|
| 1 | +import tune_gemm |
| 2 | + |
| 3 | +import os |
| 4 | +import yaml |
| 5 | +import pytest |
| 6 | +import warnings |
| 7 | +from copy import deepcopy |
| 8 | +import statistics |
| 9 | + |
| 10 | + |
| 11 | +class TestRegression: |
| 12 | + |
| 13 | + @classmethod |
| 14 | + def setup_class(self): |
| 15 | + self.slowdown_threshold = 0.98 |
| 16 | + |
| 17 | + self.test_results = [] |
| 18 | + self.test_perf_ratios = [] |
| 19 | + try: |
| 20 | + with open('gemm-performance-report-reference.yaml', 'r') as ref_file: |
| 21 | + self.reference_data = yaml.safe_load(ref_file) |
| 22 | + except FileNotFoundError: |
| 23 | + warnings.warn("No reference file found. There will be no regression detected!") |
| 24 | + self.reference_data = [] |
| 25 | + |
| 26 | + @classmethod |
| 27 | + def teardown_class(self): |
| 28 | + with open('gemm-performance-report.yaml', 'w') as out_file: |
| 29 | + yaml.safe_dump(self.test_results, out_file) |
| 30 | + |
| 31 | + @pytest.mark.parametrize('config', [ |
| 32 | + # M // BLOCK_M * N // BLOCK_N % 304 == 0 |
| 33 | + # 1 workgroup / CU |
| 34 | + { |
| 35 | + 'M': 4864, 'N': 4096, 'K': 4096, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 36 | + 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 37 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 38 | + }, |
| 39 | + { |
| 40 | + 'M': 4864, 'N': 4096, 'K': 4160, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 41 | + 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 42 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 43 | + }, |
| 44 | + { |
| 45 | + 'M': 4864, 'N': 4096, 'K': 4224, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 46 | + 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 47 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 48 | + }, |
| 49 | + { |
| 50 | + 'M': 4864, 'N': 4096, 'K': 4288, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 51 | + 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 52 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 53 | + }, |
| 54 | + # 1 workgroup / CU masked loadK |
| 55 | + { |
| 56 | + 'M': 4864, 'N': 4096, 'K': 4097, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 57 | + 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 58 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 59 | + }, |
| 60 | + { |
| 61 | + 'M': 4864, 'N': 4096, 'K': 4098, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 62 | + 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 63 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 64 | + }, |
| 65 | + { |
| 66 | + 'M': 4864, 'N': 4096, 'K': 4100, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 67 | + 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 68 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 69 | + }, |
| 70 | + { |
| 71 | + 'M': 4864, 'N': 4096, 'K': 4104, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 72 | + 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 73 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 74 | + }, |
| 75 | + { |
| 76 | + 'M': 4864, 'N': 4096, 'K': 4112, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 77 | + 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 78 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 79 | + }, |
| 80 | +
|
| 81 | + # 2 workgroups / CU |
| 82 | + { |
| 83 | + 'M': 4864, 'N': 8192, 'K': 4096, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 84 | + 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 85 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 86 | + }, |
| 87 | + { |
| 88 | + 'M': 4864, 'N': 8192, 'K': 4160, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 89 | + 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 90 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 91 | + }, |
| 92 | + { |
| 93 | + 'M': 4864, 'N': 8192, 'K': 8192, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 94 | + 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 95 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 96 | + }, |
| 97 | + { |
| 98 | + 'M': 4864, 'N': 8192, 'K': 8256, 'rowMajorA': 'T', 'rowMajorB': 'N', 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': |
| 99 | + 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 4, 'SPLIT_K': 1, 'num_warps': 8, 'num_stages': 0, 'waves_per_eu': |
| 100 | + 0, 'matrix_instr_nonkdim': 16, 'kpack': 2 |
| 101 | + }, |
| 102 | + ], ids=lambda val: f"Config: {val}") |
| 103 | + def test_matmul_performance_regression(self, config, record_property): |
| 104 | + |
| 105 | + M, N, K, col_a, col_b, runConfig = tune_gemm.process_item(deepcopy(config)) |
| 106 | + |
| 107 | + rotating_buffer_size = config.setdefault('rotating_buffer_size', 0) |
| 108 | + icache_flush = config.setdefault('icache_flush', False) |
| 109 | + iters = config.setdefault('iters', 200) |
| 110 | + init_type = config.setdefault('init_type', 'randn') |
| 111 | + |
| 112 | + dtype_a = config.setdefault('dtype_a', 'fp16') |
| 113 | + dtype_b = config.setdefault('dtype_b', 'fp16') |
| 114 | + dtype_c = config.setdefault('dtype_c', 'fp16') |
| 115 | + |
| 116 | + bias_vector = config.get('bias_vector', False) |
| 117 | + bias_size = M if bias_vector else 0 |
| 118 | + |
| 119 | + # Always compile if the user did not specify |
| 120 | + os.environ.setdefault('TRITON_ALWAYS_COMPILE', '1') |
| 121 | + |
| 122 | + tune_gemm.run_bash_command(f"rm -rf {tune_gemm.get_filename_myKernels()}") |
| 123 | + tune_gemm.generate_matmul_kernels([runConfig]) |
| 124 | + |
| 125 | + gpus = [0] |
| 126 | + jobs = 1 |
| 127 | + benchmark = True |
| 128 | + skipWarmup = False |
| 129 | + num_threads = 32 |
| 130 | + verbose_level = 0 |
| 131 | + |
| 132 | + minTime, bestConfig, compile_time, profile_time, post_time = tune_gemm.tune_gemm_config( |
| 133 | + M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, [runConfig], benchmark, jobs, iters, |
| 134 | + skipWarmup=skipWarmup, num_threads=num_threads, gpus=gpus, verbose=verbose_level, |
| 135 | + rotating_buffer_size=rotating_buffer_size, bias_size=bias_size, icache_flush=icache_flush) |
| 136 | + |
| 137 | + # post processing the numbers |
| 138 | + perf_tflops = lambda us: 2 * M * N * K * 1e-12 / (us * 1e-6) |
| 139 | + tri_tflops = perf_tflops(minTime) |
| 140 | + |
| 141 | + record_property("TFlops", f"{tri_tflops:.2f}") |
| 142 | + record_property("MinTime", f"{minTime:.2f}") |
| 143 | + |
| 144 | + # Add to global results |
| 145 | + self.test_results.append({'config': config, 'tflops': float(tri_tflops)}) |
| 146 | + |
| 147 | + # Look for reference run |
| 148 | + reference_run = None |
| 149 | + for run in self.reference_data: |
| 150 | + if run['config'] == config: |
| 151 | + reference_run = run |
| 152 | + break |
| 153 | + |
| 154 | + if reference_run is not None: |
| 155 | + performance_ratio = tri_tflops / reference_run['tflops'] |
| 156 | + self.test_perf_ratios.append(performance_ratio) |
| 157 | + regression_percent = (100.0 * (1.0 - performance_ratio)) |
| 158 | + record_property("Performance difference (lower is better)", f"{regression_percent:.2f}%") |
| 159 | + assert performance_ratio > self.slowdown_threshold, f'Performance regressed by {regression_percent:.2f}% (threshold={((1.0 - self.slowdown_threshold) * 100.0 ):.2f}%)' |
| 160 | + else: |
| 161 | + pytest.skip("No performance reference found!") |
| 162 | + |
| 163 | + def test_overall_performance_difference(self, record_property): |
| 164 | + if len(self.test_perf_ratios) < 2: |
| 165 | + pytest.skip("Overall results will be tested if test count > 2") |
| 166 | + |
| 167 | + perf_diff_mean = statistics.geometric_mean(self.test_perf_ratios) |
| 168 | + regression_percent = (100.0 * (1.0 - perf_diff_mean)) |
| 169 | + |
| 170 | + record_property("Overall performance difference (mean)", f"{regression_percent:.2f}%") |
| 171 | + assert perf_diff_mean > self.slowdown_threshold, f'Performance regressed by {regression_percent:.2f}% (threshold={((1.0 - self.slowdown_threshold) * 100.0 ):.2f}%)' |
0 commit comments