We then exhibit a quasi-inverse for $f$,
$$g:\prodty{z}{\sumty{A}{B}}{\prodty{z'}{\sumty{A}{B}}{F[z,z']\to\idty{\sumty{A}{B}}{z}{z'}}}$$
given by a nested case analysis on $z$ and $z'$ based on the following data:
\begin{enumerate}
\item $x:A,x':A,z:F[\inleft{x},\inleft{x'}]\vdash \app{\pa{\inleft{-}}}{z}:\idty{\sumty{A}{B}}{\inleft{x}}{\inleft{x'}}$;
\item $x:A,y':B,z:F[\inleft{x},\inright{y'}]\vdash \abort{z}:\idty{\sumty{A}{B}}{\inleft{x}}{\inright{y'}}$.
\item $y:B,y':B,z:F[\inright{x},\inright{x'}]\vdash \app{\pa{\inright{-}}}{z}:\idty{\sumty{A}{B}}{\inright{x}}{\inright{x'}}$;
\item $x:A,y':B,z:F[\inright{x},\inleft{y'}]\vdash \abort{z}:\idty{\sumty{A}{B}}{\inright{x}}{\inleft{y'}}$.
\end{enumerate}
Here we are relying on the definitional properties of the family $F$ to justify the given typings. Notice that the $\lambda$-abstraction of the third argument to $g$ must occur \emph{inside} the case analysis in order to propagate the correct branch information (\textit{cf}. the hacky treatment of this issue in Haskell's so-called GADT's.)
\begin{lemma}
\label{g-lemma}
The following types are inhabited:
\begin{enumerate}
\item $x:A\vdash \_ : \idty{\sumty{A}{B}}{\app{\app{\app{g}{\inleft{x}}}{\inleft{x}}}{\refl{A}{x}}}{\refl{\sumty{A}{B}}{\inleft{x}}}$;
\item $y:B\vdash \_ : \idty{\sumty{A}{B}}{\app{\app{\app{g}{\inright{x}}}{\inright{x}}}{\refl{B}{y}}}{\refl{\sumty{A}{B}}{\inright{y}}}$.
\end{enumerate}
\end{lemma}
To complete the proof we need only exhibit witnesses to the fact that for $z,z':\sumty{A}{B}$, the function $g'=\app{\app{g}{z}}{z'}$ is right and left inverse to the function $f'=\app{\app{f}{z}}{z'}$, up to higher homotopy.
\begin{enumerate}
\item $z:\sumty{A}{B},z':\sumty{A}{B},w:F(z,z')\vdash \alpha : \idty{F[z,z']}{\app{f'}{\app{g'}{w}}}{w}$.
\item $z:\sumty{A}{B},z':\sumty{A}{B},w:\idty{\sumty{A}{B}}{z}{z'}\vdash \beta : \idty{\idty{\sumty{A}{B}}{z}{z'}}{\app{g'}{\app{f'}{w}}}{w}$.
\end{enumerate}
The first is proved by a nested case analysis on $z$ and $z'$, using the definitional equivalences governing $F$, either aborting, or performing a path induction on $w$, appealing to Lemma~\ref{g-lemma} to complete the proof. The second is proved by induction on $w$, using a case analysis on the generic $u:\sumty{A}{B}$ so that we may appeal to Lemma~\ref{g-lemma} to complete the proof.
\section{Application to Paths}
\begin{quote}
\textit{The argument below neglects the effects of the implicit transports
along the identity family, which at the very least complicate, and possibly
invalidate, the proof. If the types involved are sets, the argument may
work out, because the transports are identities on reflexivity.}
\end{quote}
The idea is to adapt the above proof for coproducts, except using propositional
equivalences for the family $F$ obtained from the assumption that $f$ has a
quasi-inverse. I will tacitly using the principle
that $$\transport{\family{x}{x}}{p}:A\to A'$$ whenever
$p:\idty{\univty}{A}{A'}$, which is to say that one may transport objects of a
type $A$ to an object of an equal type $A'$ in the same universe. This
corresponds to the implicit uses of definitional equality of types in the
characterization of the paths in a coproduct type.
We are given $f:A\to B$ and the following data showing that $f$ has a quasi-inverse:
\begin{enumerate}
\item $\iv{f}:B\to A$;
\item $\alpha:\prodty{a}{A}{\idty{A}{\app{\iv{f}}{\app{f}{a}}}{a}}$;
\item $\beta:\prodty{b}{B}{\idty{B}{\app{f}{\app{\iv{f}}{b}}}{b}}$.
\end{enumerate}
We are to show that $\pa{f}$ has a quasi-inverse, which amounts to giving the following data:
\begin{enumerate}
\item $\iv{\pa{f}}$, which is taken to be $\lam{q}{\concat{\concat{\iv{\app{\alpha}{a}}}{\app{\pa{\iv{f}}}{q}}}{\app{\alpha}{a'}}}$;
\item $\alpha':\prodty{a}{A}{\prodty{a'}{A}{\prodty{p}{\idty{A}{a}{a'}}{\idty{\idty{A}{a}{a'}}{\app{\iv{\pa{f}}}{\app{\pa{f}}{p}}}{p}}}}$;
\item $\beta':\prodty{a}{A}{\prodty{a'}{A}{\prodty{q}{\idty{B}{\app{f}{a}}{\app{f}{a'}}}{\idty{\idty{B}{\app{f}{a}}{\app{f}{a'}}}{\app{\pa{f}}{\app{\iv{\pa{f}}}{q}}}{q}}}}$.
\end{enumerate}
The construction of $\alpha'$ takes the form of a path induction on $p$,
reducing the problem to the case of reflexivity for a generic $x$ of type $A$.
This presents no difficulties, because the end points of the path in question
are variables that also occur in the motive.
The construction of $\beta'$ is more difficult, because the evident source of
path induction, $q$, has as end points $\app{f}{a}$ and $\app{f}{a'}$, which
will appear in the conclusion of the proof. More precisely, if $F$ is the
motive for a path induction on $q$, then the conclusions will be of the form
$F[\app{f}{a},\app{f}{a'},q]$, whereas the desired conclusion involves just $a$,
$a'$, and $q$.
We must choose the path on which to induct and the motive for the induction in
such a way that the desired conclusion follows from the corresponding instance
of the motive. One approach is to induct on $\app{\pa{\iv{f}}}{q}$, which
has type
$$\idty{A}{\app{\iv{f}}{\app{f}{a}}}{\app{\iv{f}}{\app{f}{a'}}}.$$
Using the quasi-inverse for $f$ this type may be shown to be propositionally
equal to the type $\idty{A}{a}{a'}$, so any element of the former type may be
transported to the latter, and \textit{vice versa}.
An appropriate motive for the induction is the type family
$u{:}A,v{:}A,w{:}\idty{A}{u}{v}\vdash F:\univty$ defined by the equality type
\begin{displaymath}
\idty{\idty{B}{\app{f}{u}}{\app{f}{v}}}{\app{\pa{f}}{\concat{\concat{\iv{\app{\alpha}{u}}}{\app{\pa{\iv{f}}}{\app{\pa{f}}{w}}}}{\app{\alpha}{v}}}}{\app{\pa{f}}{w}}.
\end{displaymath}
With $F$ as motive the path induction on $\app{\pa{\iv{f}}}{q}$ yields an inhabitant
of the type
$${F[\app{\iv{f}}{\app{f}{a}},\app{\iv{f}}{\app{f}{a'}},\app{\pa{\iv{f}}}{q}]},$$
which is definitionally equal to
\begin{displaymath}
\idty{}
{\app{\pa{f}}
{\concat
{\concat
{\iv{\app{\alpha}{\app{\iv{f}}{\app{f}{a}}}}}
{\app{\pa{\iv{f}}}{\app{\pa{f}}{\app{\pa{\iv{f}}}{q}}}}
}
{\app{\alpha}{\app{\iv{f}}{\app{f}{a'}}}}
}
}
{\app{\pa{f}}{\app{\pa{\iv{f}}}{q}}}
\end{displaymath}
at the type
\begin{displaymath}
\idty{B}{\app{f}{\app{\iv{f}}{\app{f}{a}}}}{\app{f}{\app{\iv{f}}{\app{f}{a'}}}}.
\end{displaymath}
Using the quasi-inverse for $f$, and the functoriality of $\pa{g}$ in $g$, we
may show that this equation is equal to the equation
\begin{displaymath}
\idty
{\idty{B}{\app{f}{a}}{\app{f}{a'}}}
{\app{\pa{f}}
{\concat
{\concat
{\iv{\app{\alpha}{{a}}}}
{\app{\pa{\iv{f}}}{q}}
}
{\app{\alpha}{a'}}
}
}
{q},
\end{displaymath}
which is the desired conclusion.
Then it remains to show that
\begin{displaymath}
x{:}A \vdash \_ : F[x,x,\refl{A}{x}],
\end{displaymath}
which is to say that
\begin{displaymath}
x{:}A \vdash \_ : \idty{}{\app{\pa{f}}{\concat{\concat{\iv{\app{\alpha}{x}}}{\app{\pa{\iv{f}}}{\app{\pa{f}}{\refl{A}{x}}}}}{\app{\alpha}{x}}}}{\app{\pa{f}}{\refl{A}{x}}}.
\end{displaymath}
Now $\app{\pa{f}}{\refl{A}{x}}\equiv\refl{B}{\app{f}{x}}$, and
$\app{\iv{\pa{f}}}{\refl{B}{\app{f}{x}}} \equiv \refl{A}{\app{\iv{f}}{\app{f}{x}}}$, so this amounts to
showing
\begin{displaymath}
x{:}A \vdash \_ : \idty{}{\app{\pa{f}}{\concat{\concat{\iv{\app{\alpha}{x}}}{\refl{A}{\app{\iv{f}}{\app{f}{x}}}}}{\app{\alpha}{x}}}}{\refl{B}{\app{f}{x}}}.
\end{displaymath}
Using the unit laws for path concatenation this reduces to showing
\begin{displaymath}
x{:}A \vdash \_ : \idty{B}{\app{\pa{f}}{\concat{\iv{\app{\alpha}{x}}}{\app{\alpha}{x}}}}{\refl{B}{\app{f}{x}}}.
\end{displaymath}
Applying the inverse law for paths, this is just
\begin{displaymath}
x:{A} \vdash \_ : \idty{B}{\app{\pa{f}}{\refl{B}{\app{\iv{f}}{\app{f}{x}}}}}{\refl{B}{\app{f}{x}}}.
\end{displaymath}
Finally, $\app{\pa{f}}{\refl{B}{\app{\iv{f}}{\app{f}{x}}}}\equiv \refl{B}{\app{f}{\app{\iv{f}}{\app{f}{x}}}}$, and we have
\begin{displaymath}
x{:}A \vdash \_ : \idty{B}{\refl{B}{\app{f}{\app{\iv{f}}{\app{f}{x}}}}}{\refl{B}{\app{f}{x}}},
\end{displaymath}
using the quasi-inverse of $f$, which completes the argument.
\end{document}