Running: accelerate-launch --config_file=None /.../accelerate/test_utils/test_script.py
stdout: **Initialization**
stdout: Testing, testing. 1, 2, 3.
stdout: Distributed environment: MULTI_GPU Backend: nccl
stdout: Num processes: 4
stdout: Process index: 0
stdout: Local process index: 0
stdout: Device: cuda:0
stdout:
stdout:
stdout: **Test random number generator synchronization**
stdout: Distributed environment: MULTI_GPU Backend: nccl
stdout: Num processes: 4
stdout: Process index: 2
stdout: Local process index: 2
stdout: Device: cuda:2
stdout:
stdout: Distributed environment: MULTI_GPU Backend: nccl
stdout: Num processes: 4
stdout: Process index: 3
stdout: Local process index: 3
stdout: Device: cuda:3
stdout:
stdout: Distributed environment: MULTI_GPU Backend: nccl
stdout: Num processes: 4
stdout: Process index: 1
stdout: Local process index: 1
stdout: Device: cuda:1
stdout:
stdout: All rng are properly synched.
stdout:
stdout: **DataLoader integration test**
stdout: 13 2 0 tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
stdout: 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
stdout: 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
stdout: 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
stdout: 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
stdout: 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
stdout: 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
stdout: 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
stdout: 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
stdout: 126, 127], device='cuda:3') <class 'accelerate.data_loader.DataLoaderShard'>
stdout: tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
stdout: 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
stdout: 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
stdout: 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
stdout: 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
stdout: 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
stdout: 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
stdout: 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
stdout: 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
stdout: 126, 127], device='cuda:1')tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
stdout: 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
stdout: 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
stdout: 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
stdout: 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
stdout: 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
stdout: 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
stdout: 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
stdout: 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
stdout: 126, 127], device='cuda:2') <class 'accelerate.data_loader.DataLoaderShard'><class 'accelerate.data_loader.DataLoaderShard'>
stdout:
stdout: tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
stdout: 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
stdout: 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
stdout: 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
stdout: 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
stdout: 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
stdout: 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
stdout: 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
stdout: 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
stdout: 126, 127], device='cuda:0') <class 'accelerate.data_loader.DataLoaderShard'>
stdout: Non-shuffled dataloader passing.
stdout: Shuffled dataloader passing.
stdout: Non-shuffled central dataloader passing.
stdout: Shuffled central dataloader passing.
stdout:
stdout: **Training integration test**
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Training yielded the same results on one CPU or distributed setup with no batch split.
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout:
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout:
stdout: FP16 training check.Training yielded the same results on one CPU or distributes setup with batch split.FP16 training check.
stdout:
stdout: FP16 training check.
stdout:
stdout: FP16 training check.
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout:
stdout: Legacy FP16 training check.
stdout: Legacy FP16 training check.
stdout: Legacy FP16 training check.
stdout: Legacy FP16 training check.
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: BF16 training check.BF16 training check.BF16 training check.
stdout:
stdout:
stdout: BF16 training check.
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32
Test is a success! You are ready for your distributed training!