This repository has been archived by the owner on Jul 26, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathManualPrompt.py
148 lines (116 loc) · 4.28 KB
/
ManualPrompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from openprompt.plms import load_plm
from openprompt import PromptForClassification
from openprompt import PromptDataLoader
import torch
from transformers import AdamW
from sklearn.metrics import classification_report
from PromptUtils import get_template, get_verbalizer, process_reddit, process_regulation, load_data
import argparse
def create_arg_parser():
"""Returns a map with commandline parameters taken from the user"""
parser = argparse.ArgumentParser()
parser.add_argument("-d",
"--dataDir",
required=True,
type=str,
help="provide the path of dataset directory")
parser.add_argument("-t",
"--dataType",
default='reddit',
choices=['reddit', 'regulation'],
type=str,
help="select the dataset type (reddit/regulation)")
parser.add_argument(
"-m",
"--multiClass",
action='store_true',
help=
"use this arg to format muti class dataset. by default it takes binary"
)
args = parser.parse_args()
return args
def train(promptModel, train_data_loader, use_cuda=True):
loss_func = torch.nn.CrossEntropyLoss()
no_decay = ['bias', 'LayerNorm.weight']
# it's always good practice to set no decay to biase and LayerNorm parameters
optimizer_grouped_parameters = [{
'params': [
p for n, p in promptModel.named_parameters()
if not any(nd in n for nd in no_decay)
],
'weight_decay':
0.01
}, {
'params': [
p for n, p in promptModel.named_parameters()
if any(nd in n for nd in no_decay)
],
'weight_decay':
0.0
}]
optimizer = AdamW(optimizer_grouped_parameters, lr=1e-4)
if use_cuda:
promptModel = promptModel.cuda()
for epoch in range(5):
tot_loss = 0
for step, inputs in enumerate(train_data_loader):
if use_cuda:
inputs = inputs.cuda()
logits = promptModel(inputs)
labels = inputs['label']
loss = loss_func(logits, labels)
loss.backward()
tot_loss += loss.item()
optimizer.step()
optimizer.zero_grad()
if step % 1000 == 1:
print("Epoch {}, average loss: {}".format(
epoch, tot_loss / (step + 1)),
flush=True)
def eval(promptModel, test_data_loader, use_cuda=True):
use_cuda = True
predicted = []
promptModel.eval()
with torch.no_grad():
for batch in test_data_loader:
if use_cuda:
batch = batch.cuda()
logits = promptModel(batch)
preds = torch.argmax(logits, dim=-1)
predicted.append(preds)
return predicted
def main():
plm, tokenizer, model_config, WrapperClass = load_plm(
'roberta', "roberta-base")
args = create_arg_parser()
dataDir = args.dataDir
dataType = args.dataType
multiClass = args.multiClass
promptTemplate = get_template(tokenizer, multiClass)
promptModel = PromptForClassification(
template=promptTemplate,
plm=plm,
verbalizer=get_verbalizer(tokenizer, multiClass)[1],
)
raw_dataset = load_data(dataDir)
if dataType == 'reddit':
dataset = process_reddit(raw_dataset, multiClass)
elif dataType == 'regulation':
dataset = process_regulation(raw_dataset, multiClass)
train_data_loader = PromptDataLoader(dataset=dataset['train'],
tokenizer=tokenizer,
template=promptTemplate,
tokenizer_wrapper_class=WrapperClass,
batch_size=4)
test_data_loader = PromptDataLoader(
dataset=dataset['test'],
tokenizer=tokenizer,
template=promptTemplate,
tokenizer_wrapper_class=WrapperClass,
)
train(promptModel, train_data_loader)
predicted = eval(promptModel, test_data_loader)
true_labels = dataset['test']['label']
print(classification_report(true_labels, predicted))
if __name__ == "__main__":
main()