-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
192 lines (139 loc) · 6.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import torch.nn as nn
from pprint import pprint
import torch.optim as optim
from tqdm.auto import tqdm
from collections import defaultdict
from models import VecotrQuantizerAE
from utils import VQVAE_cfg,get_data_loaders
from utils import reconstruct , show_2_batches
from utils import plot_history_train_val
# load the config
cfg = VQVAE_cfg()
print("Params:")
pprint(cfg,indent=3)
# load the dataloders
train_loder, val_loder = get_data_loaders()
# load model
model = VecotrQuantizerAE(
num_downsamplings=cfg.MODEL.NUM_DOWNSAMPLINGS,
latent_channels=cfg.MODEL.LATENT_CHANNELS,
num_embeddings=cfg.MODEL.NUM_EMBEDDINGS,
channels=cfg.MODEL.ENCODER_CHANNELS,
in_channels=cfg.DATASET.IMAGE_CHANNELS,
)
model = model.to(cfg.TRAIN.DEVICE)
print("Number of parameters: {:,}".format(sum(p.numel() for p in model.parameters())))
class VAELoss(nn.Module):
def __init__(self, λ=1.0):
super().__init__()
self.λ = λ
self.reconstruction_loss = nn.MSELoss()
def forward(self, outputs, target):
output, vq_loss = outputs
reconst_loss = self.reconstruction_loss(output, target)
loss = reconst_loss + self.λ * vq_loss
return {"loss": loss, "reconstruction loss": reconst_loss, "VQ loss": vq_loss}
class AverageLoss:
def __init__(self, name):
self.name = name
self.reset()
def reset(self):
self.num_samples = 0
self.total_loss = 0.0
def update(self, data):
batch_size = data["batch_size"]
self.num_samples += batch_size
self.total_loss += batch_size * data[self.name]
def compute(self):
avg_loss = self.total_loss / self.num_samples
metrics = {self.name: avg_loss}
return metrics
class Manager:
def __init__(self,model, loss, optimizer, train_loder, val_loder, device, batch_scheduler=None,
epoch_scheduler=None) -> None:
self.model = model
self.loss = loss
self.optimizer = optimizer
self.train_loader = train_loder
self.val_loader = val_loder
self.device = device
self.batch_scheduler = batch_scheduler
self.epoch_scheduler = epoch_scheduler
# history and metrics
self.history = defaultdict(list)
self.metrics = [
AverageLoss(x) for x in ["loss", "reconstruction loss", "VQ loss"]
]
def log_metrics(self, metrics, name):
print(f"{name}: ", end='', flush=True)
for key, val in metrics.items():
self.history[name + ' ' + key].append(val)
print(f"{key} {val:.3f} ", end='')
def fit(self,epochs):
######################### Training #####################
for epoch in range(1, epochs + 1):
print(f"Epoch : {epoch}/{epochs}")
self.model.train()
for metric in self.metrics:
metric.reset()
train_bar = tqdm(self.train_loader, desc=f"Training:")
for batch_idx , batch in enumerate(train_bar):
images = batch.to(self.device)
outputs = self.model(images)
losses = self.loss(outputs, images)
self.optimizer.zero_grad()
losses["loss"].backward()
self.optimizer.step()
if self.batch_scheduler is not None:
self.batch_scheduler.step()
data = {k: v.item() for k, v in losses.items()}
data["batch_size"] = len(images)
for metric in self.metrics:
metric.update(data)
train_bar.set_postfix(
loss = losses['loss'].item(),
reconstruction_loss =losses['reconstruction loss'].item(),
VQ_loss = losses['VQ loss'].item()
)
summary = {}
for metric in self.metrics:
summary.update(metric.compute())
self.log_metrics(summary, "train")
########################### TEST ##########################
self.model.eval()
for metric in self.metrics:
metric.reset()
test_bar = tqdm(self.val_loader, desc=f"Testing:")
with torch.no_grad():
for batch_idx , batch in enumerate(test_bar):
images = batch.to(self.device)
outputs = self.model(images)
losses = self.loss(outputs, images)
data = {k: v.item() for k, v in losses.items()}
data["batch_size"] = len(images)
for metric in self.metrics:
metric.update(data)
train_bar.set_postfix(
loss = losses['loss'].item(),
reconstruction_loss =losses['reconstruction loss'].item(),
VQ_loss = losses['VQ loss'].item()
)
summary = {}
for metric in self.metrics:
summary.update(metric.compute())
self.log_metrics(summary, "val")
# plotting each epoch:
test_batch = next(iter(val_loder))
reconstructed_batch = reconstruct(model,test_batch,device = cfg.TRAIN.DEVICE)
show_2_batches(test_batch[:64], reconstructed_batch[:64], f"Validation Images_epoch_{str(epoch)}", f"Reconstructed Images__{str(epoch)}",epoch)
torch.save(model.state_dict(), str('result/final_model.pt'))
loss = VAELoss(λ=0.1)
optimizer = optim.AdamW(model.parameters(), lr=cfg.TRAIN.LEARNING_RATE, weight_decay=cfg.TRAIN.WEIGHT_DECAY)
lr_scheduler = optim.lr_scheduler.OneCycleLR(optimizer, max_lr=cfg.TRAIN.LEARNING_RATE,
steps_per_epoch=len(train_loder), epochs=cfg.TRAIN.EPOCHS)
learner = Manager(model, loss, optimizer, train_loder, val_loder, cfg.TRAIN.DEVICE, batch_scheduler=lr_scheduler)
learner.fit(cfg.TRAIN.EPOCHS)
plot_history_train_val(learner.history, 'loss')
plot_history_train_val(learner.history, 'reconstruction loss')
plot_history_train_val(learner.history, 'VQ loss')