-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
231 lines (170 loc) · 7.24 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""
Torch driver training
This script is used to train a deep learning model for a driving simulator. The model is trained using PyTorch.
The script generates a 4x3 2D array with random obstacles and simulates the driver's decision based on the obstacle in front of the car.
The driver's decision and the 2D array are used to generate a batch of samples for training.
The model is trained for a specified number of epochs. In each epoch, the model is trained over a number of batches.
For each batch, the model's parameters are updated based on the computed loss between the model's predictions and the actual targets.
The script requires PyTorch to be installed. See: https://pytorch.org/get-started/locally/
The trained model is saved in the checkpoints directory.
Usage:
python train.py
"""
try:
import torch
except ImportError:
print("Error: torch module not found. Please install it before proceeding.")
print(" see: https://pytorch.org/get-started/locally/")
exit()
import random
import argparse
import torch.nn as nn
import torch.optim as optim
from model import DriverModel, actions, obstacles, view_to_inputs
# Training parameters
num_epochs = 0
batch_size = 0
learning_rate = 0
# Set loss function and backprpogation method
criterion = None
optimizer = None
# Create model, loss function, and optimizer
model = DriverModel()
def generate_obstacle_array(width=6, height=4):
"""
Generates a 2D array with random obstacles.
Parameters:
width (int): The width of the 2D array. Default is 6.
height (int): The height of the 2D array. Default is 4.
Returns:
list[list[str]]: 2D array with random obstacles.
"""
OBSTACLES = ["", "crack", "trash", "penguin", "bike", "water", "barrier"]
array = [["" for _ in range(width)] for _ in range(height)]
for i in range(height):
obstacle = random.choice(OBSTACLES)
position = random.randint(0, width // 2 - 1)
# lane A
array[i][position] = obstacle
# lane B
array[i][width // 2 + position] = obstacle
return array
def driver_simulator(array, car_x, width=6, height=4):
"""
Simulates the driver's decision based on the obstacle in front of the car.
Args:
array (list[list[str]]): 2D array representation of the world with obstacles as strings.
car_x (int): The car's x position.
width (int): The width of the 2D array. Default is 6.
height (int): The height of the 2D array. Default is 4.
Returns:
str: The determined action for the car to take. Possible actions include those defined in the `actions` class.
"""
obstacle = array[height - 1][car_x]
# Define a dictionary to map obstacles to actions
action_map = {
obstacles.PENGUIN: actions.PICKUP,
obstacles.WATER: actions.BRAKE,
obstacles.CRACK: actions.JUMP,
obstacles.NONE: actions.NONE,
}
# Determine the action based on the obstacle
action = action_map.get(obstacle)
# If the obstacle is not in the dictionary, determine the action based on the car's x position
if action is None:
action = actions.RIGHT if (car_x % (width // 2)) == 0 else actions.LEFT
return action
def action_to_outputs(action):
"""
Converts an action into a target tensor.
This function takes an action (LEFT, RIGHT, or other) and converts it into a target tensor with elements corresponding to the actions.
The element corresponding to the given action is set to 1, and the others are set to 0.
Args:
action (str): The action to convert. Should be one of the actions defined in the `actions` class.
Returns:
torch.Tensor: A tensor of shape (len(actions.ALL),) where the element corresponding to the given action is 1, and the others are 0.
"""
target = torch.zeros(len(actions.ALL))
try:
action_index = actions.ALL.index(action)
except ValueError:
action_index = 0
target[action_index] = 1
return target
def generate_batch(batch_size):
"""
Generates a batch of samples for training.
Args:
batch_size (int): The number of samples in the batch.
Returns:
tuple: A tuple containing two tensors. The first tensor contains the inputs for the model, and the second tensor contains the target outputs.
"""
inputs = []
targets = []
for _ in range(batch_size):
car_x = random.randint(0, 5)
array = generate_obstacle_array()
correct_output = driver_simulator(array, car_x)
input_tensor = view_to_inputs(array, car_x)
target_tensor = action_to_outputs(correct_output)
inputs.append(input_tensor)
targets.append(target_tensor)
return torch.stack(inputs), torch.stack(targets)
# Training loop
def main():
for epoch in range(num_epochs):
# Initialize running loss to 0.0 at the start of each epoch
running_loss = 0.0
# Assuming you have a dataset size, calculate the number of batches
num_batches = 100
# Loop over each batch
for _i in range(num_batches):
# Get a batch of training data
inputs, targets = generate_batch(batch_size)
# Reset the gradients in the optimizer (i.e., make it forget the gradients computed in the previous iteration)
optimizer.zero_grad()
# Forward pass: compute predicted outputs by passing inputs to the model
outputs = model(inputs)
# Compute loss: calculate the batch loss based on the difference between the predicted outputs and the actual targets
loss = criterion(outputs, targets)
# Backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# Perform a single optimization step (parameter update)
optimizer.step()
# Update running loss
running_loss += loss.item()
# Print average loss for the epoch
print(f"Epoch {epoch + 1}, Loss: {running_loss / num_batches}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train the model.")
parser.add_argument(
"--checkpoint-in", default="", help="Path to the input checkpoint file."
)
parser.add_argument(
"--checkpoint-out", default="", help="Path to the output checkpoint file."
)
parser.add_argument(
"--num-epochs", type=int, default=30, help="Number of epochs for training."
)
parser.add_argument(
"--batch-size", type=int, default=200, help="Batch size for training."
)
parser.add_argument(
"--learning-rate", type=float, default=0.001, help="Learning rate for training."
)
args = parser.parse_args()
# Training parameters
num_epochs = args.num_epochs
batch_size = args.batch_size
learning_rate = args.learning_rate
# Set loss function and backprpogation method
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Read starting checkpoint, if available
if args.checkpoint_in != "":
model.load_state_dict(torch.load(args.checkpoint_in))
model.eval()
# Run training
main()
print("Finished Training")
torch.save(model.state_dict(), args.checkpoint_out or "driver.pth")