This repository has been archived by the owner on Jul 26, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAutoPrompt.py
371 lines (320 loc) · 12.8 KB
/
AutoPrompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
from openprompt.plms import load_plm
from openprompt.prompts import ManualVerbalizer, ManualTemplate
from openprompt.prompts.prompt_generator import T5TemplateGenerator
from openprompt.pipeline_base import PromptDataLoader, PromptForClassification
import copy
import torch
from transformers import AdamW
from tqdm import tqdm
from openprompt.prompts.prompt_generator import RobertaVerbalizerGenerator
from PromptUtils import load_data, process_reddit, process_regulation
import argparse
from openprompt.prompts.prompt_generator import LMBFFTemplateGenerationTemplate
def create_arg_parser():
"""Returns a map with commandline parameters taken from the user"""
parser = argparse.ArgumentParser()
parser.add_argument("-d",
"--dataDir",
required=True,
type=str,
help="provide the path of dataset directory")
parser.add_argument("-t",
"--dataType",
default='reddit',
choices=['reddit', 'regulation'],
type=str,
help="select the dataset type (reddit/cmv)")
parser.add_argument(
"-m",
"--multiClass",
action='store_true',
help=
"use this arg to format muti class dataset. by default it takes binary"
)
args = parser.parse_args()
return args
def fit(model, train_dataloader, val_dataloader, loss_func, optimizer):
best_score = 0.0
for epoch in range(5):
train_epoch(model, train_dataloader, loss_func, optimizer)
score = evaluate(model, val_dataloader)
if score > best_score:
best_score = score
return best_score
def train_epoch(model, train_dataloader, loss_func, optimizer, cuda=True):
model.train()
for step, inputs in enumerate(train_dataloader):
if cuda:
inputs = inputs.cuda()
logits = model(inputs)
labels = inputs['label']
loss = loss_func(logits, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()
def evaluate(model, val_dataloader, save=False, cuda=True):
model.eval()
allpreds = []
alllabels = []
with torch.no_grad():
for step, inputs in enumerate(val_dataloader):
if cuda:
inputs = inputs.cuda()
logits = model(inputs)
labels = inputs['label']
alllabels.extend(labels.cpu().tolist())
allpreds.extend(torch.argmax(logits, dim=-1).cpu().tolist())
acc = sum([int(i == j)
for i, j in zip(allpreds, alllabels)]) / len(allpreds)
if save:
with open('output.txt', 'w') as file:
for i, j in zip(allpreds, alllabels):
file.write(f'{i},{j}\n')
return acc
def main():
args = create_arg_parser()
dataDir = args.dataDir
dataType = args.dataType
multiClass = args.multiClass
raw_dataset = load_data(dataDir)
if dataType == 'reddit':
dataset = process_reddit(raw_dataset, multiClass)
elif dataType == 'regulation':
dataset = process_regulation(raw_dataset, multiClass)
# load mlm model for main tasks
plm, tokenizer, model_config, WrapperClass = load_plm(
"roberta", "roberta-large")
# load generation model for template generation
template_generate_model, template_generate_tokenizer, template_generate_model_config, template_tokenizer_wrapper = load_plm(
't5', 't5-base')
if not multiClass:
num_classes = 2
label_words = [
[
"lacks",
],
[
"contains",
],
]
else:
num_classes = 3
label_words = [[
"insufficient",
], [
"objective",
], ["hypothetical"]]
verbalizer = ManualVerbalizer(tokenizer=tokenizer,
num_classes=num_classes,
label_words=label_words)
template = LMBFFTemplateGenerationTemplate(
tokenizer=template_generate_tokenizer,
verbalizer=verbalizer,
text='{"placeholder":"text_a"} {"mask"} {"meta":"labelword"} {"mask"}.'
)
wrapped_example = template.wrap_one_example(dataset['train'][0])
print(wrapped_example)
cuda = True
auto_t = True # whether to perform automatic template generation
auto_v = True # whether to perform automatic label word generation
# template generation
if auto_t:
print('performing auto_t...')
if cuda:
template_generate_model = template_generate_model.cuda()
template_generator = T5TemplateGenerator(
template_generate_model,
template_generate_tokenizer,
template_tokenizer_wrapper,
verbalizer,
beam_width=5
) # beam_width is set to 5 here for efficiency, to improve performance, try a larger number.
dataloader = PromptDataLoader(
dataset['train'],
template,
tokenizer=template_generate_tokenizer,
tokenizer_wrapper_class=template_tokenizer_wrapper,
batch_size=len(dataset['train']),
decoder_max_length=128,
max_seq_length=128,
shuffle=False,
teacher_forcing=False) # register all data at once
print('pass!')
for data in dataloader:
if cuda:
data = data.cuda()
template_generator._register_buffer(data)
template_generate_model.eval()
print('generating...')
template_texts = template_generator._get_templates()
original_template = template.text
template_texts = [
template_generator.convert_template(template_text,
original_template)
for template_text in template_texts
]
# template_generator._show_template()
template_generator.release_memory()
# generate a number of candidate template text
print(template_texts)
# iterate over each candidate and select the best one
best_metrics = 0.0
best_template_text = None
for template_text in tqdm(template_texts):
template = ManualTemplate(tokenizer, template_text)
train_dataloader = PromptDataLoader(
dataset['train'],
template,
tokenizer=tokenizer,
tokenizer_wrapper_class=WrapperClass)
valid_dataloader = PromptDataLoader(
dataset['validation'],
template,
tokenizer=tokenizer,
tokenizer_wrapper_class=WrapperClass)
model = PromptForClassification(copy.deepcopy(plm), template,
verbalizer)
loss_func = torch.nn.CrossEntropyLoss()
no_decay = ['bias', 'LayerNorm.weight']
# it's always good practice to set no decay to biase and LayerNorm parameters
optimizer_grouped_parameters = [{
'params': [
p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
'weight_decay':
0.01
}, {
'params': [
p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
'weight_decay':
0.0
}]
optimizer = AdamW(optimizer_grouped_parameters, lr=1e-4)
if cuda:
model = model.cuda()
score = fit(model, train_dataloader, valid_dataloader, loss_func,
optimizer)
if score > best_metrics:
print('best score:', score)
print('template:', template_text)
best_metrics = score
best_template_text = template_text
# use the best template
template = ManualTemplate(tokenizer, text=best_template_text)
print(best_template_text)
# verbalizer generation
if auto_v:
print('performing auto_v...')
# load generation model for template generation
if cuda:
plm = plm.cuda()
verbalizer_generator = RobertaVerbalizerGenerator(
model=plm,
tokenizer=tokenizer,
candidate_num=10,
label_word_num_per_class=5)
# to improve performace , try larger numbers
dataloader = PromptDataLoader(dataset['train'],
template,
tokenizer=tokenizer,
tokenizer_wrapper_class=WrapperClass,
batch_size=4)
for data in dataloader:
if cuda:
data = data.cuda()
verbalizer_generator.register_buffer(data)
label_words_list = verbalizer_generator.generate()
verbalizer_generator.release_memory()
# iterate over each candidate and select the best one
current_verbalizer = copy.deepcopy(verbalizer)
best_metrics = 0.0
best_label_words = None
for label_words in tqdm(label_words_list):
current_verbalizer.label_words = label_words
train_dataloader = PromptDataLoader(
dataset['train'],
template,
tokenizer=tokenizer,
tokenizer_wrapper_class=WrapperClass)
valid_dataloader = PromptDataLoader(
dataset['validation'],
template,
tokenizer=tokenizer,
tokenizer_wrapper_class=WrapperClass)
model = PromptForClassification(copy.deepcopy(plm), template,
current_verbalizer)
loss_func = torch.nn.CrossEntropyLoss()
no_decay = ['bias', 'LayerNorm.weight']
# it's always good practice to set no decay to biase and LayerNorm parameters
optimizer_grouped_parameters = [{
'params': [
p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
'weight_decay':
0.01
}, {
'params': [
p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
'weight_decay':
0.0
}]
optimizer = AdamW(optimizer_grouped_parameters, lr=1e-4)
if cuda:
model = model.cuda()
score = fit(model, train_dataloader, valid_dataloader, loss_func,
optimizer)
if score > best_metrics:
best_metrics = score
best_label_words = label_words
# use the best verbalizer
print(best_label_words)
verbalizer = ManualVerbalizer(tokenizer,
num_classes=2,
label_words=best_label_words)
# main training loop
train_dataloader = PromptDataLoader(dataset['train'],
template,
tokenizer=tokenizer,
tokenizer_wrapper_class=WrapperClass)
valid_dataloader = PromptDataLoader(dataset['validation'],
template,
tokenizer=tokenizer,
tokenizer_wrapper_class=WrapperClass)
test_dataloader = PromptDataLoader(dataset['test'],
template,
tokenizer=tokenizer,
tokenizer_wrapper_class=WrapperClass)
model = PromptForClassification(copy.deepcopy(plm), template, verbalizer)
loss_func = torch.nn.CrossEntropyLoss()
no_decay = ['bias', 'LayerNorm.weight']
# it's always good practice to set no decay to biase and LayerNorm parameters
optimizer_grouped_parameters = [{
'params': [
p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
'weight_decay':
0.01
}, {
'params': [
p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
'weight_decay':
0.0
}]
optimizer = AdamW(optimizer_grouped_parameters, lr=1e-4)
if cuda:
model = model.cuda()
score = fit(model, train_dataloader, valid_dataloader, loss_func,
optimizer)
test_score = evaluate(model, test_dataloader, save=True)
print(test_score)
if __name__ == "__main__":
main()