-
Notifications
You must be signed in to change notification settings - Fork 0
/
Conv2D_AE.py
258 lines (195 loc) · 9.34 KB
/
Conv2D_AE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import torch
import torch.nn as nn
import torch.nn.functional as F
from dask import layers
from ModelUtils import rnn_size, periodically_display_2D_output
from VariationalAutoEncoder import reconstruction_loss, VariationalAutoEncoder
from ModelUtils import interpolate_layer_sizes, count_trainable_parameters, model_output_shape_and_size, device
from Debug import *
from MakeSTFTs import freq_buckets, sequence_length
import copy
def convolution_output_size(input, kernel, stride, pad):
return (input + 2*pad - kernel) // stride + 1
def transposed_convolution_output_size(input, kernel, stride, pad):
return stride * (input - 1) + kernel - 2 * pad
def max_stride(kernel_size, dimension, min_dim):
if dimension < min_dim:
return 1
return max(2, kernel_size // 3)
def max_kernel(dimension, kernel_size):
return min(kernel_size, max(dimension // 4, 1))
def pad_size(dimension, kernel, stride):
assert stride <= kernel
return 0 # for some reason my padding broke the MPS back-end, whilst it works fine on CPU :(
for pad in range(kernel):
size = convolution_output_size(dimension, kernel, stride, pad)
transposed = transposed_convolution_output_size(size, kernel, stride, pad)
if transposed == size:
#print(f"padding={pad} for dimension={dimension}, kernel={kernel}, stride={stride}")
return pad
#print(f"padding failed for dimension={dimension}, kernel={kernel}, stride={stride}")
return 0
class Conv2DAutoEncoder(nn.Module):
@staticmethod
def count_conv2d_parameters(layers):
sum = 0
#print("count_conv2d_parameters:")
for layer in layers:
kernel_size = layer['kernel_size']
in_channels = layer['in_channels']
out_channels = layer['out_channels']
parameters = kernel_size[0] * kernel_size[1] * in_channels * out_channels + out_channels
sum += parameters
#print(f"\tlayer: {layer}, parameters={parameters:,}")
#print(f"total={sum:,}")
return sum
@staticmethod
def infer_conv2d_layers(layer_count, kernel_count, kernel_size, transpose):
layers = []
k_size = kernel_size
# Use the input size to determine plausible kernels
freqs = freq_buckets
steps = sequence_length
for i in range(layer_count):
inputs = kernel_count
outputs = kernel_count
if i == 0:
if transpose:
outputs = 1
else:
inputs = 1
k_size = (max_kernel(freqs, kernel_size), max_kernel(steps, kernel_size))
if i == 0:
stride = (1, 1) # ensures the last decoded layer is smooth
else:
stride = (max_stride(k_size[0], freqs, freq_buckets // 16), max_stride(k_size[1], steps, sequence_length // 8))
if k_size == (1, 1):
break
#pad = 'same' # unfortunately not supported for strided convolutions...
pad = (pad_size(freqs, k_size[0], stride[0]), pad_size(steps, k_size[1], stride[1]))
layer = {'in_channels': inputs,
'out_channels': outputs,
'kernel_size': k_size,
'stride': stride,
'padding': pad}
layers.append(layer)
freqs = convolution_output_size(freqs, k_size[0], stride[0], pad[0])
steps = convolution_output_size(steps, k_size[1], stride[1], pad[1])
kernel_size = max(kernel_size // 2, 2)
#print(f"expected output: {freqs} x {steps}") # this is correct :)
if transpose:
layers = list(reversed(layers))
return layers
@staticmethod
def display(name, layer_count, kernel_count, kernel_size, layers):
print(f"{name}: layer_count={layer_count}, kernel_count={kernel_count}, kernel_size={kernel_size}")
for layer in layers:
print(f"\t{layer}")
@staticmethod
def infer_encode_and_decode_layers(layer_count, kernel_count, kernel_size):
encode_layers = Conv2DAutoEncoder.infer_conv2d_layers(layer_count, kernel_count, kernel_size, False)
decode_layers = Conv2DAutoEncoder.infer_conv2d_layers(layer_count, kernel_count, kernel_size, True)
return encode_layers, decode_layers
@staticmethod
def approx_trainable_parameters(layer_count, kernel_count, kernel_size):
encode_layers, decode_layers = Conv2DAutoEncoder.infer_encode_and_decode_layers(layer_count, kernel_count, kernel_size)
if False:
Conv2DAutoEncoder.display("encoder", layer_count, kernel_count, kernel_size, encode_layers)
Conv2DAutoEncoder.display("decoder", layer_count, kernel_count, kernel_size, decode_layers)
encoder_size = Conv2DAutoEncoder.count_conv2d_parameters(encode_layers)
decoder_size = Conv2DAutoEncoder.count_conv2d_parameters(decode_layers)
return encoder_size + decoder_size
@staticmethod
def build_conv2d_network(layers, transpose):
function = nn.ConvTranspose2d if transpose else nn.Conv2d
sequence = []
for layer in layers:
sequence.append(function(in_channels=layer['in_channels'],
out_channels=layer['out_channels'],
kernel_size=layer['kernel_size'],
stride=layer['stride'],
padding=layer['padding']))
# if transpose:
# sequence.append(nn.Sigmoid()) # huge impact on accuracy :(
return nn.Sequential(*sequence)
def __init__(self, freq_buckets, sequence_length, layer_count, kernel_count, kernel_size):
super(Conv2DAutoEncoder, self).__init__()
self.freq_buckets = freq_buckets
self.sequence_length = sequence_length
encode_layers, decode_layers = Conv2DAutoEncoder.infer_encode_and_decode_layers(layer_count, kernel_count, kernel_size)
self.encoder = Conv2DAutoEncoder.build_conv2d_network(encode_layers, False)
self.decoder = Conv2DAutoEncoder.build_conv2d_network(decode_layers, True)
try:
input_shape = (freq_buckets, sequence_length)
self.encode_shape, self.encoded_size = model_output_shape_and_size(self.encoder, input_shape)
if kernel_count == 1:
self.encode_shape = (1,) + self.encode_shape
assert len(self.encode_shape) == 3
print("encode_shape=", self.encode_shape)
self.decode_shape, self.decode_size = model_output_shape_and_size(self.decoder, self.encode_shape)
#print(f"decode.shape={self.decode_shape}")
#assert self.decode_shape[1] == freq_buckets, f"decoded {self.decode_shape[1]} frequencies instead of {freq_buckets}"
except BaseException as e:
print(f"Model doesn't work: {e}")
self.encode_shape = ()
self.encoded_size = 0
self.compression = 0
return
input_size = freq_buckets * sequence_length
self.compression = input_size/self.encoded_size
print(f"Conv2DAutoEncoder: input={input_size:,}, encoded={self.encoded_size:,}, compression={self.compression:.1f}")
def encode(self, x):
x = x.unsqueeze(1)
#debug("encode.x", x)
encoded = self.encoder(x)
#debug("encoded", encoded)
return encoded.flatten(start_dim=1)
def decode(self, x):
x = x.view(x.size(0), *self.encode_shape)
#debug("decode.x", x)
decoded = self.decoder(x).squeeze(dim=1)
#debug("decoded", decoded)
# Pad the output with zeros to reach the desired size
missing = self.sequence_length - decoded.size(2)
if missing > 0:
#print(f"adding {missing} time-steps")
decoded = F.pad(decoded, (0, missing))
missing = self.freq_buckets - decoded.size(1)
if missing > 0:
#print(f"adding {missing} missing frequencies")
decoded =F.pad(decoded, (0, 0, 0, missing))
assert decoded.size(1) == self.freq_buckets
assert decoded.size(2) == self.sequence_length
return decoded
def forward(self, inputs):
latent = self.encode(inputs)
outputs = self.decode(latent)
return outputs
def forward_loss(self, inputs):
outputs = self.forward(inputs)
loss = reconstruction_loss(inputs, outputs)
return loss, outputs
if __name__ == '__main__':
layer_count = 1
kernel_count = 5
kernel_size = 4
approx_params = Conv2DAutoEncoder.approx_trainable_parameters(layer_count, kernel_count, kernel_size)
#print(f"approx_params: {approx_params}")
freq_buckets= 1024
sequence_length = 80
model = Conv2DAutoEncoder(freq_buckets, sequence_length, layer_count, kernel_count, kernel_size)
model.float() # ensure we're using float32 and not float64
model.to(device)
#print(model)
exact_params = count_trainable_parameters(model)
#print(f"exact_params: {exact_params}")
assert(approx_params == exact_params)
batch_size = 7
input = torch.randn((batch_size, freq_buckets, sequence_length))
input = input.to(device)
#debug("input", input)
encoded = model.encode(input)
#debug("encoded", encoded)
output = model.decode(encoded)
#debug("output", output)
assert input.shape == output.shape