From 6ee4331407be277564d720761bcc8e74ab8411b9 Mon Sep 17 00:00:00 2001 From: "Rasmus B. Christensen" Date: Tue, 7 Feb 2023 12:01:52 +0100 Subject: [PATCH 01/22] add SR844 driver from Frabrizio --- .../drivers/StanfordResearchSystems/SR844.py | 755 ++++++++++++++++++ 1 file changed, 755 insertions(+) create mode 100644 qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py diff --git a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py new file mode 100644 index 000000000..d06ca5c8c --- /dev/null +++ b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py @@ -0,0 +1,755 @@ +# -*- coding: utf-8 -*- +""" +Created on Tue Mar 2 09:25:05 2021 + +@author: Triton4acq_2 +""" + +from functools import partial +import numpy as np +from typing import Any + +from qcodes import VisaInstrument +from qcodes.instrument.parameter import ArrayParameter, ParamRawDataType +from qcodes.utils.validators import Numbers, Ints, Enum, Strings + +from typing import Tuple + +class ChannelBuffer(ArrayParameter): + """ + Parameter class for the two channel buffers + + Currently always returns the entire buffer + TODO (WilliamHPNielsen): Make it possible to query parts of the buffer. + The instrument natively supports this in its TRCL call. + """ + + def __init__(self, name: str, instrument: 'SR844', channel: int) -> None: + """ + Args: + name: The name of the parameter + instrument: The parent instrument + channel: The relevant channel (1 or 2). The name should + should match this. + """ + self._valid_channels = (1, 2) + + if channel not in self._valid_channels: + raise ValueError('Invalid channel specifier. SR844 only has ' + 'channels 1 and 2.') + + if not isinstance(instrument, SR844): + raise ValueError('Invalid parent instrument. ChannelBuffer ' + 'can only live on an SR844.') + + super().__init__(name, + shape=(1,), # dummy initial shape + unit='V', # dummy initial unit + setpoint_names=('Time',), + setpoint_labels=('Time',), + setpoint_units=('s',), + docstring='Holds an acquired (part of the) ' + 'data buffer of one channel.') + + self.channel = channel + self._instrument = instrument + def prepare_buffer_readout(self) -> None: + """ + Function to generate the setpoints for the channel buffer and + get the right units + """ + assert isinstance(self._instrument, SR844) + N = self._instrument.buffer_npts() # problem if this is zero? + # TODO (WilliamHPNielsen): what if SR was changed during acquisition? + SR = self._instrument.buffer_SR() + if SR == 'Trigger': + self.setpoint_units = ('',) + self.setpoint_names = ('trig_events',) + self.setpoint_labels = ('Trigger event number',) + self.setpoints = (tuple(np.arange(0, N)),) + else: + dt = 1/SR + self.setpoint_units = ('s',) + self.setpoint_names = ('Time',) + self.setpoint_labels = ('Time',) + self.setpoints = (tuple(np.linspace(0, N*dt, N)),) + + self.shape = (N,) + + params = self._instrument.parameters + # YES, it should be: comparing to the string 'none' and not + # the None literal + if params[f'ch{self.channel}_ratio'].get() != 'none': + self.unit = '%' + else: + disp = params[f'ch{self.channel}_display'].get() + if disp == 'Phase': + self.unit = 'deg' + else: + self.unit = 'V' + + if self.channel == 1: + self._instrument._buffer1_ready = True + else: + self._instrument._buffer2_ready = True + def get_raw(self) -> ParamRawDataType: + """ + Get command. Returns numpy array + """ + assert isinstance(self._instrument, SR844) + if self.channel == 1: + ready = self._instrument._buffer1_ready + else: + ready = self._instrument._buffer2_ready + + if not ready: + raise RuntimeError('Buffer not ready. Please run ' + 'prepare_buffer_readout') + N = self._instrument.buffer_npts() + if N == 0: + raise ValueError('No points stored in SR844 data buffer.' + ' Can not poll anything.') + + # poll raw binary data + self._instrument.write(f'TRCL ? {self.channel}, 0, {N}') + rawdata = self._instrument.visa_handle.read_raw() + + # parse it + realdata = np.fromstring(rawdata, dtype=' Tuple[float, int]: + # parts = s.split(',') + + # return float(parts[0]), int(parts[1]) + + # FB: offset function changed to DOFF and parameters modified accordingly + self.add_parameter('X_offset', + get_cmd='DOFF? 1, 0', + get_parser=float, + set_cmd='DOFF 1, 0 {,:.2f}', + unit='% of full scale', + vals=Numbers(min_value=-110, max_value=110)) + + self.add_parameter('R_V_offset', + get_cmd='DOFF? 1, 1', + get_parser=float, + set_cmd='DOFF 1, 1 {,:.2f}', + unit='% of full scale', + vals=Numbers(min_value=-110, max_value=110)) + + self.add_parameter('R_dBm_offset', + get_cmd='DOFF? 1, 2', + get_parser=float, + set_cmd='DOFF 1, 2 {,:.2f}', + unit='% of 200 dBm scale', + vals=Numbers(min_value=-110, max_value=110)) + self.add_parameter('Y_offset', + get_cmd='DOFF? 2, 0', + get_parser=float, + set_cmd='DOFF 2, 0 {,:.2f}', + unit='% of full scale', + vals=Numbers(min_value=-110, max_value=110)) + # Aux input/output FB: modified into AUXI and AUXO + for i in [1, 2]: + self.add_parameter(f'aux_in{i}', + label=f'Aux input {i}', + get_cmd=f'AUXI? {i}', + get_parser=float, + unit='V') + + self.add_parameter(f'aux_out{i}', + label=f'Aux output {i}', + get_cmd=f'AUXO? {i}', #missing limits -10.5 , 10.5 V! + get_parser=float, + set_cmd=f'AUXO {i}, {{}}', + unit='V') + + # Setup + self.add_parameter('output_interface', + label='Output interface', + get_cmd='OUTX?', + set_cmd='OUTX {}', + val_mapping={ + 'RS232': '0\n', + 'GPIB': '1\n', + }) + + # FB: Channel setup completely revisited + # Set (Query) the Ratio Mode + self.add_parameter('ratio_mode', + label='Ratio mode', + get_cmd='DRAT?', + set_cmd='DRAT {}', + val_mapping={ + 'off': 0, + 'AuxIn1': 1, + 'AuxIn2': 2, + }) + # Se (query) the channels display, could be shortened + self.add_parameter('ch1_display', + label='Channel 1 display', + get_cmd='DDEF? 1 ', + set_cmd='DRAT 1, {{}}', + val_mapping={ + 'X': 0, + 'R_V': 1, + 'R_dBm': 2, + 'Xn': 3, + 'AuxIn1': 4, + }) + self.add_parameter('ch2_display', + label='Channel 2 display', + get_cmd='DDEF? 2 ', + set_cmd='DRAT 2, {{}}', + val_mapping={ + 'Y': 0, + 'P': 1, + 'Yn_V': 2, + 'Yn_dBm': 3, + 'AuxIn2': 4, + }) + + for ch in range(1, 3): + + # detailed validation and mapping performed in set/get functions + # self.add_parameter(f'ch{ch}_ratio', + # label=f'Channel {ch} ratio', + # get_cmd=partial(self._get_ch_ratio, ch), + # set_cmd=partial(self._set_ch_ratio, ch), + # vals=Strings()) + # self.add_parameter(f'ch{ch}_display', + # label=f'Channel {ch} display', + # get_cmd=partial(self._get_ch_display, ch), + # set_cmd=partial(self._set_ch_display, ch), + # vals=Strings()) + self.add_parameter(f'ch{ch}_databuffer', + channel=ch, + parameter_class=ChannelBuffer) + + # Data transfer FB: addeded RSR844m] + self.add_parameter('X', + get_cmd='OUTP? 1', + get_parser=float, + unit='V') + + self.add_parameter('Y', + get_cmd='OUTP? 2', + get_parser=float, + unit='V') + + self.add_parameter('R_V', + get_cmd='OUTP? 3', + get_parser=float, + unit='V') + + self.add_parameter('R_dBm', + get_cmd='OUTP? 4', + get_parser=float, + unit='dBm') + self.add_parameter('P_dBm', + get_cmd='OUTP? 5', + get_parser=float, + unit='deg') + + # Data buffer settings + self.add_parameter('buffer_SR', + label='Buffer sample rate', + get_cmd='SRAT ?', + set_cmd=self._set_buffer_SR, + unit='Hz', + val_mapping={62.5e-3: 0, + 0.125: 1, + 0.250: 2, + 0.5: 3, + 1: 4, 2: 5, + 4: 6, 8: 7, + 16: 8, 32: 9, + 64: 10, 128: 11, + 256: 12, 512: 13, + 'Trigger': 14}, + get_parser=int + ) + + self.add_parameter('buffer_acq_mode', + label='Buffer acquistion mode', + get_cmd='SEND ?', + set_cmd='SEND {}', + val_mapping={'single shot': 0, + 'loop': 1}, + get_parser=int) + + self.add_parameter('buffer_trig_mode', + label='Buffer trigger start mode', + get_cmd='TSTR ?', + set_cmd='TSTR {}', + val_mapping={'ON': 1, 'OFF': 0}, + get_parser=int) + + self.add_parameter('buffer_npts', + label='Buffer number of stored points', + get_cmd='SPTS ?', + get_parser=int) + + # Auto functions + self.add_function('auto_gain', call_cmd='AGAN') + self.add_function('auto_wideband_reserve ', call_cmd='AWRS') + self.add_function('auto_close_in_reserve ', call_cmd='ACRS') + self.add_function('auto_phase', call_cmd='APHS') + #FB auto offset functions could be improved + self.add_function('auto_offset_ch1', call_cmd='AOFF 1,{0}', + args=[Enum(1, 2, 3)]) + self.add_function('auto_offset_ch2', call_cmd='AOFF 2,{0}', + args=[Enum(1, 2, 3)]) + + # Interface + self.add_function('reset', call_cmd='*RST') + + self.add_function('disable_front_panel', call_cmd='OVRM 0') + self.add_function('enable_front_panel', call_cmd='OVRM 1') + + self.add_function('send_trigger', call_cmd='TRIG', + docstring=("Send a software trigger. " + "This command has the same effect as a " + "trigger at the rear panel trigger" + " input.")) + + self.add_function('buffer_start', call_cmd='STRT', + docstring=("The buffer_start command starts or " + "resumes data storage. buffer_start" + " is ignored if storage is already in" + " progress.")) + + self.add_function('buffer_pause', call_cmd='PAUS', + docstring=("The buffer_pause command pauses data " + "storage. If storage is already paused " + "or reset then this command is ignored.")) + + self.add_function('buffer_reset', call_cmd='REST', + docstring=("The buffer_reset command resets the data" + " buffers. The buffer_reset command can " + "be sent at any time - any storage in " + "progress, paused or not, will be reset." + " This command will erase the data " + "buffer.")) + + # Initialize the proper units of the outputs and sensitivities + # self.input_config() + + # start keeping track of buffer setpoints + self._buffer1_ready = False + self._buffer2_ready = False + + self.connect_message() + + + SNAP_PARAMETERS = { + 'x': '1', + 'y': '2', + 'r_V' : '3', + 'r_dBm': '4', + 'p': '5', + 'phase': '5', + 'θ' : '5', + 'aux1': '6', + 'aux2': '7', + 'freq': '8', + 'ch1': '9', + 'ch2': '10' + } + def snap(self, *parameters: str) -> Tuple[float, ...]: + """ + Get between 2 and 6 parameters at a single instant. This provides a + coherent snapshot of measured signals. Pick up to 6 from: X, Y, R, θ, + the aux inputs 1-2, frequency, or what is currently displayed on + channels 1 and 2. + + Reading X and Y (or R and θ) gives a coherent snapshot of the signal. + Snap is important when the time constant is very short, a time constant + less than 100 ms. + + Args: + *parameters: From 2 to 6 strings of names of parameters for which + the values are requested. including: 'x', 'y', 'r', 'p', + 'phase' or 'θ', 'aux1', 'aux2', 'freq', + 'ch1', and 'ch2'. + + Returns: + A tuple of floating point values in the same order as requested. + + Examples: + >>> lockin.snap('x','y') -> tuple(x,y) + + >>> lockin.snap('aux1','aux2','freq','phase') + >>> -> tuple(aux1,aux2,freq,phase) + + Note: + Volts for x, y, r, and aux 1-4 + Degrees for θ + Hertz for freq + Unknown for ch1 and ch2. It will depend on what was set. + + - If X,Y,R and θ are all read, then the values of X,Y are recorded + approximately 10 µs apart from R,θ. Thus, the values of X and Y + may not yield the exact values of R and θ from a single snap. + - The values of the Aux Inputs may have an uncertainty of + up to 32 µs. + - The frequency is computed only every other period or 40 ms, + whichever is longer. + """ + if not 2 <= len(parameters) <= 6: + raise KeyError( + 'It is only possible to request values of 2 to 6 parameters' + ' at a time.') + + for name in parameters: + if name.lower() not in self.SNAP_PARAMETERS: + raise KeyError(f'{name} is an unknown parameter. Refer' + f' to `SNAP_PARAMETERS` for a list of valid' + f' parameter names') + + p_ids = [self.SNAP_PARAMETERS[name.lower()] for name in parameters] + output = self.ask(f'SNAP? {",".join(p_ids)}') + + return tuple(float(val) for val in output.split(',')) + def increment_sensitivity(self) -> bool: + """ + Increment the sensitivity setting of the lock-in. This is equivalent + to pushing the sensitivity up button on the front panel. This has no + effect if the sensitivity is already at the maximum. + + Returns: + Whether or not the sensitivity was actually changed. + """ + return self._change_sensitivity(1) + + def decrement_sensitivity(self) -> bool: + """ + Decrement the sensitivity setting of the lock-in. This is equivalent + to pushing the sensitivity down button on the front panel. This has no + effect if the sensitivity is already at the minimum. + + Returns: + Whether or not the sensitivity was actually changed. + """ + return self._change_sensitivity(-1) + + + def _change_sensitivity(self, dn: int) -> bool: + if self.input_config() in ['a', 'a-b']: + n_to = self._N_TO_VOLT + to_n = self._VOLT_TO_N + else: + n_to = self._N_TO_CURR + to_n = self._CURR_TO_N + + n = to_n[self.sensitivity()] + + if n + dn > max(n_to.keys()) or n + dn < min(n_to.keys()): + return False + + self.sensitivity.set(n_to[n + dn]) + return True + + def _set_buffer_SR(self, SR: int) -> None: + self.write(f'SRAT {SR}') + self._buffer1_ready = False + self._buffer2_ready = False + + # def _get_ch_ratio(self, channel: int) -> str: + # val_mapping = {1: {0: 'X', + # 1: 'Aux In 1', + # 2: 'Aux In 1', + # 3: 'Aux In 1', + # : 'Aux In 2'}, + # 2: {0: 'none', + # 1: 'Aux In 3', + # 2: 'Aux In 4'}} + # resp = int(self.ask(f'DDEF ? {channel}').split(',')[1]) + + # return val_mapping[channel][resp] + + # def _set_ch_ratio(self, channel: int, ratio: str) -> None: + # val_mapping = {1: {'none': 0, + # 'Aux In 1': 1, + # 'Aux In 2': 2}, + # 2: {'none': 0, + # 'Aux In 3': 1, + # 'Aux In 4': 2}} + # vals = val_mapping[channel].keys() + # if ratio not in vals: + # raise ValueError(f'{ratio} not in {vals}') + # ratio_int = val_mapping[channel][ratio] + # disp_val = int(self.ask(f'DDEF ? {channel}').split(',')[0]) + # self.write(f'DDEF {channel}, {disp_val}, {ratio_int}') + # self._buffer_ready = False + + # def _get_ch_display(self, channel: int) -> str: + # val_mapping = {1: {0: 'X', + # 1: 'R', + # 2: 'X Noise', + # 3: 'Aux In 1', + # 4: 'Aux In 2'}, + # 2: {0: 'Y', + # 1: 'Phase', + # 2: 'Y Noise', + # 3: 'Aux In 3', + # 4: 'Aux In 4'}} + # resp = int(self.ask(f'DDEF ? {channel}').split(',')[0]) + + # return val_mapping[channel][resp] + + # def _set_ch_display(self, channel: int, disp: str) -> None: + # val_mapping = {1: {'X': 0, + # 'R': 1, + # 'X Noise': 2, + # 'Aux In 1': 3, + # 'Aux In 2': 4}, + # 2: {'Y': 0, + # 'Phase': 1, + # 'Y Noise': 2, + # 'Aux In 3': 3, + # 'Aux In 4': 4}} + # vals = val_mapping[channel].keys() + # if disp not in vals: + # raise ValueError(f'{disp} not in {vals}') + # disp_int = val_mapping[channel][disp] + # # Since ratio AND display are set simultaneously, + # # we get and then re-set the current ratio value + # ratio_val = int(self.ask(f'DDEF ? {channel}').split(',')[1]) + # self.write(f'DDEF {channel}, {disp_int}, {ratio_val}') + # self._buffer_ready = False + + # def _set_units(self, unit: str) -> None: + # # TODO: + # # make a public parameter function that allows to change the units + # for param in [self.X, self.Y, self.R, self.sensitivity]: + # param.unit = unit + + # def _get_input_config(self, s: int) -> str: + # mode = self._N_TO_INPUT_CONFIG[int(s)] + + # if mode in ['a', 'a-b']: + # self.sensitivity.vals = self._VOLT_ENUM + # self._set_units('V') + # else: + # self.sensitivity.vals = self._CURR_ENUM + # self._set_units('A') + + # return mode + + # def _set_input_config(self, s: str) -> int: + # if s in ['a', 'a-b']: + # self.sensitivity.vals = self._VOLT_ENUM + # self._set_units('V') + # else: + # self.sensitivity.vals = self._CURR_ENUM + # self._set_units('A') + + # return self._INPUT_CONFIG_TO_N[s] + + # def _get_sensitivity(self, s: int) -> float: + # if self.input_config() in ['a', 'a-b']: + # return self._N_TO_VOLT[int(s)] + # else: + # return self._N_TO_CURR[int(s)] + + # def _set_sensitivity(self, s: float) -> int: + # if self.input_config() in ['a', 'a-b']: + # return self._VOLT_TO_N[s] + # else: + # return self._CURR_TO_N[s] \ No newline at end of file From 67ece65475aecbd4a61ee7ef8fb58cbfa9b9fe64 Mon Sep 17 00:00:00 2001 From: "Rasmus B. Christensen" Date: Tue, 7 Feb 2023 12:13:44 +0100 Subject: [PATCH 02/22] run black --- .../drivers/StanfordResearchSystems/SR844.py | 994 ++++++++++-------- 1 file changed, 542 insertions(+), 452 deletions(-) diff --git a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py index d06ca5c8c..ce74e7e22 100644 --- a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py +++ b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py @@ -15,6 +15,7 @@ from typing import Tuple + class ChannelBuffer(ArrayParameter): """ Parameter class for the two channel buffers @@ -24,7 +25,7 @@ class ChannelBuffer(ArrayParameter): The instrument natively supports this in its TRCL call. """ - def __init__(self, name: str, instrument: 'SR844', channel: int) -> None: + def __init__(self, name: str, instrument: "SR844", channel: int) -> None: """ Args: name: The name of the parameter @@ -35,98 +36,107 @@ def __init__(self, name: str, instrument: 'SR844', channel: int) -> None: self._valid_channels = (1, 2) if channel not in self._valid_channels: - raise ValueError('Invalid channel specifier. SR844 only has ' - 'channels 1 and 2.') + raise ValueError( + "Invalid channel specifier. SR844 only has " "channels 1 and 2." + ) if not isinstance(instrument, SR844): - raise ValueError('Invalid parent instrument. ChannelBuffer ' - 'can only live on an SR844.') - - super().__init__(name, - shape=(1,), # dummy initial shape - unit='V', # dummy initial unit - setpoint_names=('Time',), - setpoint_labels=('Time',), - setpoint_units=('s',), - docstring='Holds an acquired (part of the) ' - 'data buffer of one channel.') + raise ValueError( + "Invalid parent instrument. ChannelBuffer " "can only live on an SR844." + ) + + super().__init__( + name, + shape=(1,), # dummy initial shape + unit="V", # dummy initial unit + setpoint_names=("Time",), + setpoint_labels=("Time",), + setpoint_units=("s",), + docstring="Holds an acquired (part of the) " "data buffer of one channel.", + ) self.channel = channel self._instrument = instrument + def prepare_buffer_readout(self) -> None: - """ - Function to generate the setpoints for the channel buffer and - get the right units - """ - assert isinstance(self._instrument, SR844) - N = self._instrument.buffer_npts() # problem if this is zero? - # TODO (WilliamHPNielsen): what if SR was changed during acquisition? - SR = self._instrument.buffer_SR() - if SR == 'Trigger': - self.setpoint_units = ('',) - self.setpoint_names = ('trig_events',) - self.setpoint_labels = ('Trigger event number',) - self.setpoints = (tuple(np.arange(0, N)),) - else: - dt = 1/SR - self.setpoint_units = ('s',) - self.setpoint_names = ('Time',) - self.setpoint_labels = ('Time',) - self.setpoints = (tuple(np.linspace(0, N*dt, N)),) - - self.shape = (N,) - - params = self._instrument.parameters - # YES, it should be: comparing to the string 'none' and not - # the None literal - if params[f'ch{self.channel}_ratio'].get() != 'none': - self.unit = '%' - else: - disp = params[f'ch{self.channel}_display'].get() - if disp == 'Phase': - self.unit = 'deg' - else: - self.unit = 'V' - - if self.channel == 1: - self._instrument._buffer1_ready = True + """ + Function to generate the setpoints for the channel buffer and + get the right units + """ + assert isinstance(self._instrument, SR844) + N = self._instrument.buffer_npts() # problem if this is zero? + # TODO (WilliamHPNielsen): what if SR was changed during acquisition? + SR = self._instrument.buffer_SR() + if SR == "Trigger": + self.setpoint_units = ("",) + self.setpoint_names = ("trig_events",) + self.setpoint_labels = ("Trigger event number",) + self.setpoints = (tuple(np.arange(0, N)),) + else: + dt = 1 / SR + self.setpoint_units = ("s",) + self.setpoint_names = ("Time",) + self.setpoint_labels = ("Time",) + self.setpoints = (tuple(np.linspace(0, N * dt, N)),) + + self.shape = (N,) + + params = self._instrument.parameters + # YES, it should be: comparing to the string 'none' and not + # the None literal + if params[f"ch{self.channel}_ratio"].get() != "none": + self.unit = "%" + else: + disp = params[f"ch{self.channel}_display"].get() + if disp == "Phase": + self.unit = "deg" else: - self._instrument._buffer2_ready = True + self.unit = "V" + + if self.channel == 1: + self._instrument._buffer1_ready = True + else: + self._instrument._buffer2_ready = True + def get_raw(self) -> ParamRawDataType: - """ - Get command. Returns numpy array - """ - assert isinstance(self._instrument, SR844) - if self.channel == 1: - ready = self._instrument._buffer1_ready - else: - ready = self._instrument._buffer2_ready - - if not ready: - raise RuntimeError('Buffer not ready. Please run ' - 'prepare_buffer_readout') - N = self._instrument.buffer_npts() - if N == 0: - raise ValueError('No points stored in SR844 data buffer.' - ' Can not poll anything.') - - # poll raw binary data - self._instrument.write(f'TRCL ? {self.channel}, 0, {N}') - rawdata = self._instrument.visa_handle.read_raw() - - # parse it - realdata = np.fromstring(rawdata, dtype=' Tuple[float, int]: # parts = s.split(',') # return float(parts[0]), int(parts[1]) # FB: offset function changed to DOFF and parameters modified accordingly - self.add_parameter('X_offset', - get_cmd='DOFF? 1, 0', - get_parser=float, - set_cmd='DOFF 1, 0 {,:.2f}', - unit='% of full scale', - vals=Numbers(min_value=-110, max_value=110)) - - self.add_parameter('R_V_offset', - get_cmd='DOFF? 1, 1', - get_parser=float, - set_cmd='DOFF 1, 1 {,:.2f}', - unit='% of full scale', - vals=Numbers(min_value=-110, max_value=110)) - - self.add_parameter('R_dBm_offset', - get_cmd='DOFF? 1, 2', - get_parser=float, - set_cmd='DOFF 1, 2 {,:.2f}', - unit='% of 200 dBm scale', - vals=Numbers(min_value=-110, max_value=110)) - self.add_parameter('Y_offset', - get_cmd='DOFF? 2, 0', - get_parser=float, - set_cmd='DOFF 2, 0 {,:.2f}', - unit='% of full scale', - vals=Numbers(min_value=-110, max_value=110)) + self.add_parameter( + "X_offset", + get_cmd="DOFF? 1, 0", + get_parser=float, + set_cmd="DOFF 1, 0 {,:.2f}", + unit="% of full scale", + vals=Numbers(min_value=-110, max_value=110), + ) + + self.add_parameter( + "R_V_offset", + get_cmd="DOFF? 1, 1", + get_parser=float, + set_cmd="DOFF 1, 1 {,:.2f}", + unit="% of full scale", + vals=Numbers(min_value=-110, max_value=110), + ) + + self.add_parameter( + "R_dBm_offset", + get_cmd="DOFF? 1, 2", + get_parser=float, + set_cmd="DOFF 1, 2 {,:.2f}", + unit="% of 200 dBm scale", + vals=Numbers(min_value=-110, max_value=110), + ) + self.add_parameter( + "Y_offset", + get_cmd="DOFF? 2, 0", + get_parser=float, + set_cmd="DOFF 2, 0 {,:.2f}", + unit="% of full scale", + vals=Numbers(min_value=-110, max_value=110), + ) # Aux input/output FB: modified into AUXI and AUXO for i in [1, 2]: - self.add_parameter(f'aux_in{i}', - label=f'Aux input {i}', - get_cmd=f'AUXI? {i}', - get_parser=float, - unit='V') - - self.add_parameter(f'aux_out{i}', - label=f'Aux output {i}', - get_cmd=f'AUXO? {i}', #missing limits -10.5 , 10.5 V! - get_parser=float, - set_cmd=f'AUXO {i}, {{}}', - unit='V') + self.add_parameter( + f"aux_in{i}", + label=f"Aux input {i}", + get_cmd=f"AUXI? {i}", + get_parser=float, + unit="V", + ) + + self.add_parameter( + f"aux_out{i}", + label=f"Aux output {i}", + get_cmd=f"AUXO? {i}", # missing limits -10.5 , 10.5 V! + get_parser=float, + set_cmd=f"AUXO {i}, {{}}", + unit="V", + ) # Setup - self.add_parameter('output_interface', - label='Output interface', - get_cmd='OUTX?', - set_cmd='OUTX {}', - val_mapping={ - 'RS232': '0\n', - 'GPIB': '1\n', - }) + self.add_parameter( + "output_interface", + label="Output interface", + get_cmd="OUTX?", + set_cmd="OUTX {}", + val_mapping={ + "RS232": "0\n", + "GPIB": "1\n", + }, + ) # FB: Channel setup completely revisited # Set (Query) the Ratio Mode - self.add_parameter('ratio_mode', - label='Ratio mode', - get_cmd='DRAT?', - set_cmd='DRAT {}', - val_mapping={ - 'off': 0, - 'AuxIn1': 1, - 'AuxIn2': 2, - }) + self.add_parameter( + "ratio_mode", + label="Ratio mode", + get_cmd="DRAT?", + set_cmd="DRAT {}", + val_mapping={ + "off": 0, + "AuxIn1": 1, + "AuxIn2": 2, + }, + ) # Se (query) the channels display, could be shortened - self.add_parameter('ch1_display', - label='Channel 1 display', - get_cmd='DDEF? 1 ', - set_cmd='DRAT 1, {{}}', - val_mapping={ - 'X': 0, - 'R_V': 1, - 'R_dBm': 2, - 'Xn': 3, - 'AuxIn1': 4, - }) - self.add_parameter('ch2_display', - label='Channel 2 display', - get_cmd='DDEF? 2 ', - set_cmd='DRAT 2, {{}}', - val_mapping={ - 'Y': 0, - 'P': 1, - 'Yn_V': 2, - 'Yn_dBm': 3, - 'AuxIn2': 4, - }) - + self.add_parameter( + "ch1_display", + label="Channel 1 display", + get_cmd="DDEF? 1 ", + set_cmd="DRAT 1, {{}}", + val_mapping={ + "X": 0, + "R_V": 1, + "R_dBm": 2, + "Xn": 3, + "AuxIn1": 4, + }, + ) + self.add_parameter( + "ch2_display", + label="Channel 2 display", + get_cmd="DDEF? 2 ", + set_cmd="DRAT 2, {{}}", + val_mapping={ + "Y": 0, + "P": 1, + "Yn_V": 2, + "Yn_dBm": 3, + "AuxIn2": 4, + }, + ) + for ch in range(1, 3): # detailed validation and mapping performed in set/get functions @@ -417,115 +484,135 @@ def __init__(self, name: str, address: str, **kwargs: Any): # get_cmd=partial(self._get_ch_display, ch), # set_cmd=partial(self._set_ch_display, ch), # vals=Strings()) - self.add_parameter(f'ch{ch}_databuffer', - channel=ch, - parameter_class=ChannelBuffer) + self.add_parameter( + f"ch{ch}_databuffer", channel=ch, parameter_class=ChannelBuffer + ) # Data transfer FB: addeded RSR844m] - self.add_parameter('X', - get_cmd='OUTP? 1', - get_parser=float, - unit='V') - - self.add_parameter('Y', - get_cmd='OUTP? 2', - get_parser=float, - unit='V') - - self.add_parameter('R_V', - get_cmd='OUTP? 3', - get_parser=float, - unit='V') - - self.add_parameter('R_dBm', - get_cmd='OUTP? 4', - get_parser=float, - unit='dBm') - self.add_parameter('P_dBm', - get_cmd='OUTP? 5', - get_parser=float, - unit='deg') - + self.add_parameter("X", get_cmd="OUTP? 1", get_parser=float, unit="V") + + self.add_parameter("Y", get_cmd="OUTP? 2", get_parser=float, unit="V") + + self.add_parameter("R_V", get_cmd="OUTP? 3", get_parser=float, unit="V") + + self.add_parameter("R_dBm", get_cmd="OUTP? 4", get_parser=float, unit="dBm") + self.add_parameter("P_dBm", get_cmd="OUTP? 5", get_parser=float, unit="deg") + # Data buffer settings - self.add_parameter('buffer_SR', - label='Buffer sample rate', - get_cmd='SRAT ?', - set_cmd=self._set_buffer_SR, - unit='Hz', - val_mapping={62.5e-3: 0, - 0.125: 1, - 0.250: 2, - 0.5: 3, - 1: 4, 2: 5, - 4: 6, 8: 7, - 16: 8, 32: 9, - 64: 10, 128: 11, - 256: 12, 512: 13, - 'Trigger': 14}, - get_parser=int - ) - - self.add_parameter('buffer_acq_mode', - label='Buffer acquistion mode', - get_cmd='SEND ?', - set_cmd='SEND {}', - val_mapping={'single shot': 0, - 'loop': 1}, - get_parser=int) - - self.add_parameter('buffer_trig_mode', - label='Buffer trigger start mode', - get_cmd='TSTR ?', - set_cmd='TSTR {}', - val_mapping={'ON': 1, 'OFF': 0}, - get_parser=int) - - self.add_parameter('buffer_npts', - label='Buffer number of stored points', - get_cmd='SPTS ?', - get_parser=int) + self.add_parameter( + "buffer_SR", + label="Buffer sample rate", + get_cmd="SRAT ?", + set_cmd=self._set_buffer_SR, + unit="Hz", + val_mapping={ + 62.5e-3: 0, + 0.125: 1, + 0.250: 2, + 0.5: 3, + 1: 4, + 2: 5, + 4: 6, + 8: 7, + 16: 8, + 32: 9, + 64: 10, + 128: 11, + 256: 12, + 512: 13, + "Trigger": 14, + }, + get_parser=int, + ) + + self.add_parameter( + "buffer_acq_mode", + label="Buffer acquistion mode", + get_cmd="SEND ?", + set_cmd="SEND {}", + val_mapping={"single shot": 0, "loop": 1}, + get_parser=int, + ) + + self.add_parameter( + "buffer_trig_mode", + label="Buffer trigger start mode", + get_cmd="TSTR ?", + set_cmd="TSTR {}", + val_mapping={"ON": 1, "OFF": 0}, + get_parser=int, + ) + + self.add_parameter( + "buffer_npts", + label="Buffer number of stored points", + get_cmd="SPTS ?", + get_parser=int, + ) # Auto functions - self.add_function('auto_gain', call_cmd='AGAN') - self.add_function('auto_wideband_reserve ', call_cmd='AWRS') - self.add_function('auto_close_in_reserve ', call_cmd='ACRS') - self.add_function('auto_phase', call_cmd='APHS') - #FB auto offset functions could be improved - self.add_function('auto_offset_ch1', call_cmd='AOFF 1,{0}', - args=[Enum(1, 2, 3)]) - self.add_function('auto_offset_ch2', call_cmd='AOFF 2,{0}', - args=[Enum(1, 2, 3)]) - + self.add_function("auto_gain", call_cmd="AGAN") + self.add_function("auto_wideband_reserve ", call_cmd="AWRS") + self.add_function("auto_close_in_reserve ", call_cmd="ACRS") + self.add_function("auto_phase", call_cmd="APHS") + # FB auto offset functions could be improved + self.add_function( + "auto_offset_ch1", call_cmd="AOFF 1,{0}", args=[Enum(1, 2, 3)] + ) + self.add_function( + "auto_offset_ch2", call_cmd="AOFF 2,{0}", args=[Enum(1, 2, 3)] + ) + # Interface - self.add_function('reset', call_cmd='*RST') - - self.add_function('disable_front_panel', call_cmd='OVRM 0') - self.add_function('enable_front_panel', call_cmd='OVRM 1') - - self.add_function('send_trigger', call_cmd='TRIG', - docstring=("Send a software trigger. " - "This command has the same effect as a " - "trigger at the rear panel trigger" - " input.")) - - self.add_function('buffer_start', call_cmd='STRT', - docstring=("The buffer_start command starts or " - "resumes data storage. buffer_start" - " is ignored if storage is already in" - " progress.")) - - self.add_function('buffer_pause', call_cmd='PAUS', - docstring=("The buffer_pause command pauses data " - "storage. If storage is already paused " - "or reset then this command is ignored.")) - - self.add_function('buffer_reset', call_cmd='REST', - docstring=("The buffer_reset command resets the data" - " buffers. The buffer_reset command can " - "be sent at any time - any storage in " - "progress, paused or not, will be reset." - " This command will erase the data " - "buffer.")) + self.add_function("reset", call_cmd="*RST") + + self.add_function("disable_front_panel", call_cmd="OVRM 0") + self.add_function("enable_front_panel", call_cmd="OVRM 1") + + self.add_function( + "send_trigger", + call_cmd="TRIG", + docstring=( + "Send a software trigger. " + "This command has the same effect as a " + "trigger at the rear panel trigger" + " input." + ), + ) + + self.add_function( + "buffer_start", + call_cmd="STRT", + docstring=( + "The buffer_start command starts or " + "resumes data storage. buffer_start" + " is ignored if storage is already in" + " progress." + ), + ) + + self.add_function( + "buffer_pause", + call_cmd="PAUS", + docstring=( + "The buffer_pause command pauses data " + "storage. If storage is already paused " + "or reset then this command is ignored." + ), + ) + + self.add_function( + "buffer_reset", + call_cmd="REST", + docstring=( + "The buffer_reset command resets the data" + " buffers. The buffer_reset command can " + "be sent at any time - any storage in " + "progress, paused or not, will be reset." + " This command will erase the data " + "buffer." + ), + ) # Initialize the proper units of the outputs and sensitivities # self.input_config() @@ -536,101 +623,104 @@ def __init__(self, name: str, address: str, **kwargs: Any): self.connect_message() - SNAP_PARAMETERS = { - 'x': '1', - 'y': '2', - 'r_V' : '3', - 'r_dBm': '4', - 'p': '5', - 'phase': '5', - 'θ' : '5', - 'aux1': '6', - 'aux2': '7', - 'freq': '8', - 'ch1': '9', - 'ch2': '10' + "x": "1", + "y": "2", + "r_V": "3", + "r_dBm": "4", + "p": "5", + "phase": "5", + "θ": "5", + "aux1": "6", + "aux2": "7", + "freq": "8", + "ch1": "9", + "ch2": "10", } + def snap(self, *parameters: str) -> Tuple[float, ...]: - """ - Get between 2 and 6 parameters at a single instant. This provides a - coherent snapshot of measured signals. Pick up to 6 from: X, Y, R, θ, - the aux inputs 1-2, frequency, or what is currently displayed on - channels 1 and 2. - - Reading X and Y (or R and θ) gives a coherent snapshot of the signal. - Snap is important when the time constant is very short, a time constant - less than 100 ms. - - Args: - *parameters: From 2 to 6 strings of names of parameters for which - the values are requested. including: 'x', 'y', 'r', 'p', - 'phase' or 'θ', 'aux1', 'aux2', 'freq', - 'ch1', and 'ch2'. - - Returns: - A tuple of floating point values in the same order as requested. - - Examples: - >>> lockin.snap('x','y') -> tuple(x,y) - - >>> lockin.snap('aux1','aux2','freq','phase') - >>> -> tuple(aux1,aux2,freq,phase) - - Note: - Volts for x, y, r, and aux 1-4 - Degrees for θ - Hertz for freq - Unknown for ch1 and ch2. It will depend on what was set. - - - If X,Y,R and θ are all read, then the values of X,Y are recorded - approximately 10 µs apart from R,θ. Thus, the values of X and Y - may not yield the exact values of R and θ from a single snap. - - The values of the Aux Inputs may have an uncertainty of - up to 32 µs. - - The frequency is computed only every other period or 40 ms, - whichever is longer. - """ - if not 2 <= len(parameters) <= 6: + """ + Get between 2 and 6 parameters at a single instant. This provides a + coherent snapshot of measured signals. Pick up to 6 from: X, Y, R, θ, + the aux inputs 1-2, frequency, or what is currently displayed on + channels 1 and 2. + + Reading X and Y (or R and θ) gives a coherent snapshot of the signal. + Snap is important when the time constant is very short, a time constant + less than 100 ms. + + Args: + *parameters: From 2 to 6 strings of names of parameters for which + the values are requested. including: 'x', 'y', 'r', 'p', + 'phase' or 'θ', 'aux1', 'aux2', 'freq', + 'ch1', and 'ch2'. + + Returns: + A tuple of floating point values in the same order as requested. + + Examples: + >>> lockin.snap('x','y') -> tuple(x,y) + + >>> lockin.snap('aux1','aux2','freq','phase') + >>> -> tuple(aux1,aux2,freq,phase) + + Note: + Volts for x, y, r, and aux 1-4 + Degrees for θ + Hertz for freq + Unknown for ch1 and ch2. It will depend on what was set. + + - If X,Y,R and θ are all read, then the values of X,Y are recorded + approximately 10 µs apart from R,θ. Thus, the values of X and Y + may not yield the exact values of R and θ from a single snap. + - The values of the Aux Inputs may have an uncertainty of + up to 32 µs. + - The frequency is computed only every other period or 40 ms, + whichever is longer. + """ + if not 2 <= len(parameters) <= 6: + raise KeyError( + "It is only possible to request values of 2 to 6 parameters" + " at a time." + ) + + for name in parameters: + if name.lower() not in self.SNAP_PARAMETERS: raise KeyError( - 'It is only possible to request values of 2 to 6 parameters' - ' at a time.') - - for name in parameters: - if name.lower() not in self.SNAP_PARAMETERS: - raise KeyError(f'{name} is an unknown parameter. Refer' - f' to `SNAP_PARAMETERS` for a list of valid' - f' parameter names') - - p_ids = [self.SNAP_PARAMETERS[name.lower()] for name in parameters] - output = self.ask(f'SNAP? {",".join(p_ids)}') - - return tuple(float(val) for val in output.split(',')) + f"{name} is an unknown parameter. Refer" + f" to `SNAP_PARAMETERS` for a list of valid" + f" parameter names" + ) + + p_ids = [self.SNAP_PARAMETERS[name.lower()] for name in parameters] + output = self.ask(f'SNAP? {",".join(p_ids)}') + + return tuple(float(val) for val in output.split(",")) + def increment_sensitivity(self) -> bool: - """ - Increment the sensitivity setting of the lock-in. This is equivalent - to pushing the sensitivity up button on the front panel. This has no - effect if the sensitivity is already at the maximum. - - Returns: - Whether or not the sensitivity was actually changed. - """ - return self._change_sensitivity(1) - + """ + Increment the sensitivity setting of the lock-in. This is equivalent + to pushing the sensitivity up button on the front panel. This has no + effect if the sensitivity is already at the maximum. + + Returns: + Whether or not the sensitivity was actually changed. + """ + return self._change_sensitivity(1) + def decrement_sensitivity(self) -> bool: - """ - Decrement the sensitivity setting of the lock-in. This is equivalent - to pushing the sensitivity down button on the front panel. This has no - effect if the sensitivity is already at the minimum. - - Returns: - Whether or not the sensitivity was actually changed. - """ - return self._change_sensitivity(-1) + """ + Decrement the sensitivity setting of the lock-in. This is equivalent + to pushing the sensitivity down button on the front panel. This has no + effect if the sensitivity is already at the minimum. + Returns: + Whether or not the sensitivity was actually changed. + """ + return self._change_sensitivity(-1) def _change_sensitivity(self, dn: int) -> bool: - if self.input_config() in ['a', 'a-b']: + if self.input_config() in ["a", "a-b"]: n_to = self._N_TO_VOLT to_n = self._VOLT_TO_N else: @@ -646,7 +736,7 @@ def _change_sensitivity(self, dn: int) -> bool: return True def _set_buffer_SR(self, SR: int) -> None: - self.write(f'SRAT {SR}') + self.write(f"SRAT {SR}") self._buffer1_ready = False self._buffer2_ready = False @@ -752,4 +842,4 @@ def _set_buffer_SR(self, SR: int) -> None: # if self.input_config() in ['a', 'a-b']: # return self._VOLT_TO_N[s] # else: - # return self._CURR_TO_N[s] \ No newline at end of file + # return self._CURR_TO_N[s] From 8c3494b73bcccdd1cf48c1080ea243f4f4cd3eef Mon Sep 17 00:00:00 2001 From: "Rasmus B. Christensen" Date: Wed, 22 Feb 2023 15:16:31 +0100 Subject: [PATCH 03/22] removed comments --- .../drivers/StanfordResearchSystems/SR844.py | 86 ------------------- 1 file changed, 86 deletions(-) diff --git a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py index ce74e7e22..e4edd9817 100644 --- a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py +++ b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py @@ -1,10 +1,3 @@ -# -*- coding: utf-8 -*- -""" -Created on Tue Mar 2 09:25:05 2021 - -@author: Triton4acq_2 -""" - from functools import partial import numpy as np from typing import Any @@ -136,31 +129,6 @@ class SR844(VisaInstrument): Lock-in Amplifier """ - # FB; sensitivity list set in SENS(?) since this lockin has only single channel mode, not differential one - # _VOLT_TO_N = {100e-9: 0, 300e-9: 1, 1e-6: 2, - # 3e-6: 3, 10e-6: 4, 30e-6: 5, - # 100e-6: 6, 300e-6: 7, 1e-3: 8, - # 3e-3: 9, 10e-3: 10, 30e-3: 11, - # 100e-3: 12, 300e-3: 13, 1: 14} - # _N_TO_VOLT = {v: k for k, v in _VOLT_TO_N.items()} - - # _CURR_TO_N = {100e-15: 0, 300e-15: 1, 1e-12: 2, #FB: in the manual no current values, only Vrms - # 3e-12: 3, 10e-12: 4, 30e-12: 5, - # 100e-12: 6, 300e-12: 7, 1e-9: 8, - # 3e-9: 9, 10e-9: 10, 30e-9: 11, - # 100e-9: 12, 300e-9: 13, 1e-6: 14} - # _N_TO_CURR = {v: k for k, v in _CURR_TO_N.items()} - - # _VOLT_ENUM = Enum(*_VOLT_TO_N.keys()) - # _CURR_ENUM = Enum(*_CURR_TO_N.keys()) #same reason as above - - # _INPUT_CONFIG_TO_N = { #FB; this lockin supports only single channel mode, no differential. So taken away 'a', and 'a-b' - # 'I 50k': 0, - # 'I 1M': 1, - # } - - # _N_TO_INPUT_CONFIG = {v: k for k, v in _INPUT_CONFIG_TO_N.items()} - def __init__(self, name: str, address: str, **kwargs: Any): super().__init__(name, address, **kwargs) @@ -197,16 +165,6 @@ def __init__(self, name: str, address: str, **kwargs: Any): vals=Numbers(min_value=2.5e4, max_value=2e8), ) # FB: in 2F mode minimum frequency is 50 kHz. See HARM? - # self.add_parameter('ext_trigger', #command RSLP does't seem available or anything similar - # label='External trigger', - # get_cmd='RSLP?', - # set_cmd='RSLP {}', - # val_mapping={ - # 'sine': 0, - # 'TTL rising': 1, - # 'TTL falling': 2, - # }) - self.add_parameter( "harmonic", # FB: here it sets the 2F mode or not label="Harmonic", @@ -238,36 +196,6 @@ def __init__(self, name: str, address: str, **kwargs: Any): "I 1M": 1, }, ) - # FB: in the manual a similar command does not appear - # self.add_parameter('input_shield', - # label='Input shield', - # get_cmd='IGND?', - # set_cmd='IGND {}', - # val_mapping={ - # 'float': 0, - # 'ground': 1, - # }) - - # FB: in the manual a similar command does not appear - # self.add_parameter('input_coupling', - # label='Input coupling', - # get_cmd='ICPL?', - # set_cmd='ICPL {}', - # val_mapping={ - # 'AC': 0, - # 'DC': 1, - # }) - # FB: in the manual a similar command does not appear - # self.add_parameter('notch_filter', - # label='Notch filter', - # get_cmd='ILIN?', - # set_cmd='ILIN {}', - # val_mapping={ - # 'off': 0, - # 'line in': 1, - # '2x line in': 2, - # 'both': 3, - # }) # Gain and time constant # FB: sensitivity was read correctly by qcodes for 0 and 1, but not for setting #2. The others have not been tested yet. @@ -349,20 +277,6 @@ def __init__(self, name: str, address: str, **kwargs: Any): 24: 4, }, ) - # FB: absent in the manual - # self.add_parameter('sync_filter', - # label='Sync filter', - # get_cmd='SYNC?', - # set_cmd='SYNC {}', - # val_mapping={ - # 'off': 0, - # 'on': 1, - # }) - # FB: not used - # def parse_offset_get(s: str) -> Tuple[float, int]: - # parts = s.split(',') - - # return float(parts[0]), int(parts[1]) # FB: offset function changed to DOFF and parameters modified accordingly self.add_parameter( From db83362faf4349701ea895cc20227504259c38b8 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 1 Mar 2023 02:06:50 +0000 Subject: [PATCH 04/22] Update ipython requirement from ~=8.10.0 to ~=8.11.0 Updates the requirements on [ipython](https://github.com/ipython/ipython) to permit the latest version. - [Release notes](https://github.com/ipython/ipython/releases) - [Commits](https://github.com/ipython/ipython/compare/8.10.0...8.11.0) --- updated-dependencies: - dependency-name: ipython dependency-type: direct:production ... Signed-off-by: dependabot[bot] --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 8e3de85b0..c9a4b592a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,2 +1,2 @@ mypy~=1.0.0 -ipython~=8.10.0 \ No newline at end of file +ipython~=8.11.0 \ No newline at end of file From 99a5b9b921b55b573158515296580b3bc2594446 Mon Sep 17 00:00:00 2001 From: Po-Ya Yang Date: Wed, 1 Mar 2023 13:42:19 +0100 Subject: [PATCH 05/22] Update BlueFors.py Within get_temperature( ), change the format in pd.to_datetime( ). Because there is no space before the day with BlueFors Control Software v2.2. --- qcodes_contrib_drivers/drivers/BlueFors/BlueFors.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/qcodes_contrib_drivers/drivers/BlueFors/BlueFors.py b/qcodes_contrib_drivers/drivers/BlueFors/BlueFors.py index 99683e40c..ec27fceff 100644 --- a/qcodes_contrib_drivers/drivers/BlueFors/BlueFors.py +++ b/qcodes_contrib_drivers/drivers/BlueFors/BlueFors.py @@ -155,8 +155,8 @@ def get_temperature(self, channel: int) -> float: names = ['date', 'time', 'y'], header = None) - # There is a space before the day - df.index = pd.to_datetime(df['date']+'-'+df['time'], format=' %d-%m-%y-%H:%M:%S') + # There is no space before the day with BlueFors Control Software v2.2 + df.index = pd.to_datetime(df['date']+'-'+df['time'], format='%d-%m-%y-%H:%M:%S') return df.iloc[-1]['y'] except (PermissionError, OSError) as err: From df2450583b486494aceb9ac76047471fc00bba58 Mon Sep 17 00:00:00 2001 From: RasmusBC59 Date: Mon, 6 Mar 2023 16:51:45 +0100 Subject: [PATCH 06/22] frederiks first try --- .../drivers/StanfordResearchSystems/SR844.py | 531 +++++++++++------- 1 file changed, 327 insertions(+), 204 deletions(-) diff --git a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py index e4edd9817..91b40a8dd 100644 --- a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py +++ b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py @@ -1,12 +1,71 @@ from functools import partial import numpy as np -from typing import Any +from typing import Any, Iterable, Tuple, Union from qcodes import VisaInstrument -from qcodes.instrument.parameter import ArrayParameter, ParamRawDataType -from qcodes.utils.validators import Numbers, Ints, Enum, Strings +from qcodes.instrument.parameter import ArrayParameter, Parameter, ParamRawDataType, ParameterWithSetpoints +from qcodes.utils.validators import Numbers, Ints, Enum, Strings, Arrays -from typing import Tuple +class ChannelTrace(ParameterWithSetpoints): + """ + Parameter class for the two channel buffers + """ + + def __init__(self, name: str, channel: int, **kwargs: Any) -> None: + """ + Args: + name: The name of the parameter + channel: The relevant channel (1 or 2). The name should + match this. + """ + super().__init__(name, **kwargs) + + self._valid_channels = (1, 2) + + if channel not in self._valid_channels: + raise ValueError('Invalid channel specifier. SR844 only has ' + 'channels 1 and 2.') + + if not isinstance(self.root_instrument, SR844): + raise ValueError('Invalid parent instrument. ChannelTrace ' + 'can only live on an SR844.') + + self.channel = channel + self.update_unit() + + def update_unit(self) -> None: + assert isinstance(self.root_instrument, SR844) + params = self.root_instrument.parameters + if params["ratio_mode"].get() != "none": + self.unit = "%" + else: + disp = params[f"ch{self.channel}_display"].get() + if "Phase" in disp: + self.unit = "deg" + elif "dBm" in disp: + self.unit = "dBm" + else: + self.unit = "V" + + + def get_raw(self) -> ParamRawDataType: + """ + Get command. Returns numpy array + """ + assert isinstance(self.root_instrument, SR844) + N = self.root_instrument.buffer_npts() + if N == 0: + raise ValueError('No points stored in SR844 data buffer.' + ' Cannot poll anything.') + + # poll raw binary data + self.root_instrument.write(f'TRCL ? {self.channel}, 0, {N}') + rawdata = self.root_instrument.visa_handle.read_raw() + + # parse it + realdata = np.frombuffer(rawdata, dtype=" None: Args: name: The name of the parameter instrument: The parent instrument - channel: The relevant channel (1 or 2). The name should - should match this. + channel: The relevant channel (1 or 2). The name should + should match this. # how should the name match the channel? """ self._valid_channels = (1, 2) if channel not in self._valid_channels: - raise ValueError( - "Invalid channel specifier. SR844 only has " "channels 1 and 2." - ) + raise ValueError('Invalid channel specifier. SR844 only has ' + 'channels 1 and 2.') if not isinstance(instrument, SR844): raise ValueError( - "Invalid parent instrument. ChannelBuffer " "can only live on an SR844." + "Invalid parent instrument. ChannelBuffer " " can only live on an SR844." ) super().__init__( @@ -51,6 +109,7 @@ def __init__(self, name: str, instrument: "SR844", channel: int) -> None: self.channel = channel self._instrument = instrument + def prepare_buffer_readout(self) -> None: """ Function to generate the setpoints for the channel buffer and @@ -77,12 +136,14 @@ def prepare_buffer_readout(self) -> None: params = self._instrument.parameters # YES, it should be: comparing to the string 'none' and not # the None literal - if params[f"ch{self.channel}_ratio"].get() != "none": + if params["ratio_mode"].get() != "none": self.unit = "%" else: disp = params[f"ch{self.channel}_display"].get() if disp == "Phase": self.unit = "deg" + elif "dBm" in disp: + self.unit = "dBm" else: self.unit = "V" @@ -91,6 +152,7 @@ def prepare_buffer_readout(self) -> None: else: self._instrument._buffer2_ready = True + def get_raw(self) -> ParamRawDataType: """ Get command. Returns numpy array @@ -134,7 +196,7 @@ def __init__(self, name: str, address: str, **kwargs: Any): # Reference and phase self.add_parameter( - "phase", + "phase_offset", label="Phase", get_cmd="PHAS?", get_parser=float, @@ -144,7 +206,7 @@ def __init__(self, name: str, address: str, **kwargs: Any): ) self.add_parameter( - "reference_source", + "reference_source", label="Reference source", get_cmd="FMOD?", set_cmd="FMOD {}", @@ -163,13 +225,13 @@ def __init__(self, name: str, address: str, **kwargs: Any): set_cmd="FREQ {:.4f}", unit="Hz", vals=Numbers(min_value=2.5e4, max_value=2e8), - ) # FB: in 2F mode minimum frequency is 50 kHz. See HARM? + ) # FB: in 2F mode minimum frequency is 50 kHz. See HARM self.add_parameter( - "harmonic", # FB: here it sets the 2F mode or not + "harmonic", label="Harmonic", get_cmd="HARM?", - set_cmd="HARM {}", + set_cmd="HARM {}", #self._set_harmonic val_mapping={ "f": 0, "2f": 1, @@ -185,7 +247,6 @@ def __init__(self, name: str, address: str, **kwargs: Any): # unit='V', # vals=Numbers(min_value=0.004, max_value=5.000)) - # Input and filter self.add_parameter( "input_impedance", label="Input impedance", @@ -197,8 +258,7 @@ def __init__(self, name: str, address: str, **kwargs: Any): }, ) - # Gain and time constant - # FB: sensitivity was read correctly by qcodes for 0 and 1, but not for setting #2. The others have not been tested yet. + # FB: sensitivity was read correctly by qcodes for 0 and 1, but not for setting #2. # No issue was noted on a rerun self.add_parameter( name="sensitivity", label="Sensitivity", @@ -222,7 +282,7 @@ def __init__(self, name: str, address: str, **kwargs: Any): 1: 14, }, ) - # FB: changed command to WRSV + self.add_parameter( "reserve", label="Reserve", @@ -234,7 +294,7 @@ def __init__(self, name: str, address: str, **kwargs: Any): "low noise": 2, }, ) - # FB: updated values + self.add_parameter( "time_constant", label="Time constant", @@ -262,7 +322,7 @@ def __init__(self, name: str, address: str, **kwargs: Any): 30e3: 17, }, ) - # FB: modified. 'No filter mode' is set at 0, a different construct would be required + self.add_parameter( "filter_slope", label="Filter slope", @@ -283,7 +343,7 @@ def __init__(self, name: str, address: str, **kwargs: Any): "X_offset", get_cmd="DOFF? 1, 0", get_parser=float, - set_cmd="DOFF 1, 0 {,:.2f}", + set_cmd="DOFF 1, 0, {}", unit="% of full scale", vals=Numbers(min_value=-110, max_value=110), ) @@ -292,7 +352,7 @@ def __init__(self, name: str, address: str, **kwargs: Any): "R_V_offset", get_cmd="DOFF? 1, 1", get_parser=float, - set_cmd="DOFF 1, 1 {,:.2f}", + set_cmd="DOFF 1, 1, {}", unit="% of full scale", vals=Numbers(min_value=-110, max_value=110), ) @@ -301,7 +361,7 @@ def __init__(self, name: str, address: str, **kwargs: Any): "R_dBm_offset", get_cmd="DOFF? 1, 2", get_parser=float, - set_cmd="DOFF 1, 2 {,:.2f}", + set_cmd="DOFF 1, 2, {}", unit="% of 200 dBm scale", vals=Numbers(min_value=-110, max_value=110), ) @@ -309,11 +369,11 @@ def __init__(self, name: str, address: str, **kwargs: Any): "Y_offset", get_cmd="DOFF? 2, 0", get_parser=float, - set_cmd="DOFF 2, 0 {,:.2f}", + set_cmd="DOFF 2, 0, {}", unit="% of full scale", vals=Numbers(min_value=-110, max_value=110), ) - # Aux input/output FB: modified into AUXI and AUXO + for i in [1, 2]: self.add_parameter( f"aux_in{i}", @@ -326,13 +386,13 @@ def __init__(self, name: str, address: str, **kwargs: Any): self.add_parameter( f"aux_out{i}", label=f"Aux output {i}", - get_cmd=f"AUXO? {i}", # missing limits -10.5 , 10.5 V! + get_cmd=f"AUXO? {i}", get_parser=float, set_cmd=f"AUXO {i}, {{}}", unit="V", + vals=Numbers(min_value=-10.5, max_value=10.5) ) - # Setup self.add_parameter( "output_interface", label="Output interface", @@ -344,142 +404,147 @@ def __init__(self, name: str, address: str, **kwargs: Any): }, ) - # FB: Channel setup completely revisited - # Set (Query) the Ratio Mode self.add_parameter( "ratio_mode", label="Ratio mode", get_cmd="DRAT?", - set_cmd="DRAT {}", + set_cmd=self._set_ratio, val_mapping={ - "off": 0, + "none": 0, "AuxIn1": 1, "AuxIn2": 2, }, ) - # Se (query) the channels display, could be shortened - self.add_parameter( - "ch1_display", - label="Channel 1 display", - get_cmd="DDEF? 1 ", - set_cmd="DRAT 1, {{}}", - val_mapping={ - "X": 0, - "R_V": 1, - "R_dBm": 2, - "Xn": 3, - "AuxIn1": 4, - }, - ) - self.add_parameter( - "ch2_display", - label="Channel 2 display", - get_cmd="DDEF? 2 ", - set_cmd="DRAT 2, {{}}", - val_mapping={ - "Y": 0, - "P": 1, - "Yn_V": 2, - "Yn_dBm": 3, - "AuxIn2": 4, - }, - ) - - for ch in range(1, 3): - - # detailed validation and mapping performed in set/get functions - # self.add_parameter(f'ch{ch}_ratio', - # label=f'Channel {ch} ratio', - # get_cmd=partial(self._get_ch_ratio, ch), - # set_cmd=partial(self._set_ch_ratio, ch), - # vals=Strings()) - # self.add_parameter(f'ch{ch}_display', - # label=f'Channel {ch} display', - # get_cmd=partial(self._get_ch_display, ch), - # set_cmd=partial(self._set_ch_display, ch), - # vals=Strings()) - self.add_parameter( - f"ch{ch}_databuffer", channel=ch, parameter_class=ChannelBuffer - ) - - # Data transfer FB: addeded RSR844m] - self.add_parameter("X", get_cmd="OUTP? 1", get_parser=float, unit="V") - - self.add_parameter("Y", get_cmd="OUTP? 2", get_parser=float, unit="V") - - self.add_parameter("R_V", get_cmd="OUTP? 3", get_parser=float, unit="V") - - self.add_parameter("R_dBm", get_cmd="OUTP? 4", get_parser=float, unit="dBm") - self.add_parameter("P_dBm", get_cmd="OUTP? 5", get_parser=float, unit="deg") - - # Data buffer settings - self.add_parameter( - "buffer_SR", - label="Buffer sample rate", - get_cmd="SRAT ?", - set_cmd=self._set_buffer_SR, - unit="Hz", - val_mapping={ - 62.5e-3: 0, - 0.125: 1, - 0.250: 2, - 0.5: 3, - 1: 4, - 2: 5, - 4: 6, - 8: 7, - 16: 8, - 32: 9, - 64: 10, - 128: 11, - 256: 12, - 512: 13, - "Trigger": 14, - }, - get_parser=int, - ) - - self.add_parameter( - "buffer_acq_mode", - label="Buffer acquistion mode", - get_cmd="SEND ?", - set_cmd="SEND {}", - val_mapping={"single shot": 0, "loop": 1}, - get_parser=int, - ) - - self.add_parameter( - "buffer_trig_mode", - label="Buffer trigger start mode", - get_cmd="TSTR ?", - set_cmd="TSTR {}", - val_mapping={"ON": 1, "OFF": 0}, - get_parser=int, - ) - - self.add_parameter( - "buffer_npts", - label="Buffer number of stored points", - get_cmd="SPTS ?", - get_parser=int, - ) - + + # self.add_parameter( + # "ch1_display", + # label="Channel 1 display", + # get_cmd="DDEF? 1 ", + # set_cmd="DDEF 1, {}", + # val_mapping={ + # "X": 0, + # "R_V": 1, + # "R_dBm": 2, + # "Xn": 3, + # "AuxIn1": 4, + # }, + # ) + + # self.add_parameter( + # "ch2_display", + # label="Channel 2 display", + # get_cmd="DDEF? 2 ", + # set_cmd="DDEF 2, {}", + # val_mapping={ + # "Y": 0, + # "P": 1, + # "Yn_V": 2, + # "Yn_dBm": 3, + # "AuxIn2": 4, + # }, + # ) + + + self.add_parameter("buffer_SR", + label="Buffer sample rate", + get_cmd="SRAT ?", + set_cmd=self._set_buffer_SR, + unit="Hz", + val_mapping={ + 62.5e-3: 0, + 0.125: 1, + 0.250: 2, + 0.5: 3, + 1: 4, + 2: 5, + 4: 6, + 8: 7, + 16: 8, + 32: 9, + 64: 10, + 128: 11, + 256: 12, + 512: 13, + "Trigger": 14, + }, + get_parser=int) + + self.add_parameter("buffer_acq_mode", + label="Buffer acquistion mode", + get_cmd="SEND ?", + set_cmd="SEND {}", + val_mapping={"single shot": 0, "loop": 1}, + get_parser=int) + + self.add_parameter("buffer_trig_mode", + label="Buffer trigger start mode", + get_cmd="TSTR ?", + set_cmd="TSTR {}", + val_mapping={"ON": 1, "OFF": 0}, + get_parser=int) + + self.add_parameter("buffer_npts", + label="Buffer number of stored points", + get_cmd="SPTS ?", + get_parser=int) + + self.add_parameter('sweep_setpoints', + parameter_class=GeneratedSetPoints, + vals=Arrays(shape=(self.buffer_npts.get,))) + + for ch in [1, 2]: + + self.add_parameter(f'ch{ch}_display', + label=f'Channel {ch} display', + get_cmd=partial(self._get_ch_display, ch), + set_cmd=partial(self._set_ch_display, ch), + vals=Strings()) + self.add_parameter(f"ch{ch}_databuffer", + channel=ch, + parameter_class=ChannelBuffer) + self.add_parameter(f'ch{ch}_datatrace', + channel=ch, + vals=Arrays(shape=(self.buffer_npts.get,)), + setpoints=(self.sweep_setpoints,), + parameter_class=ChannelTrace) + + # Data transfer FB: added RSR844m] + self.add_parameter("X", + get_cmd="OUTP? 1", + get_parser=float, + unit="V") + + self.add_parameter("Y", + get_cmd="OUTP? 2", + get_parser=float, + unit="V") + + self.add_parameter("R_V", + get_cmd="OUTP? 3", + get_parser=float, + unit="V") + + self.add_parameter("R_dBm", + get_cmd="OUTP? 4", + get_parser=float, + unit="dBm") + + self.add_parameter("phase", + get_cmd="OUTP? 5", + get_parser=float, + unit="deg") + ### use of functions is advised against due to code transparency ### # Auto functions self.add_function("auto_gain", call_cmd="AGAN") self.add_function("auto_wideband_reserve ", call_cmd="AWRS") self.add_function("auto_close_in_reserve ", call_cmd="ACRS") self.add_function("auto_phase", call_cmd="APHS") # FB auto offset functions could be improved - self.add_function( - "auto_offset_ch1", call_cmd="AOFF 1,{0}", args=[Enum(1, 2, 3)] - ) - self.add_function( - "auto_offset_ch2", call_cmd="AOFF 2,{0}", args=[Enum(1, 2, 3)] - ) + self.add_function("auto_offset_ch1", call_cmd="AOFF 1, {}", args=[Enum(0, 1, 2)]) + self.add_function("auto_offset_ch2", call_cmd="AOFF 2, {0}", args=[Enum(0)]) # Interface self.add_function("reset", call_cmd="*RST") - self.add_function("disable_front_panel", call_cmd="OVRM 0") self.add_function("enable_front_panel", call_cmd="OVRM 1") @@ -633,6 +698,16 @@ def decrement_sensitivity(self) -> bool: """ return self._change_sensitivity(-1) + # def _set_harmonic(self, harm: int) -> None: + # print(harm) + # if harm == 0: + # self.write("HARM {0}") + # else: + # freq = self.parameters['frequency'].get() + # if freq < 50000: + # raise ValueError('Frequency must be 50kHz or greater to enable second harmonics') + # self.write("HARM {1}") + def _change_sensitivity(self, dn: int) -> bool: if self.input_config() in ["a", "a-b"]: n_to = self._N_TO_VOLT @@ -655,68 +730,116 @@ def _set_buffer_SR(self, SR: int) -> None: self._buffer2_ready = False # def _get_ch_ratio(self, channel: int) -> str: - # val_mapping = {1: {0: 'X', - # 1: 'Aux In 1', - # 2: 'Aux In 1', - # 3: 'Aux In 1', - # : 'Aux In 2'}, - # 2: {0: 'none', - # 1: 'Aux In 3', - # 2: 'Aux In 4'}} - # resp = int(self.ask(f'DDEF ? {channel}').split(',')[1]) + # val_mapping = {0: 'none', + # 1: 'AuxIn1', + # 2: 'AuxIn2'} + # resp = int(self.ask(f'DRAT ?').split(',')[1]) # return val_mapping[channel][resp] - # def _set_ch_ratio(self, channel: int, ratio: str) -> None: - # val_mapping = {1: {'none': 0, - # 'Aux In 1': 1, - # 'Aux In 2': 2}, - # 2: {'none': 0, - # 'Aux In 3': 1, - # 'Aux In 4': 2}} - # vals = val_mapping[channel].keys() - # if ratio not in vals: - # raise ValueError(f'{ratio} not in {vals}') - # ratio_int = val_mapping[channel][ratio] - # disp_val = int(self.ask(f'DDEF ? {channel}').split(',')[0]) - # self.write(f'DDEF {channel}, {disp_val}, {ratio_int}') - # self._buffer_ready = False - - # def _get_ch_display(self, channel: int) -> str: - # val_mapping = {1: {0: 'X', - # 1: 'R', - # 2: 'X Noise', - # 3: 'Aux In 1', - # 4: 'Aux In 2'}, - # 2: {0: 'Y', - # 1: 'Phase', - # 2: 'Y Noise', - # 3: 'Aux In 3', - # 4: 'Aux In 4'}} - # resp = int(self.ask(f'DDEF ? {channel}').split(',')[0]) + def _set_ratio(self, ratio_int: int) -> None: + self.write(f'DRAT {ratio_int}') + self._buffer_ready = False + params = self.parameters + for ch in [1, 2]: + dataparam = params[f'ch{ch}_datatrace'] + assert isinstance(dataparam, ChannelTrace) + dataparam.update_unit() + + def _get_ch_display(self, channel: int) -> str: + val_mapping = {1: {0: 'X', + 1: 'R_V', + 2: 'R_dBm', + 3: 'X Noise', + 4: 'AuxIn1'}, + 2: {0: 'Y', + 1: 'Phase', + 2: 'Y Noise', + 3: 'Y_dBm Noise', + 4: 'AuxIn2'}} + resp = int(self.ask(f'DDEF ? {channel}').split(',')[0]) + + return val_mapping[channel][resp] + + def _set_ch_display(self, channel: int, disp: str) -> None: + val_mapping = {1: {'X': 0, + 'R_V': 1, + 'R_dBm': 2, + 'X Noise': 3, + 'AuxIn1': 4}, + 2: {'Y': 0, + 'Phase': 1, + 'Y Noise': 2, + 'Y_dBm Noise': 3, + 'AuxIn2': 4}} + vals = val_mapping[channel].keys() + if disp not in vals: + raise ValueError(f'{disp} not in {vals}') + disp_int = val_mapping[channel][disp] + # Since ratio AND display are set simultaneously, + # we get and then re-set the current ratio value + #ratio_val = int(self.ask(f'DRAT ?').split(',')[1]) + #self.write(f'DRAT {ratio_val}') + self.write(f'DDEF {channel}, {disp_int}') + self._buffer_ready = False + # we update the unit of the datatrace + # according to the choice of channel + params = self.parameters + dataparam = params[f'ch{channel}_datatrace'] + assert isinstance(dataparam, ChannelTrace) + dataparam.update_unit() + + def set_sweep_parameters(self, + sweep_param: Parameter, + start: float, + stop: float, + n_points: int = 10, + label: Union[str, None] = None) -> None: + + self.sweep_setpoints.sweep_array = np.linspace(start, stop, n_points) + self.sweep_setpoints.unit = sweep_param.unit + if label is not None: + self.sweep_setpoints.label = label + elif sweep_param.label is not None: + self.sweep_setpoints.label = sweep_param.label + +class GeneratedSetPoints(Parameter): + """ + A parameter that generates a setpoint array from start, stop and num points + parameters. + """ + def __init__(self, + sweep_array: Iterable[Union[float, int]] = np.linspace(0, 1, 10), + *args: Any, **kwargs: Any) -> None: + super().__init__(*args, **kwargs) + self.sweep_array = sweep_array + self.update_units_if_constant_sample_rate() + + def update_units_if_constant_sample_rate(self) -> None: + """ + If the buffer is filled at a constant sample rate, + update the unit to "s" and label to "Time"; + otherwise do nothing + """ + assert isinstance(self.root_instrument, SR844) + SR = self.root_instrument.buffer_SR.get() + if SR != 'Trigger': + self.unit = 's' + self.label = 'Time' - # return val_mapping[channel][resp] + def set_raw(self, value: Iterable[Union[float, int]]) -> None: + self.sweep_array = value + + def get_raw(self) -> ParamRawDataType: + assert isinstance(self.root_instrument, SR844) + SR = self.root_instrument.buffer_SR.get() + if SR == 'Trigger': + return self.sweep_array + else: + N = self.root_instrument.buffer_npts.get() + dt = 1/SR - # def _set_ch_display(self, channel: int, disp: str) -> None: - # val_mapping = {1: {'X': 0, - # 'R': 1, - # 'X Noise': 2, - # 'Aux In 1': 3, - # 'Aux In 2': 4}, - # 2: {'Y': 0, - # 'Phase': 1, - # 'Y Noise': 2, - # 'Aux In 3': 3, - # 'Aux In 4': 4}} - # vals = val_mapping[channel].keys() - # if disp not in vals: - # raise ValueError(f'{disp} not in {vals}') - # disp_int = val_mapping[channel][disp] - # # Since ratio AND display are set simultaneously, - # # we get and then re-set the current ratio value - # ratio_val = int(self.ask(f'DDEF ? {channel}').split(',')[1]) - # self.write(f'DDEF {channel}, {disp_int}, {ratio_val}') - # self._buffer_ready = False + return np.linspace(0, N*dt, N) # def _set_units(self, unit: str) -> None: # # TODO: From 56fa18a980ddc93ea755eb5e88681dcb94b121b1 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 8 Mar 2023 02:03:53 +0000 Subject: [PATCH 07/22] Update mypy requirement from ~=1.0.0 to >=1.0,<1.2 Updates the requirements on [mypy](https://github.com/python/mypy) to permit the latest version. - [Release notes](https://github.com/python/mypy/releases) - [Commits](https://github.com/python/mypy/compare/v1.0.0...v1.1.1) --- updated-dependencies: - dependency-name: mypy dependency-type: direct:production ... Signed-off-by: dependabot[bot] --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index c9a4b592a..7a79d08d0 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,2 +1,2 @@ -mypy~=1.0.0 +mypy>=1.0,<1.2 ipython~=8.11.0 \ No newline at end of file From 5acfb08ac1880df6d552ab24d5622e151611b368 Mon Sep 17 00:00:00 2001 From: Jens Hedegaard Nielsen Date: Wed, 8 Mar 2023 10:13:01 +0100 Subject: [PATCH 08/22] Pin mypy to 1.1 series --- requirements.txt | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/requirements.txt b/requirements.txt index 7a79d08d0..9bb36ed37 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,2 +1,2 @@ -mypy>=1.0,<1.2 -ipython~=8.11.0 \ No newline at end of file +mypy~=1.1.1 +ipython~=8.11.0 From 3a43e2361342e69d6d6a59930b8760118b26b895 Mon Sep 17 00:00:00 2001 From: RasmusBC59 Date: Wed, 8 Mar 2023 12:39:56 +0100 Subject: [PATCH 09/22] Configuration checks added to frequency and harmonics set functions --- .../drivers/StanfordResearchSystems/SR844.py | 39 +++++++++++++------ 1 file changed, 28 insertions(+), 11 deletions(-) diff --git a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py index 91b40a8dd..6b64cddf5 100644 --- a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py +++ b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py @@ -222,7 +222,7 @@ def __init__(self, name: str, address: str, **kwargs: Any): label="Frequency", get_cmd="FREQ?", get_parser=float, - set_cmd="FREQ {:.4f}", + set_cmd=self._set_freq, #"FREQ {:.4f}", unit="Hz", vals=Numbers(min_value=2.5e4, max_value=2e8), ) # FB: in 2F mode minimum frequency is 50 kHz. See HARM @@ -231,7 +231,7 @@ def __init__(self, name: str, address: str, **kwargs: Any): "harmonic", label="Harmonic", get_cmd="HARM?", - set_cmd="HARM {}", #self._set_harmonic + set_cmd=self._set_harmonic,#"HARM {}", #self._set_harmonic val_mapping={ "f": 0, "2f": 1, @@ -687,6 +687,7 @@ def increment_sensitivity(self) -> bool: """ return self._change_sensitivity(1) + def decrement_sensitivity(self) -> bool: """ Decrement the sensitivity setting of the lock-in. This is equivalent @@ -698,15 +699,30 @@ def decrement_sensitivity(self) -> bool: """ return self._change_sensitivity(-1) - # def _set_harmonic(self, harm: int) -> None: - # print(harm) - # if harm == 0: - # self.write("HARM {0}") - # else: - # freq = self.parameters['frequency'].get() - # if freq < 50000: - # raise ValueError('Frequency must be 50kHz or greater to enable second harmonics') - # self.write("HARM {1}") + + def _set_harmonic(self, harm: int) -> None: + if harm == 0: + self.write("HARM 0") + else: + freq = self.parameters['frequency'].get() + if freq < 50000: + raise ValueError('Frequency must be 50kHz or greater to enable second harmonics') + self.write("HARM 1") + + + def _set_freq(self, freq: float) -> None: + params = self.parameters + if params['reference_source'].get() != "internal": + raise ValueError("Cannot set frequency, since the frequency reference_source is not internal") + else: + if freq >= 50000: + self.write(f"FREQ {freq}") + else: + harm = params['harmonic'].get() + if harm == '2f': + raise ValueError('Frequency must be 50kHz or greater when lockin is in second harmonics configuration') + self.write(f"FREQ {freq}") + def _change_sensitivity(self, dn: int) -> bool: if self.input_config() in ["a", "a-b"]: @@ -724,6 +740,7 @@ def _change_sensitivity(self, dn: int) -> bool: self.sensitivity.set(n_to[n + dn]) return True + def _set_buffer_SR(self, SR: int) -> None: self.write(f"SRAT {SR}") self._buffer1_ready = False From e56f80c0816d095b97c31ff2b5042883e9869bf4 Mon Sep 17 00:00:00 2001 From: RasmusBC59 Date: Wed, 8 Mar 2023 14:35:48 +0100 Subject: [PATCH 10/22] before rasmus refactore --- .../drivers/StanfordResearchSystems/SR844.py | 22 ++++++++++++++----- 1 file changed, 17 insertions(+), 5 deletions(-) diff --git a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py index 6b64cddf5..dfcf036c9 100644 --- a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py +++ b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py @@ -4,7 +4,7 @@ from qcodes import VisaInstrument from qcodes.instrument.parameter import ArrayParameter, Parameter, ParamRawDataType, ParameterWithSetpoints -from qcodes.utils.validators import Numbers, Ints, Enum, Strings, Arrays +from qcodes.utils.validators import Numbers, Enum, Strings, Arrays class ChannelTrace(ParameterWithSetpoints): """ @@ -66,7 +66,9 @@ def get_raw(self) -> ParamRawDataType: realdata = np.frombuffer(rawdata, dtype=" " Date: Wed, 15 Mar 2023 15:29:54 +0100 Subject: [PATCH 11/22] fixed mostly bugs in SR844 class --- .../drivers/StanfordResearchSystems/SR844.py | 779 +++++++----------- 1 file changed, 295 insertions(+), 484 deletions(-) diff --git a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py index dfcf036c9..f15819cff 100644 --- a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py +++ b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py @@ -3,188 +3,12 @@ from typing import Any, Iterable, Tuple, Union from qcodes import VisaInstrument -from qcodes.instrument.parameter import ArrayParameter, Parameter, ParamRawDataType, ParameterWithSetpoints -from qcodes.utils.validators import Numbers, Enum, Strings, Arrays - -class ChannelTrace(ParameterWithSetpoints): - """ - Parameter class for the two channel buffers - """ - - def __init__(self, name: str, channel: int, **kwargs: Any) -> None: - """ - Args: - name: The name of the parameter - channel: The relevant channel (1 or 2). The name should - match this. - """ - super().__init__(name, **kwargs) - - self._valid_channels = (1, 2) - - if channel not in self._valid_channels: - raise ValueError('Invalid channel specifier. SR844 only has ' - 'channels 1 and 2.') - - if not isinstance(self.root_instrument, SR844): - raise ValueError('Invalid parent instrument. ChannelTrace ' - 'can only live on an SR844.') - - self.channel = channel - self.update_unit() - - def update_unit(self) -> None: - assert isinstance(self.root_instrument, SR844) - params = self.root_instrument.parameters - if params["ratio_mode"].get() != "none": - self.unit = "%" - else: - disp = params[f"ch{self.channel}_display"].get() - if "Phase" in disp: - self.unit = "deg" - elif "dBm" in disp: - self.unit = "dBm" - else: - self.unit = "V" - - - def get_raw(self) -> ParamRawDataType: - """ - Get command. Returns numpy array - """ - assert isinstance(self.root_instrument, SR844) - N = self.root_instrument.buffer_npts() - if N == 0: - raise ValueError('No points stored in SR844 data buffer.' - ' Cannot poll anything.') - - # poll raw binary data - self.root_instrument.write(f'TRCL ? {self.channel}, 0, {N}') - rawdata = self.root_instrument.visa_handle.read_raw() - - # parse it - realdata = np.frombuffer(rawdata, dtype=" " None: - """ - Args: - name: The name of the parameter - instrument: The parent instrument - channel: The relevant channel (1 or 2). The name should - should match this. # how should the name match the channel? - """ - self._valid_channels = (1, 2) - - if channel not in self._valid_channels: - raise ValueError('Invalid channel specifier. SR844 only has ' - 'channels 1 and 2.') - - if not isinstance(instrument, SR844): - raise ValueError( - "Invalid parent instrument. ChannelBuffer " " can only live on an SR844." - ) - - super().__init__( - name, - shape=(1,), # dummy initial shape - unit="V", # dummy initial unit - setpoint_names=("Time",), - setpoint_labels=("Time",), - setpoint_units=("s",), - docstring="Holds an acquired (part of the) " "data buffer of one channel.", - ) - - self.channel = channel - self._instrument = instrument - - - def prepare_buffer_readout(self) -> None: - """ - Function to generate the setpoints for the channel buffer and - get the right units - """ - assert isinstance(self._instrument, SR844) - N = self._instrument.buffer_npts() # problem if this is zero? - # TODO (WilliamHPNielsen): what if SR was changed during acquisition? - SR = self._instrument.buffer_SR() - if SR == "Trigger": - self.setpoint_units = ("",) - self.setpoint_names = ("trig_events",) - self.setpoint_labels = ("Trigger event number",) - self.setpoints = (tuple(np.arange(0, N)),) - else: - dt = 1 / SR - self.setpoint_units = ("s",) - self.setpoint_names = ("Time",) - self.setpoint_labels = ("Time",) - self.setpoints = (tuple(np.linspace(0, N * dt, N)),) - - self.shape = (N,) - - params = self._instrument.parameters - # YES, it should be: comparing to the string 'none' and not - # the None literal - if params["ratio_mode"].get() != "none": - self.unit = "%" - else: - disp = params[f"ch{self.channel}_display"].get() - if disp == "Phase": - self.unit = "deg" - elif "dBm" in disp: - self.unit = "dBm" - else: - self.unit = "V" - - if self.channel == 1: - self._instrument._buffer1_ready = True - else: - self._instrument._buffer2_ready = True - - - def get_raw(self) -> ParamRawDataType: - """ - Get command. Returns numpy array - """ - assert isinstance(self._instrument, SR844) - if self.channel == 1: - ready = self._instrument._buffer1_ready - else: - ready = self._instrument._buffer2_ready - - if not ready: - raise RuntimeError("Buffer not ready. Please run " "prepare_buffer_readout") - N = self._instrument.buffer_npts() - if N == 0: - raise ValueError( - "No points stored in SR844 data buffer." " Can not poll anything." - ) - - # poll raw binary data - self._instrument.write(f"TRCL ? {self.channel}, 0, {N}") - rawdata = self._instrument.visa_handle.read_raw() - - # parse it - realdata = np.fromstring(rawdata, dtype=" Tuple[float, ...]: """ Get between 2 and 6 parameters at a single instant. This provides a @@ -688,6 +464,7 @@ def snap(self, *parameters: str) -> Tuple[float, ...]: return tuple(float(val) for val in output.split(",")) + def increment_sensitivity(self) -> bool: """ Increment the sensitivity setting of the lock-in. This is equivalent @@ -716,114 +493,107 @@ def _set_harmonic(self, harm: int) -> None: if harm == 0: self.write("HARM 0") else: - freq = self.parameters['frequency'].get() + freq = self.parameters["frequency"].get() if freq < 50000: - raise ValueError('Frequency must be 50kHz or greater to enable second harmonics') + raise ValueError( + "Frequency must be 50kHz or greater to enable second harmonics" + ) self.write("HARM 1") - - + + def _set_freq(self, freq: float) -> None: params = self.parameters - if params['reference_source'].get() != "internal": - raise ValueError("Cannot set frequency, since the frequency reference_source is not internal") + if params["reference_source"].get() != "internal": + raise ValueError( + "Cannot set frequency, since the frequency reference_source is not internal" + ) else: if freq >= 50000: self.write(f"FREQ {freq}") else: - harm = params['harmonic'].get() - if harm == '2f': - raise ValueError('Frequency must be 50kHz or greater when lockin is in second harmonics configuration') + harm = params["harmonic"].get() + if harm == "2f": + raise ValueError( + "Frequency must be 50kHz or greater when lockin is in second harmonics configuration" + ) self.write(f"FREQ {freq}") - def _change_sensitivity(self, dn: int) -> bool: - if self.input_config() in ["a", "a-b"]: - n_to = self._N_TO_VOLT - to_n = self._VOLT_TO_N - else: - n_to = self._N_TO_CURR - to_n = self._CURR_TO_N + def _change_sensitivity(self, dn: int) -> float: + n_to = self.value_sensitivity_map + to_n = self.sensitivity_value_map n = to_n[self.sensitivity()] if n + dn > max(n_to.keys()) or n + dn < min(n_to.keys()): - return False + raise ValueError( + "Sensitivity is at its extremum" + ) self.sensitivity.set(n_to[n + dn]) - return True - + return self.sensitivity.get() - def _set_buffer_SR(self, SR: int) -> None: - self.write(f"SRAT {SR}") - self._buffer1_ready = False - self._buffer2_ready = False - # def _get_ch_ratio(self, channel: int) -> str: - # val_mapping = {0: 'none', - # 1: 'AuxIn1', - # 2: 'AuxIn2'} - # resp = int(self.ask(f'DRAT ?').split(',')[1]) + def update_ch_unit(self, channel: int) -> None: + params = self.parameters + dataparam = params[f"ch{channel}_datatrace"] + assert isinstance(dataparam, ChannelTrace) + dataparam.update_unit() - # return val_mapping[channel][resp] def _set_ratio(self, ratio_int: int) -> None: - self.write(f'DRAT {ratio_int}') - self._buffer_ready = False - params = self.parameters + self.write(f"DRAT {ratio_int}") for ch in [1, 2]: - dataparam = params[f'ch{ch}_datatrace'] - assert isinstance(dataparam, ChannelTrace) - dataparam.update_unit() + self.update_ch_unit(ch) + def _get_ch_display(self, channel: int) -> str: - val_mapping = {1: {0: 'X', - 1: 'R_V', - 2: 'R_dBm', - 3: 'X Noise', - 4: 'AuxIn1'}, - 2: {0: 'Y', - 1: 'Phase', - 2: 'Y Noise', - 3: 'Y_dBm Noise', - 4: 'AuxIn2'}} - resp = int(self.ask(f'DDEF ? {channel}').split(',')[0]) + val_mapping = { + 1: {0: "X", 1: "R_V", 2: "R_dBm", 3: "X Noise", 4: "AuxIn1"}, + 2: {0: "Y", 1: "Phase", 2: "Y Noise", 3: "Y_dBm Noise", 4: "AuxIn2"}, + } + resp = int(self.ask(f"DDEF ? {channel}").split(",")[0]) return val_mapping[channel][resp] - def _set_ch_display(self, channel: int, disp: str) -> None: - val_mapping = {1: {'X': 0, - 'R_V': 1, - 'R_dBm': 2, - 'X Noise': 3, - 'AuxIn1': 4}, - 2: {'Y': 0, - 'Phase': 1, - 'Y Noise': 2, - 'Y_dBm Noise': 3, - 'AuxIn2': 4}} + + def get_display_value(self, channel: int, disp: str) -> int: + val_mapping = { + 1: {"X": 0, "R_V": 1, "R_dBm": 2, "X Noise": 3, "AuxIn1": 4}, + 2: {"Y": 0, "Phase": 1, "Y Noise": 2, "Y_dBm Noise": 3, "AuxIn2": 4}, + } vals = val_mapping[channel].keys() if disp not in vals: - raise ValueError(f'{disp} not in {vals}') - disp_int = val_mapping[channel][disp] - # Since ratio AND display are set simultaneously, - # we get and then re-set the current ratio value - #ratio_val = int(self.ask(f'DRAT ?').split(',')[1]) - #self.write(f'DRAT {ratio_val}') - self.write(f'DDEF {channel}, {disp_int}') - self._buffer_ready = False - # we update the unit of the datatrace - # according to the choice of channel - params = self.parameters - dataparam = params[f'ch{channel}_datatrace'] - assert isinstance(dataparam, ChannelTrace) - dataparam.update_unit() + raise ValueError(f"{disp} not in {vals}") + + return val_mapping[channel][disp] - def set_sweep_parameters(self, - sweep_param: Parameter, - start: float, - stop: float, - n_points: int = 10, - label: Union[str, None] = None) -> None: + + def _set_ch_display(self, channel: int, disp: str) -> None: + disp_int = self.get_display_value(channel, disp) + + self.write(f"DDEF {channel}, {disp_int}") + self.update_ch_unit(channel) + + + def _set_buffer_SR(self, SR: int) -> None: + self.write(f'SRAT {SR}') + self.sweep_setpoints.update_units_if_constant_sample_rate() + + + def _get_complex_voltage(self) -> complex: + x, y = self.snap("X", "Y") + return x + 1.0j * y + + + def set_sweep_parameters( + self, + sweep_param: Parameter, + start: float, + stop: float, + n_points: int = 10, + label: Union[str, None] = None, + ) -> None: self.sweep_setpoints.sweep_array = np.linspace(start, stop, n_points) self.sweep_setpoints.unit = sweep_param.unit @@ -831,19 +601,24 @@ def set_sweep_parameters(self, self.sweep_setpoints.label = label elif sweep_param.label is not None: self.sweep_setpoints.label = sweep_param.label - + class GeneratedSetPoints(Parameter): """ A parameter that generates a setpoint array from start, stop and num points parameters. """ - def __init__(self, - sweep_array: Iterable[Union[float, int]] = np.linspace(0, 1, 10), - *args: Any, **kwargs: Any) -> None: + + def __init__( + self, + sweep_array: Iterable[Union[float, int]] = np.linspace(0, 1, 10), + *args: Any, + **kwargs: Any, + ) -> None: super().__init__(*args, **kwargs) self.sweep_array = sweep_array self.update_units_if_constant_sample_rate() + def update_units_if_constant_sample_rate(self) -> None: """ If the buffer is filled at a constant sample rate, @@ -852,60 +627,96 @@ def update_units_if_constant_sample_rate(self) -> None: """ assert isinstance(self.root_instrument, SR844) SR = self.root_instrument.buffer_SR.get() - if SR != 'Trigger': - self.unit = 's' - self.label = 'Time' + if SR != "Trigger": + self.unit = "s" + self.label = "Time" + def set_raw(self, value: Iterable[Union[float, int]]) -> None: self.sweep_array = value + def get_raw(self) -> ParamRawDataType: assert isinstance(self.root_instrument, SR844) SR = self.root_instrument.buffer_SR.get() - if SR == 'Trigger': + if SR == "Trigger": return self.sweep_array else: N = self.root_instrument.buffer_npts.get() - dt = 1/SR - - return np.linspace(0, N*dt, N) - - # def _set_units(self, unit: str) -> None: - # # TODO: - # # make a public parameter function that allows to change the units - # for param in [self.X, self.Y, self.R, self.sensitivity]: - # param.unit = unit - - # def _get_input_config(self, s: int) -> str: - # mode = self._N_TO_INPUT_CONFIG[int(s)] - - # if mode in ['a', 'a-b']: - # self.sensitivity.vals = self._VOLT_ENUM - # self._set_units('V') - # else: - # self.sensitivity.vals = self._CURR_ENUM - # self._set_units('A') - - # return mode - - # def _set_input_config(self, s: str) -> int: - # if s in ['a', 'a-b']: - # self.sensitivity.vals = self._VOLT_ENUM - # self._set_units('V') - # else: - # self.sensitivity.vals = self._CURR_ENUM - # self._set_units('A') - - # return self._INPUT_CONFIG_TO_N[s] - - # def _get_sensitivity(self, s: int) -> float: - # if self.input_config() in ['a', 'a-b']: - # return self._N_TO_VOLT[int(s)] - # else: - # return self._N_TO_CURR[int(s)] - - # def _set_sensitivity(self, s: float) -> int: - # if self.input_config() in ['a', 'a-b']: - # return self._VOLT_TO_N[s] - # else: - # return self._CURR_TO_N[s] + dt = 1 / SR + + return np.linspace(0, N * dt, N) + +class ChannelTrace(ParameterWithSetpoints): + """ + Parameter class for the two channel buffers + """ + + def __init__(self, name: str, channel: int, **kwargs: Any) -> None: + """ + Args: + name: The name of the parameter + channel: The relevant channel (1 or 2). The name should + match this. + """ + super().__init__(name, **kwargs) + + self._valid_channels = (1, 2) + + if channel not in self._valid_channels: + raise ValueError( + "Invalid channel specifier. SR844 only has " "channels 1 and 2." + ) + + if not isinstance(self.root_instrument, SR844): + raise ValueError( + "Invalid parent instrument. ChannelTrace " "can only live on an SR844." + ) + + self.channel = channel + self.update_unit() + + + def update_unit(self) -> None: + assert isinstance(self.root_instrument, SR844) + params = self.root_instrument.parameters + if params["ratio_mode"].get() != "none": + self.unit = "%" + else: + disp = params[f"ch{self.channel}_display"].get() + if "Phase" in disp: + self.unit = "deg" + elif "dBm" in disp: + self.unit = "dBm" + else: + self.unit = "V" + self.label = disp + + + def get_raw(self) -> ParamRawDataType: + N = self.get_buffer_length() + rawdata = self.poll_raw_binary_data(N) + + return self.parse_binary(rawdata) + + + def parse_binary(self, rawdata): + realdata = np.frombuffer(rawdata, dtype=" int: + N = self.root_instrument.buffer_npts() + if N == 0: + raise ValueError( + "No points stored in SR844 data buffer." " Cannot poll anything." + ) + return N + + + From e46a154ee7d07ab4abe504627c9296181ad22922 Mon Sep 17 00:00:00 2001 From: RasmusBC59 Date: Wed, 15 Mar 2023 16:27:07 +0100 Subject: [PATCH 12/22] Corrected names of SNAP parameters --- .../drivers/StanfordResearchSystems/SR844.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py index f15819cff..8775f8004 100644 --- a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py +++ b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py @@ -392,8 +392,8 @@ def __init__(self, name: str, address: str, **kwargs: Any): SNAP_PARAMETERS = { "x": "1", "y": "2", - "r_V": "3", - "r_dBm": "4", + "r_v": "3", + "r_dbm": "4", "p": "5", "phase": "5", "θ": "5", From 1cbddf9eac7c6462167615f54910f426524ac61e Mon Sep 17 00:00:00 2001 From: RasmusBC59 Date: Wed, 15 Mar 2023 16:39:51 +0100 Subject: [PATCH 13/22] add example --- .../Qcodes example with Stanford SR844.ipynb | 857 ++++++++++++++++++ 1 file changed, 857 insertions(+) create mode 100644 docs/examples/Qcodes example with Stanford SR844.ipynb diff --git a/docs/examples/Qcodes example with Stanford SR844.ipynb b/docs/examples/Qcodes example with Stanford SR844.ipynb new file mode 100644 index 000000000..75791cba0 --- /dev/null +++ b/docs/examples/Qcodes example with Stanford SR844.ipynb @@ -0,0 +1,857 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "from time import sleep\n", + "\n", + "import numpy as np\n", + "\n", + "from qcodes.dataset import do0d, do1d, do2d, load_or_create_experiment\n", + "from qcodes.instrument.parameter import ParameterWithSetpoints\n", + "from qcodes.utils import validators\n", + "from qcodes.instrument_drivers.stanford_research import SR844" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Connected to: Stanford_Research_Systems SR844 (serial:s/n49388, firmware:ver1.006) in 0.79s\n" + ] + } + ], + "source": [ + "lockin1 = SR844('lockin', 'GPIB0::3::INSTR')\n", + "exp = load_or_create_experiment(experiment_name='SR844_notebook__')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's quickly look at the status of the instrument after connecting to it:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lockin:\n", + "\tparameter value\n", + "--------------------------------------------------------------------------------\n", + "IDN :\t{'vendor': 'Stanford_Research_Systems', 'model': 'SR844', ...\n", + "R_V :\tNone (V)\n", + "R_V_offset :\tNone (% of full scale)\n", + "R_dBm :\tNone (dBm)\n", + "R_dBm_offset :\tNone (% of 200 dBm scale)\n", + "X :\tNone (V)\n", + "X_offset :\tNone (% of full scale)\n", + "Y :\tNone (V)\n", + "Y_offset :\tNone (% of full scale)\n", + "aux_in1 :\tNone (V)\n", + "aux_in2 :\tNone (V)\n", + "aux_out1 :\tNone (V)\n", + "aux_out2 :\tNone (V)\n", + "buffer_SR :\tTrigger (Hz)\n", + "buffer_acq_mode :\tNone \n", + "buffer_npts :\tNone \n", + "buffer_trig_mode :\tNone \n", + "ch1 :\tNone (V)\n", + "ch1_datatrace :\tNot available (V)\n", + "ch1_display :\tR_V \n", + "ch2 :\tNone (V)\n", + "ch2_datatrace :\tNot available (deg)\n", + "ch2_display :\tPhase \n", + "complex_voltage :\tNone (V)\n", + "filter_slope :\tNone (dB/oct)\n", + "frequency :\tNone (Hz)\n", + "harmonic :\tNone \n", + "input_impedance :\tNone \n", + "output_interface :\tNone \n", + "phase :\tNone (deg)\n", + "phase_offset :\tNone (deg)\n", + "ratio_mode :\tnone \n", + "reference_source :\tNone \n", + "reserve :\tNone \n", + "sensitivity :\tNone \n", + "sweep_setpoints :\tNone \n", + "time_constant :\tNone (s)\n", + "timeout :\t5 (s)\n" + ] + } + ], + "source": [ + "lockin1.print_readable_snapshot()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.00901563+0.0074385j)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lockin1.complex_voltage()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In fact, a method name `snap` is available on the SR844 lockin which allows the user to read 2 to 6 parameters simultaneously out of the following." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['x',\n", + " 'y',\n", + " 'r_v',\n", + " 'r_dbm',\n", + " 'p',\n", + " 'phase',\n", + " 'θ',\n", + " 'aux1',\n", + " 'aux2',\n", + " 'freq',\n", + " 'ch1',\n", + " 'ch2']\n" + ] + } + ], + "source": [ + "from pprint import pprint\n", + "\n", + "pprint(list(lockin1.SNAP_PARAMETERS.keys()))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `snap` method can be used in the following manner" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.00901262, 0.00744152, 39.5453)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lockin1.snap('x', 'y', 'phase')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Changing the Sensitivity\n", + "The driver can change the sensitivity automatically according to the R value of the lock-in.\n", + "So instead of manually changing the sensitivity on the front panel, you can simply run this in your data acquisition or Measurement" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "lockin1.auto_gain()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can get and set your sensitivity using the sensitivity attribute" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.03" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lockin1.sensitivity(0.03)\n", + "lockin1.sensitivity()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The driver also supports incremental changes in sensitivity" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.1" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lockin1.increment_sensitivity()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.03" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lockin1.decrement_sensitivity()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Preparing for reading the buffer and measurement" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The SR844 has two internal data buffers corresponding to the values on the displays of channel 1 and channel 2.\n", + "Here we present a simple way to use the buffers.\n", + "The buffer can be filled either at a constant sampling rate or by sending an trigger. \n", + "Each buffer can hold 16383 points. The buffers are filled simultaneously. The QCoDeS driver always pulls the entire buffer, so make sure to reset (clear) the buffer of old data before starting and acquisition.\n", + "\n", + "We setup channel 1 and the buffer to be filled at a constant sampling rate:" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "lockin1.ch1_display('X')\n", + "lockin1.ratio_mode('none')\n", + "lockin1.buffer_SR(512) # Sample rate (SR)\n", + "lockin1.buffer_trig_mode.set('OFF')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We fill the buffer for one second as shown below:" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "lockin1.buffer_reset()\n", + "lockin1.buffer_start()\n", + "sleep(1)\n", + "lockin1.buffer_pause() " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we run a QCoDeS Measurement using do0d to get the buffer and plot it:" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting experimental run with id: 556. Using 'qcodes.dataset.do0d'\n" + ] + }, + { + "data": { + "text/plain": [ + "(results #556@C:\\Users\\Farzad\\experiments.db\n", + " -------------------------------------------\n", + " lockin_sweep_setpoints - array\n", + " lockin_ch1_datatrace - array,\n", + " (,),\n", + " (None,))" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHFCAYAAAAaD0bAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2WklEQVR4nO3dd3hT1RsH8G9G90h3S3eBQgstq+yNQAFFQEU2iiAoAoKAg58LF7jFhYooItvBdCBF9t6j7NFCSyelezc5vz/aREJbaOm4Gd/P8+RRbk6S9+beJm/Ofc85MiGEABEREZEZkUsdABEREVF9YwJEREREZocJEBEREZkdJkBERERkdpgAERERkdlhAkRERERmhwkQERERmR0mQERERGR2mAARERGR2WECdB9++uknyGQy3U2pVKJBgwYYMWIELl26JHV4AICMjAzI5XL8888/AIB169bBysoKhYWFeu127Nihty+33w4cOKDXdty4cRW2CwkJqTCGa9euYfz48fD29oaVlRV8fHzwyCOP3Pc+BQYGVhprz5497/t560vPnj0NPs68vDzMnTsXO3bsqPJj4uLi8Nxzz6FJkyawsbGBi4sLwsPDMXHiRMTFxenazZ07V++YWVhYwN/fHxMnTkRSUlK55y0sLMRHH32EsLAw2NnZwdPTEwMGDMC+ffvuGs/WrVt1r3Hz5s27th0zZgxkMhkGDhxY5f2tK/fz3t9J+/f822+/1V5gVaT9XDxy5Ei9v/btxo8fj/79+0saA1VO+zlwP15//XW0adMGGo2mVmJR1sqzmKklS5YgJCQEBQUF2Lt3L9577z1s374d58+fh7Ozs6SxHTlyBEIItGvXDgBw4MABtGzZElZWVhW2nzdvHnr16qW3LSwsrFw7GxsbbNu2rdy2O0VHR6Nnz55o2LAhPv74Y/j6+iIxMVGXkN2vLl264OOPPy633dHRsUbPWx8WLlwodQj3lJeXh7feegsAqpSsxcfHo02bNnBycsKsWbPQtGlTZGZm4uzZs/jll19w9epV+Pn56T1m8+bNUKlUyMnJwZYtW/DJJ59g3759OHHiBCwsLHTtJk6ciBUrVmDOnDl44IEHcOvWLbz//vvo0aMH9u7di/bt25eLJycnBxMnToS3tzcSEhLuGvuff/6J9evXG8y5U933nso7fvw4li5dioMHD0odCtWB2bNn46uvvsLSpUvx1FNP1fj5mADVQFhYGNq2bQug9ANLrVbjzTffxPr162vl4NTE4cOH0aRJE7i4uAAoTYAq+sLQCg4ORseOHe/5vHK5/J7thBAYO3Ys/Pz8sHv3br2ka/jw4VXcg4o5OTlVKU5DkpeXB1tbWzRr1kzqUGrd999/j5s3b+LQoUMICgrSbR8yZAj+97//VfhLLSIiAm5ubgCAPn364ObNm1iyZAn27NmjS8ILCwuxcuVKjBo1Cu+++67usV26dIG3tzdWrFhR4fn8yiuvwNnZGQ899JDe4+6UmZmJZ555Bu+88w4+//zz+95/Mizvv/8+2rdvr/tcJtOiUqkwZswYvP/++7orEjXBS2C1SPtHl5ycrNtW2WWPcePGITAwUPfv2NhYyGQyfPzxx/j0008RFBQEe3t7dOrUqdylqKo4fPiw7gtCrVbj6NGjd02AatOuXbtw4sQJzJgxo9Iep7pSUFCA1q1bo3HjxsjMzNRtT0pKgpeXly5RBUqPgb29Pc6cOYPevXvDzs4O7u7umDp1KvLy8vSeVwiBhQsXolWrVrCxsYGzszOGDh2Kq1ev6rXr2bMnwsLCsGvXLnTu3Bm2trYYP3687r7bzwXtMf/oo4/wwQcfIDAwEDY2NujZsycuXryI4uJivPLKK/D29oZKpcIjjzyClJSUcvu8Zs0adOrUCXZ2drC3t0e/fv1w/PhxvTbafb18+TIefPBB2Nvbw8/PD7NmzdJdFo2NjYW7uzsA4K233tJdRho3blyl73daWhrkcjk8PDwqvF8uv/dHTEV/N3K5HHK5HCqVSq+to6Mj5HI5rK2tyz3P7t27sWjRIixevBgKheKurzlr1iw0aNAAzz///D3jq4z2WB8+fBjdunWDra0tGjZsiPfff79c4nf9+nWMGTMGHh4esLKyQmhoKD755BNdu6q895cuXcKoUaP0nuPrr7+uMLaCggLMnDkTXl5esLGxQY8ePcqdEwCwceNGdOrUCba2tnBwcEDfvn2xf//+cu327NmD3r17w8HBAba2tujcuTP+/PPPe75HiYmJiIiIQHBwcJ2XByQnJ2PdunUYO3as3naNRoN3330XTZs2hY2NDZycnNCiRYtyiW9V9lF7mW/btm2YOHEiXF1d4ejoiCeeeAK5ublISkrCsGHD4OTkhAYNGmD27NkoLi7We46ioiK8++67CAkJgZWVFdzd3fHUU08hNTW1WvubmpqKSZMmwc/PT/c8Xbp0wdatW3VtoqKiMHjwYPj6+sLa2hqNGzfGM888U+7SsPay1KlTp/D4449DpVLBxcUFM2fORElJCS5cuID+/fvDwcEBgYGB+PDDD/Uer730unz58iqddxWpyucYAIwdOxYXL17E9u3bq/V+VUhQtS1ZskQAEIcPH9bb/tVXXwkA4vfff9dt69Gjh+jRo0e553jyySdFQECA7t8xMTECgAgMDBT9+/cX69evF+vXrxfh4eHC2dlZZGRk3DOuHj16CAD3vN0ez/bt2wUA4eHhIRQKhXBwcBCRkZFi9+7dFcYsl8uFp6enkMvlwsfHR0yZMkWkpaXptXv77bd178OAAQOElZWVsLOzEw899JA4d+7cPfejMgEBAeLBBx8UxcXF5W4ajUbX7uLFi8LBwUE8+uijQggh1Gq1eOCBB4SHh4dISEjQ2x9LS0vh7+8v3nvvPbFlyxYxd+5coVQqxcCBA/Vee+LEicLCwkLMmjVLbN68WaxcuVKEhIQIT09PkZSUpHcMXFxchJ+fn/jyyy/F9u3bxc6dO3X33f7ea495QECAePjhh8Uff/whli9fLjw9PUWTJk3E2LFjxfjx48Xff/8tvv32W2Fvby8efvhhvbjee+89IZPJxPjx48Uff/wh1q5dKzp16iTs7OzEmTNnyu1raGio+Pjjj8XWrVvFG2+8IWQymXjrrbeEEEIUFBSIzZs3CwBiwoQJYv/+/WL//v3i8uXLlR6T5cuXCwAiMjJSbN68WWRmZlba9s033xQARGpqqt722bNnCwDi6NGjetunT58u7O3txbp160RmZqaIiYkRI0eOFM7OzuLSpUt6bfPy8kRwcLB48cUX7/paQggRFRUlLCwsxIkTJ4QQpefVQw89VGnclenRo4dwdXUVwcHB4ttvvxVRUVHiueeeEwDE0qVLde1SUlKEj4+PcHd3F99++63YvHmzmDp1qgAgJk+eLIS493t/5swZoVKpRHh4uPj555/Fli1bxKxZs4RcLhdz587VvZb279nPz08MHjxYbNq0SSxfvlw0btxYODo6iitXrujarlixQnfs1q9fL9asWSMiIiKEpaWl3t//jh07hIWFhYiIiBBr1qwR69evF5GRkUImk4nVq1fr2t35uXj69Gnh5+cnOnXqVOFxqG0///yzACDOnj2rt33+/PlCoVCIN998U/z7779i8+bNYsGCBXrvW3X3MSgoSMyaNUts2bJFfPDBB0KhUIiRI0eKNm3aiHfffVdERUWJl19+WQAQn3zyie7xarVa9O/fX9jZ2Ym33npLREVFicWLFwsfHx/RrFkzkZeXV+X97devn3B3dxeLFi0SO3bsEOvXrxdvvPGGXrzffPONmD9/vti4caPYuXOnWLp0qWjZsqVo2rSpKCoq0rXT/r00bdpUvPPOOyIqKkq89NJLAoCYOnWqCAkJEV988YWIiooSTz31VLnvueqcd9rXul1VP8eEEKKkpETY29uLmTNnVvm9qgwToPug/SM4cOCAKC4uFtnZ2WLz5s3Cy8tLdO/eXRQXF+vaVjcBCg8PFyUlJbrthw4dEgDEqlWr7hnXpUuXxPHjx3VfSn///bc4fvy4eO6550RQUJA4fvy4OH78uN6Xx7Fjx8T06dPFunXrxK5du8SPP/4oQkNDhUKhEJs3b9Z7/k8//VR8+umnYsuWLWLLli3i1VdfFba2tiIkJERkZ2fr2j3zzDMCgHB0dBQTJkwQW7duFcuWLRMBAQHCzc1NLwmpjoCAgEqTunfeeUev7Zo1awQAsWDBAvHGG28IuVwutmzZotfmySefFADE559/rrf9vffeEwDEnj17hBBC7N+/v9wHmRBCxMXFCRsbG/HSSy/ptmmT0H///bdc/JUlQC1bthRqtVq3fcGCBQKAGDRokN7jZ8yYIQDokozr168LpVIppk2bptcuOztbeHl5iWHDhpXb119++UWv7YMPPiiaNm2q+3dqaqoAIN58881y8VdEo9GIZ555RsjlcgFAyGQyERoaKl544QURExOj11b7wZeUlCSKi4tFenq6+OWXX4SdnZ0YOXJkhc+tPXba4+zv7y+OHz9eru2sWbNEw4YNdV8glSVA2dnZIjAwUMyZM0e3rSYJEABx8OBBve3NmjUT/fr10/37lVdeqbDd5MmThUwmExcuXBBC3P2979evn/D19S2XYE6dOlVYW1uLW7duCSH++yJq06aN3o+C2NhYYWFhIZ5++mkhROkXsbe3twgPD9c797Kzs4WHh4fo3LmzblvHjh2Fh4eH3t94SUmJCAsLE76+vrrXuT0BioqKEo6OjmLo0KEiPz//3m9mLZg8ebKwsbHR228hhBg4cKBo1arVXR9b3X28829uyJAhAoD49NNP9ba3atVKtGnTRvfvVatWlUsehBDi8OHDAoBYuHBhlffX3t5ezJgxo8rtNRqNKC4uFteuXRMAxIYNG3T3af9e7vyMa9WqlQAg1q5dq9tWXFws3N3ddT8whaj6eXf7a2lV53NMq0uXLqJDhw5V3vfKMAG6D9o/gjtvoaGhIj09Xa9tdROgV155Ra9dQUGBACDef//9Kse3YMEC4ePjo/v3gw8+KMaNG1flx6enpwtfX1/RokWLe7b97bffyv3hT5w4UQDQ+xIQQojjx48LAOLVV1+tciy3CwgIEF27dhWHDx8ud6soqZo8ebKwsLAQcrlcvPbaa+Xu1yYFN2/e1NuuPRbapOrVV18VMplMJCcnl+t56tixo2jfvr3usT169BDOzs4Vxl9ZAnT7l7EQQvzzzz8CgPjuu+/0tn/33XcCgDh9+rQQQojvv/9e94VzZ1zDhw8XHh4eevsqk8nKfRm98sorwtraWvfv6iZAWrGxsWLhwoVi/PjxonHjxgKAsLW1FTt27NC10X7w3Xnr3r273q9RrXfeeUfY2tqKt99+W2zfvl1s2LBB9O3bV7i5uYljx47p2h08eFAoFAoRFRVV7rXuTICmTJkigoOD9d6HmiRAXl5e5baPGDFChISE6P7dvn170axZs3LtDh48KACIb775RghR+Xufn5+v+4K48zj/9ddfAoD466+/hBD/fRF9/PHHFcbbqFEjIYQQZ8+eFQDEhx9+WK7d5MmThVwuF7m5uSInJ0fIZDLx3HPPlWv3wQcfCAC6Xl3t5+LUqVOFhYWFmDlzZrlkpC4NHjxY+Pv7l9v+9ttvC5lMJiZPnlxhL+X97OM///yj127OnDkCgC6Z1Ro5cqRwdXXV/Xv06NHCyclJFBUVlTuWlX3ZV+aBBx4QTk5O4p133hH79++v8G8oOTlZPPPMM8LX11fvh8Sd3ynav5eK4q/oc6NTp04iIiJC9++qnne3v5ZWdT7HtB555BHh6+tbhXfp7lgEXQM///wzQkNDkZ2djTVr1uC7777DyJEj8ffff9/3c7q6uur9W1tDk5+ff9fHaTQaXT3Bzp070a1bN5SUlECj0WDv3r34+OOPUVJSAplMds/6CCcnJwwcOBDffvst8vPzKxzlpfXII4/Azs5Or05Juw/9+vXTa9uqVSs0aNAAx44du+vr341KpapygeP48ePxzTffwNLSstJaD6VSWe499/LyAlBa3wKU1hYIIeDp6VnhczRs2FDv3w0aNKhSfFraQnUtS0vLu24vKCjQxQVAN9LvTnfW39ja2parnbGystI9X00EBARg8uTJun//8ssvGDlyJF588UUcOnRIr+3WrVuhUqlw69YtLFq0CL///jumTZuGb7/9Vtfm3LlzeOONN/Dhhx9i9uzZuu0DBgxAs2bNMHPmTF0NwPjx4/Hoo4+ibdu2yMjIAPDfe5SVlQUrKys4ODjg0KFDWLhwIdauXYuCggJdG41Gg5KSEmRkZMDGxqZadWt3njtA6Xt6+99rWlqaXr2flre3t+7+u0lLS0NJSQm+/PJLfPnllxW2ubOmQ3sO37nt5MmTeq9Z0bnq7e0NjUaD9PR0iNIfyZW2qyj+1atXw8bGBk8//XSNi1SrIz8/v8LasDlz5sDOzg7Lly/Ht99+C4VCge7du+ODDz5A27ZtdftZnX2szt/s7X9fycnJyMjI0LW/072mbbjdmjVr8O6772Lx4sV4/fXXYW9vj0ceeQQffvghvLy8oNFoEBkZiYSEBLz++usIDw+HnZ0dNBoNOnbsWOF3SkXxV/S5YWlpiaysrHKPv9d5V5Hqfo4BgLW19T2/E6uCCVANhIaG6r6Me/XqBbVajcWLF+O3337D0KFDAZQeqNuLcbWqc6JXxfjx47F06VK9batXr9b9/8SJEzFx4kQEBAQgNjb2ns8nhACAKn2ACSH0TtIWLVpUuW1dyc3NxdixY9GkSRMkJyfj6aefxoYNG8q1KykpQVpamt4XmXZOGu02Nzc3yGSyciPatO7cVl8f+tqRVL/99hsCAgLq5TWratiwYZg/fz6io6PL3deyZUtd7H379kW/fv2waNEiTJgwQfchePLkSb1pHLQsLCzQsmVL7Ny5U7ftzJkzOHPmDH799ddyr9WoUSO0bNkSJ06cwNmzZyGEqHAuqri4ODg7O+Ozzz7DjBkzarLr5bi6uiIxMbHcdu0wfe17URlnZ2coFAqMHTsWU6ZMqbDN7SPwAFQ4r1JSUpLunNb+t7K45HI5nJ2ddX+v1Yl/xYoVeP3119GjRw9s2bIFrVq1uuv+1RY3N7cKf1wplUrMnDkTM2fOREZGBrZu3Yr//e9/6Nevn+64V3cfaxKjq6srNm/eXOH9Dg4O1XquBQsWYMGCBbh+/To2btyIV155BSkpKdi8eTOio6Nx8uRJ/PTTT3jyySd1j7t8+XKN96My9zrvKnI/n2O3bt2qlWPCUWC16MMPP4SzszPeeOMNXW9MYGAgLl68qDcBYVpa2j0nc6uuuXPn4vDhw1iyZAkA4O+//8bhw4cxadIkBAcH4/Dhwzh8+DA2bdp0z+dKT0/HH3/8gVatWlX4i+p2v/32G/Ly8vSGpg8YMAC2trblesKOHTuGpKSkehnG/uyzz+L69etYu3YtfvjhB2zcuBGfffZZhW1XrFih9++VK1cC+G8uloEDB0IIgRs3bqBt27blbuHh4XW6L5Xp168flEolrly5UmFc9zMUuKo9jloVfWkApfPxxMXF6X5BV0Ymk+Hrr7+GQqHAa6+9ptuufdydIyALCwtx7Ngx+Pr66rZt37693E37gb9+/XosXrwYANC/f/8K23p6eqJjx47Yvn277odLberduzfOnj1b7sv5559/hkwm0w39r+y9t7W1Ra9evXD8+HG0aNGiwuN85xfMqlWrdD9igNJJSfft26c7p5s2bQofHx+sXLlSr11ubi5+//133cgwOzs7dOjQAWvXrtWLS6PRYPny5fD19UWTJk30XtvFxQVbt25FaGgoevXqdV+jWO9HSEgI0tLSKvzBqeXk5IShQ4diypQpuHXrFmJjY+9rH+/XwIEDkZaWBrVaXeFxbNq06X09r7+/P6ZOnYq+ffvqzjPtD7E7f6B99913NduJu7jXeVeR+/kcu3r1aq1MK8IeoFrk7OyMOXPm4KWXXsLKlSsxZswYjB07Ft999x3GjBmDiRMnIi0tDR9++GGtT74WGBiIwMBA/PXXXwgLC9PNhDpjxgwMHjy40i/DUaNGwd/fH23btoWbmxsuXbqETz75BMnJyfjpp5907a5du4ZRo0ZhxIgRaNy4MWQyGXbu3IkFCxagefPmePrpp3VtnZyc8Pbbb2P27NkYN24cRo4ciaSkJLz++uvw9/fHc889p2sbGxuLoKAgPPnkk3qvV5mMjIwKP1CtrKzQunVrAMDixYuxfPlyLFmyBM2bN0fz5s0xdepUvPzyy+jSpYvedACWlpb45JNPkJOTg3bt2mHfvn149913MWDAAHTt2hVA6dwzkyZNwlNPPYUjR46ge/fusLOzQ2JiIvbs2YPw8HC9yz/1JTAwEG+//TZeffVVXL16Ff3794ezszOSk5Nx6NAh2NnZ6SbWqyoHBwcEBARgw4YN6N27N1xcXODm5lbhJRwAeO+997B3714MHz5cN0VATEwMvvrqK6SlpeGjjz6652sGBwdj0qRJWLhwIfbs2YOuXbuia9euaNeuHebOnYu8vDx0794dmZmZ+PLLLxETE4Nly5bpHl/Rh6t2NuUuXbrofil6eXlV2EVvbW0NV1fXOpt88IUXXsDPP/+Mhx56CG+//TYCAgLw559/YuHChZg8ebLuy/Vu7/3nn3+Orl27olu3bpg8eTICAwORnZ2Ny5cvY9OmTeUmJ01JScEjjzyCiRMnIjMzE2+++Sasra0xZ84cAKWXFT788EOMHj0aAwcOxDPPPKObeTsjIwPvv/++7rnmz5+Pvn37olevXpg9ezYsLS2xcOFCREdHY9WqVRX2eDo4OGDz5s149NFH0bdvX2zcuLHcRKu1rWfPnhBC4ODBg4iMjNRtf/jhh3Vztrm7u+PatWtYsGABAgICEBwcfN/7eD9GjBiBFStW4MEHH8T06dPRvn17WFhYID4+Htu3b8fgwYOrNFt+ZmYmevXqhVGjRiEkJAQODg44fPiw7j0HShPCRo0a4ZVXXoEQAi4uLti0aROioqJqZV8qcq/zriLV/RxLS0vDpUuXMG3atJoHXOMqIjNU2TB4IUoLFv39/UVwcLBuNNfSpUtFaGiosLa2Fs2aNRNr1qyptAj6o48+KvecqEZRaps2bXRFtampqUIul+uGYVdk/vz5olWrVkKlUgmFQiHc3d3FI488Ig4dOqTX7tatW+KRRx4RgYGBwsbGRlhaWorg4GDx0ksvVTpE//vvvxdhYWHC0tJSuLq6itGjR4u4uDi9NqdPn66w+LsidxsFpi36PnXqlLCxsRFPPvmk3mMLCgpERESECAwM1BWqP/nkk8LOzk6cOnVK9OzZU9jY2AgXFxcxefJkkZOTU+71f/zxR9GhQwdhZ2cnbGxsRKNGjcQTTzwhjhw5omvTo0cP0bx58wrjr6wI+s5jri0o/PXXX/W2V3berV+/XvTq1Us4OjoKKysrERAQIIYOHSq2bt2qa6Pd1ztVNCR169atonXr1sLKykoAKPde3u7AgQNiypQpomXLlsLFxUV3DvXv319XmHvna1U0JDo5OVnY29uLXr166bZlZGSIV199VYSGhgpbW1vh4eEhevbsWe55K3K317pTTYqgKzrWd/5tCyHEtWvXxKhRo4Srq6uwsLAQTZs2FR999JHeCCwh7v7ex8TEiPHjxwsfHx9hYWEh3N3dRefOncW7776ra6M9d5YtWyaef/554e7uLqysrES3bt30zlOt9evXiw4dOghra2thZ2cnevfuLfbu3Vuu3e7du8UDDzygO/c7duwoNm3apNemovOzsLBQPPbYY8La2lr8+eefd30/a0qtVovAwMByxcyffPKJ6Ny5s3Bzc9NNezFhwgQRGxur1+5+91GIys+3iv7uiouLxccffyxatmwprK2thb29vQgJCRHPPPNMuekdKlNQUCCeffZZ0aJFC+Ho6ChsbGxE06ZNxZtvvilyc3N17c6ePSv69u0rHBwchLOzs3j88cfF9evXy32nVCd+Icqf+9U57yr6zBGiap9jQgjxww8/CAsLC73pR+6XTIjb+quI6tnChQvx0ksv4cqVK5UWGdeVcePG4bfffkNOTk69vi4R1Y1PPvkE7733Hm7cuHHXwRtUu3bs2IFevXrh119/rZPLyLfr1q0b/P39y5Uu3A/WAJGktm/fjueff77ekx8iMj1TpkyBSqWqdIZsMm67du3C4cOH8c4779TK87EGiCRV0cgdIimp1WrcrWO8KlNJUHlCCN0yNJWRyWQ1eu+tra2xbNmyKi+/YIhun9KkMkqleX51p6Wl4eeffy439cj94iUwIqLb9OzZU2+Y/Z2qOpUE6dNeJrmbgIAAXLt2rdL7e/TooStwN1Vz58695+CFmJiYSgcmUNUxASIius2FCxeQnZ1d6f1WVlaSTX1gzLKzs3HhwoW7tsnNzYWdnV2l9zs4ONz3UHFjkZCQoJt/qDItWrSodDJFqjomQERERGR2WARNREREZsc8K6mqQKPRICEhAQ4ODvW6ng0RERHdPyEEsrOz4e3tfdell5gAVSIhIQF+fn5Sh0FERET3IS4uTm/ZnDsxAaqEdlG6uLi4Wl+2goiIiOpGVlYW/Pz87rm4LBOgSmgvezk6OjIBIiIiMjL3Kl9hETQRERGZHSZAREREZHaYABEREZHZYQJEREREZocJEBEREZkdJkBERERkdpgAERERkdlhAkRERERmhwkQERERmR0mQERERGR2mAARERGR2WECRERERGaHi6ESGZCiEg1yC0uQX6yGUi6DlYUCDlZKyOV3X9SPiIiqhwkQkUQSM/Nx8OotHI69hSupObielofErAIIod/OQiGDp6M1GnvYo4WPCuG+Tmgb4AxnO0tpAiciMgFMgIjq0eWUHGw4cQN/nkrE1Zu5lbazUMig1ghoBFCsFohPz0d8ej52XEgFACjkMnQIckH/MC/0D/OCh4N1fe0CEZFJkAlx5+9NAoCsrCyoVCpkZmbC0dFR6nDIiJWoNdh6Lhk/7YvFgau3dNvlMiDMR4UOQS5o5u0Ifxc7+LvYwsXOEgq5DEIIFKk1uJlThISMfJxPzMKp+EyciMvApZQc3fNYKGR4uIU3xncNQpiPSopdJCIyGFX9/mYCVAkmQFRTao3A78fi8fnWS7iRkQ+gtOemZxN3DG7tg55N3eFobXFfz309LQ//nEnCH6cTcTIuQ7e9U0NXzO7XFBEBzrWxC0RERocJUA0xAaKa2HUxFfP+OofzSdkAABc7S4xs74fRHQLg7WRTq691Mi4DS/bG4I9TiSjRlP4592vuidcHNoOvs22tvhYRkaFjAlRDTIDofqTlFOKNjWfw56lEAICjtRJTH2iMJzoFwtpCUaevfSMjH19svYRfj8ZBIwAbCwWe7x2MCV2DYKnkjBdEZB6YANUQEyCqDiEE/jydiDc2nMGt3CIo5DI82SkQ0x5oXO+jtS4mZ+O19dE4FFNab9TU0wFfjWqNYE+Heo2DiEgKTIBqiAkQVVVBsRqvr4/Gr0fjAQAhXg74aGhLhPtKV5AshMDaYzcw769zSMstgo2FAm8Pbo7H2/pJFhMRUX1gAlRDTICoKmJv5mLyimM4l5gFuQyY2qsxpj4QbDCXnFKzCzHzlxPYfekmAODRNj54d0gYbC05AwYRmaaqfn8bxqc0kRHadTEVD3+1B+cSs+BqZ4nlEzpgZmRTg0l+AMDdwQpLn2qP2ZFNIJcBa4/dwOCv9iI+PU/q0IiIJGU4n9RERuSXw3F46qfDyC4oQRt/J/z5fDd0buwmdVgVkstlmPpAMFZN7AhPRytcSsnBY9/sw/mkLKlDIyKSDBMgomoQQuCzqIt46fdTUGsEhrTyxupJneClMvyZmDs0dMX6KV0Q7GGP5KxCPP7tfl2hNBGRuWECRFRFQgi8ufEMPv/3EgBgSq9G+Gx4K4O65HUvDVQ2+PXZTmgb4IzsghKM+eEg/jmTJHVYRET1zng+uYkkpE1+ft5/DTIZ8O6QMLzYLwQymfGt0u5ka4llEzqgT6gHiko0mLz8KDadTJA6LCKiesUEiOge7kx+Pni0BcZ0DJA6rBqxsVTg2zEReKyNLzQCmL76OJMgIjIrTICI7kIIgbl3JD/D2pnGXDpKhRwfDW2BxyOYBBGR+WECRHQX728+j6UmmPxoyeUyfPDYf0nQjDUnsP18itRhERHVOSZARJVYsjcG3+28CgB4/9Fwk0t+tLRJ0COtfaDWCExZeQzRNzKlDouIqE4xASKqwN+nE/H2H2cBAC/2a4rh7fwljqhuaZOgLo1dkVekxlM/HcaNjHypwyIiqjNMgIjucCT2FqavOQEhgDEd/fFcz0ZSh1QvLJVyfDMmAk09HZCaXYinlhxCZn6x1GEREdUJJkBEt0nIyMezy4+iqESDvs088dagMKMc6n6/HK0tsOSpdvB0tMLF5BxMLnsviIhMDRMgojIFxWo8s+wobuYUIbSBIz4f0QoKufkkP1reTjb4cVw72FkqsO9KGt4puxRIRGRKmAARoXS4+5y1p3H6RiacbS2waGyEWa+Y3txbhS9GtoZMBiw7cA2rD12XOiQiolrFBIgIwA97YrDu+A0o5DJ8PboN/FxspQ5Jcr1DPTGrbxMAwOsbonH0GtcNIyLTwQSIzN7eyzcx769zAIDXHgpF50aGuaq7FKb0aowHw71QrBZ4ZtkxpGQVSB0SEVGtYAJEZi01uxDTV5+ARgBDI3wxrnOg1CEZFJlMho+GtkRTTwfczCnErF9PQqMRUodFRFRjTIDIbGk0AjN/OYGbOYUI8XLAu0PMa8RXVdlZKfH16NawtpBj96WbWLznqtQhERHVGBMgMlvf776K3ZduwtpCji9Htoa1hULqkAxWYw8HvDGwOQDgo38u4HQ8Z4omIuPGBIjM0om4DHz0zwUAwJsPN0ewp4PEERm+ke390L95aT3Q86uPI7ewROqQiIjuGxMgMjtZBcV4ftVxlGgEHgpvgBEmusZXbZPJZHj/sXA0UFkj5mYu5m48I3VIRET3jQkQmZ25G87g+q08+DjZYN6j4az7qQYnW0t8NrwVZDLg16Px2HQyQeqQiIjuCxMgMitRZ5Ox9vgNyGXAFyNbQWVjIXVIRqdjQ1dM7dUYAPC/dae5aCoRGSUmQGQ20nOL8L91pwEAE7s3RESAi8QRGa/newejtb8TsgtK8MrvpyAEh8YTkXFhAkRmY+6mM0jNLkRjD3u80KeJ1OEYNQuFHJ883hJWytKh8b8ciZM6JCKiamECRGZhc3QSNpxIgFwGfPx4Sw55rwUN3e0xO7IpAODdP84hMZOXwojIeDABIpN3K7cIr60vvfT1TI9GaOXnJG1AJmR816DSS2GFJZiz9jQvhRGR0WACRCbv7U1ncDOnCE087TGjT7DU4ZgUhbx0qQxLpRw7LqRi7bEbUodERFQlTIDIpO25dBPryy59fTS0JayUvPRV2xp72GN679LE8r2/ziE9t0jiiIiI7o0JEJmsgmI1Xt8QDQB4olMgWvLSV52Z1L0hmno64FZuEeb/fU7qcIiI7smgE6D58+dDJpNhxowZum1CCMydOxfe3t6wsbFBz549ceaM/oy0hYWFmDZtGtzc3GBnZ4dBgwYhPj6+nqMnqS3ccQUxN3Ph4WCFWZEc9VWXLBRyzHs0DADwy5F4HLiaJnFERER3Z7AJ0OHDh7Fo0SK0aNFCb/uHH36ITz/9FF999RUOHz4MLy8v9O3bF9nZ2bo2M2bMwLp167B69Wrs2bMHOTk5GDhwINRqdX3vBknkSmoOvt1xBUDpWl8O1pzwsK5FBLhgVAd/AMCr606jsIR/b0RkuAwyAcrJycHo0aPx/fffw9nZWbddCIEFCxbg1VdfxaOPPoqwsDAsXboUeXl5WLlyJQAgMzMTP/zwAz755BP06dMHrVu3xvLly3H69Gls3bpVql2ieiSEwOvro1Gk1qBnU3c8GO4ldUhm4+V+IXCzt8KV1Fws3h0jdThERJUyyARoypQpeOihh9CnTx+97TExMUhKSkJkZKRum5WVFXr06IF9+/YBAI4ePYri4mK9Nt7e3ggLC9O1qUhhYSGysrL0bmSc1p+4gX1X0mCllOOdwWFc66seqWwt8NpDoQCAL7dd4jIZRGSwDC4BWr16NY4dO4b58+eXuy8pKQkA4Onpqbfd09NTd19SUhIsLS31eo7ubFOR+fPnQ6VS6W5+flwh3BjlFJZg3l/nAZQu1+DnYitxROZncCtvtA9yQUGxBu/+cVbqcIiIKmRQCVBcXBymT5+O5cuXw9rautJ2d/6iF0Lc81f+vdrMmTMHmZmZultcHKf2N0YLt19GanYhAl1tMbFbQ6nDMUsymQxvD24OhVyGv6OTsOtiqtQhERGVY1AJ0NGjR5GSkoKIiAgolUoolUrs3LkTX3zxBZRKpa7n586enJSUFN19Xl5eKCoqQnp6eqVtKmJlZQVHR0e9GxmXuFt5WLyntO7k1YeawVJpUKe3WQnxcsSTnQIBAHM3nmFBNBEZHIP6hujduzdOnz6NEydO6G5t27bF6NGjceLECTRs2BBeXl6IiorSPaaoqAg7d+5E586dAQARERGwsLDQa5OYmIjo6GhdGzJN8/8+h6ISDbo0dkWfUA+pwzF7M/oGw83eCldv5uKnvbFSh0NEpEcpdQC3c3BwQFhYmN42Ozs7uLq66rbPmDED8+bNQ3BwMIKDgzFv3jzY2tpi1KhRAACVSoUJEyZg1qxZcHV1hYuLC2bPno3w8PByRdVkOg5cTcNfp5MglwGvD2zGwmcD4GhtgZf7N8WLv53CV9svY1hbPzjbWUodFhERAANLgKripZdeQn5+Pp577jmkp6ejQ4cO2LJlCxwcHHRtPvvsMyiVSgwbNgz5+fno3bs3fvrpJygUXAbBFKk1Am9vKi22HdneHyFevHxpKB5t44sf98biXGIWvtx2GW883EzqkIiIAAAyweWbK5SVlQWVSoXMzEzWAxm4NYev4+XfT8PBWokds3vC1d5K6pDoNrsvpWLsD4dgoZBh68weCHC1kzokIjJhVf3+NqgaIKLqyi4oxkf/XAAATO8dzOTHAHULdkePJu4oVgt8uPmC1OEQEQFgAkRG7uvtV3AzpwhBbnZ4omzUERmeOQ+GQC4D/jydiKPX0u/9ACKiOsYEiIxWQkY+ftxbOuz9fw+Gcti7AQvxcsTjEaWTi8776xx45Z2IpMZvDDJan0VdRFGJBh2CXDjs3QjMjGwCGwsFjl5Lx+boymdlJyKqD0yAyChdSMrG78fiAQCvDAjhsHcj4OlojYndS2fnfn/zeRSVaCSOiIjMGRMgMkof/XMeGgEMCPNCa3/nez+ADMIz3RvCzd4K19LysOLgNanDISIzxgSIjM6hmFvYei4FCrkMs/s1lTocqgY7KyVm9m0CAPj830vIzC+WOCIiMldMgMioCCHwwebS1d6Ht/NDI3d7iSOi6hrW1heNPeyRkVeM73ZekTocIjJTTIDIqOy4kIqj19JhpZRjeu9gqcOh+6BUyPFy/xAAwJK9sUjNLpQ4IiIyR0yAyGhoNAIfbymdSO/JzoHwdLSWOCK6X31CPdDSzwn5xWos3HFZ6nCIyAwxASKjsflMEs4kZMHeSolnezSSOhyqAZlMhtmRpbVAKw5cR0JGvsQREZG5YQJERkGtEfg06iIAYHzXILhwVXGj17WxGzoEuaBIrcGX29gLRET1iwkQGYUNJ27gckoOVDYWeLpbkNThUC2Qyf4bxffrkThcS8uVOCIiMidMgMjglag1+PzfSwCAZ3o0hKO1hcQRUW1pF+iCHk3cUaIR+HzrJanDISIzwgSIDN76Ewm4lpYHFztLjOscKHU4VMtmR5b2Aq07cQOXkrMljoaIzAUTIDJoJWoNvt5eWh8ysVtD2FoqJY6Ialu4rwr9m3tBCOAL1gIRUT1hAkQGbdOpBMTczIWzrQWe6BQgdThUR6b3KZ3T6Y9TCbiSmiNxNERkDpgAkcFSa4RudNDT3RrCzoq9P6YqtIEj+oR6Qgjgmx2cHZqI6h4TIDJYf5xKwNXUXKhs2PtjDqY+0BgAsO74DcTdypM4GiIydUyAyCDp9f50DYIDR36ZvFZ+TugW7Aa1RuBbrhFGRHWMCRAZpL+jE3E5JQeO1ko82SVQ6nConkx7oLQW6Ncj8UjKLJA4GiIyZUyAyOBoNAJflM37M75rEOf9MSPtg1zQvmx26O92sReIiOoOEyAyOJvPJOFicg4crJV4qgtnfTY308pqgVYdus6V4omozjABIoNye+/PU12CoLJh74+56drYDa38nFBQrMEPe2KkDoeITBQTIDIoW84m43xSNuytlBjP2h+zJJPJdL1Ay/bHIiOvSOKIiMgUMQEigyGEwJfbSnt/xnUOhJMtV3w3Vw+EeCC0gSNyi9RYsjdW6nCIyAQxASKDsfvSTZxJyIKtpQITurL2x5zd3gu0ZG8MsguKJY6IiEwNEyAyGNq5X0a084ezHXt/zF3/5l5o7GGPrIIS/Lz/mtThEJGJYQJEBuFUfAb2XUmDUi7DhG7s/SFALpdhSq9GAIAf9sQgr6hE4oiIyJQwASKD8N2uqwCAQS294eNkI3E0ZCgebuENfxdb3MotwsqD16UOh4hMCBMgkty1tFz8fToRADCpR0OJoyFDolTIMblnaS/Qj3tiUKzWSBwREZkKJkAkue93X4VGAD2buiPEy1HqcMjAPNLaB272lkjILMBfZYkyEVFNMQEiSd3MKcSvR+IBAM/2aCRxNGSIrC0UeKJTIIDSZFkIIW1ARGQSmACRpJbui0VhiQYt/ZzQIchF6nDIQI3pGABrCzmib2ThwNVbUodDRCaACRBJJrfwv+HNk3s0hEwmkzgiMlQudpYYGuELoLQXiIioppgAkWRWH45DZn4xgtzs0LeZl9ThkIGb0LUhZDJg2/kUXE7JljocIjJyTIBIEsVqDX4o+yU/qXtDKOTs/aG7C3KzQ99QTwDA4t1cJJWIaoYJEEli08kEJGQWwM3eCo+09pE6HDISE7uXTpOw9vgNpGYXShwNERkzJkBU74QQWFQ28eFTXQJhbaGQOCIyFm0DnNHKzwlFJRosO8DlMYjo/jEBonq35/JNnE/Khq2lAmM6BkgdDhkRmUyGid1Ke4GW7Y9FfpFa4oiIyFgxAaJ69+Oe0vqNYW39oLKxkDgaMjb9mnvCz8UG6XnF+P1YvNThEJGRYgJE9epKag62X0iFTAaM6xwodThkhJQKOcZ3KV0w94c9MdBoODEiEVUfEyCqV0v2lvb+9A7xRKCbncTRkLEa1tYPjtZKxNzMxdZzyVKHQ0RGiAkQ1ZuMvCL8fvQGAGBC1yCJoyFjZmelxOiy+jFOjEhE94MJENWbVYfikF+sRmgDR3RsyGUvqGbGdQ6EhUKGw7HpOH49XepwiMjIMAGielGs1uDn/bEAgPFdArnsBdWYp6M1BrUsnUOKEyMSUXUxAaJ68Xd0EhIzC+Bmb4lBrbylDodMxNPdSi+l/h2diLhbeRJHQ0TGhAkQ1Qvt0PcxHQNgpeTEh1Q7Qhs4oluwGzSidEQYEVFVMQGiOnf0WjpOxGXAUiHH6A6c+JBql3ZixN+OxiO7oFjiaIjIWDABojr3Y9nQ98GtvOHuYCVxNGRqugW7obGHPXIKS/DrEU6MSERVwwSI6tSNjHxsjk4CADzVhUPfqfbJZDLdpJpL98dCzYkRiagKmABRnfp5X+kXUudGrmjm7Sh1OGSiHm3jA0drJa6l5WHb+RSpwyEiI2BQCdD8+fPRrl07ODg4wMPDA0OGDMGFCxf02gghMHfuXHh7e8PGxgY9e/bEmTNn9NoUFhZi2rRpcHNzg52dHQYNGoT4eHaN17fcwhKsOnQdAHRLFxDVBVtLJUa29wfw32zjRER3Y1AJ0M6dOzFlyhQcOHAAUVFRKCkpQWRkJHJzc3VtPvzwQ3z66af46quvcPjwYXh5eaFv377Izs7WtZkxYwbWrVuH1atXY8+ePcjJycHAgQOhVnPl6Pr0+7F4ZBWUINDVFg+EeEgdDpm4sZ0CIJcB+66k4XxSltThEJGBkwkhDPaCeWpqKjw8PLBz5050794dQgh4e3tjxowZePnllwGU9vZ4enrigw8+wDPPPIPMzEy4u7tj2bJlGD58OAAgISEBfn5++Ouvv9CvX78qvXZWVhZUKhUyMzPh6MhLN9Wl0Qj0/nQnYm7m4q1BzfEkFz6lejB5+VH8HZ2EEe388P5jLaQOh4gkUNXvb4PqAbpTZmYmAMDFpXTZhJiYGCQlJSEyMlLXxsrKCj169MC+ffsAAEePHkVxcbFeG29vb4SFhenaVKSwsBBZWVl6N7p/2y+kIOZmLhyslRga4St1OGQmtIX2647fwK3cIomjISJDZrAJkBACM2fORNeuXREWFgYASEoqHU3k6emp19bT01N3X1JSEiwtLeHs7Fxpm4rMnz8fKpVKd/Pz86vN3TE72qHvI9r5wc5KKXE0ZC7aBTqjubcjCks0uvozIqKKGGwCNHXqVJw6dQqrVq0qd9+d60gJIe65ttS92syZMweZmZm6W1xc3P0FTriYnI29l9Mgl4GXvqheyWQyXS/Q8gPXUKLWSBwRERkqg0yApk2bho0bN2L79u3w9f3v8omXlxcAlOvJSUlJ0fUKeXl5oaioCOnp6ZW2qYiVlRUcHR31bnR/lh+4BgDo28wTvs62EkdD5mZgiwZwtbNEYmYBos4mSx0OERkog0qAhBCYOnUq1q5di23btiEoSH/odFBQELy8vBAVFaXbVlRUhJ07d6Jz584AgIiICFhYWOi1SUxMRHR0tK4N1Z2cwhKsPXYDADC2Y6C0wZBZsrZQYET70kvYS/fHShsMERksgyrOmDJlClauXIkNGzbAwcFB19OjUqlgY2MDmUyGGTNmYN68eQgODkZwcDDmzZsHW1tbjBo1Std2woQJmDVrFlxdXeHi4oLZs2cjPDwcffr0kXL3zMK64zeQU1iChu526NLYVepwyEyN7hCAb3ZcwYGrt3AhKRtNvRykDomIDIxBJUDffPMNAKBnz55625csWYJx48YBAF566SXk5+fjueeeQ3p6Ojp06IAtW7bAweG/D7jPPvsMSqUSw4YNQ35+Pnr37o2ffvoJCgVXIa9LQggs3196+WtMh4B71mUR1RVvJxtENvPC5jNJ+Hl/LN57JFzqkIjIwBj0PEBS4jxA1XfwahqGLzoAaws5Dv6vD1Q2FlKHRGZs/5U0jPz+AGwsFDjwv948H4nMhEnMA0TGZVlZ8fOQVj78siHJdWzogiae9sgvVuO3o1wKh4j0MQGiWpGSXaBb9X1spwCJoyEqHRL/RKdAAMCy/bHQcJV4IroNEyCqFasPxaFEI9DG3wnNvVVSh0MEAHiktQ8crJWITcvDrkupUodDRAaECRDVWIlag5UHS2fdZe8PGRI7KyUejygbEr8vVtpgiMigMAGiGtt6LgVJWQVwsbPEg+ENpA6HSI82Kd9xMRWxN3MljoaIDAUTIKox7czPw9v5wUrJqQbIsAS52aFHE3cI8V+hPhEREyCqkSupOdhz+SZkMmBUe3+pwyGq0JOdS3uBfj0Sh/witcTREJEhYAJENaLt/ekd4gE/F677RYapRxMP+DrbIKugBJtOJUgdDhEZACZAdN/yikp086uM6cjiZzJcCrkMozqU9lCu4GUwIgITIKqBDScSkF1QggBXW3QPdpc6HKK7GtbWDxYKGU7GZ+J0fKbU4RCRxJgA0X0RQmDZbet+yeVc94sMm5u9FQaElY5SXM5eICKzxwSI7sux6xk4m5gFK6UcQyN8pQ6HqEq0l2o3nLyBzPxiiaMhIikxAaL7smx/LADg4ZbecLazlDYYoipqF+iMJp72KCjWYO0xrg9GZM6YAFG13cwpxF+nS9f9eoIzP5MRkclkul6gFQevQwiuD0ZkrpgAUbX9ciQORWoNWvqq0MLXSepwiKrlkdY+sLVU4HJKDg5cvSV1OEQkESZAVC1qjcCKA6XrfnHoOxkjB2sLDG7lAwBYfpDF0ETmigkQVcv28ym4kZEPJ1sLPNzSW+pwiO7LmI6lcwL9E52E1OxCiaMhIikwAaJq0a6lNKytH6wtuO4XGafm3iq09ndCiUbglyNxUodDRBJgAkRVdi0tFzsvpgIARnfgul9k3MZ0KL2Eu/Lgdag1LIYmMjdMgKjKtJPH9WjijgBXO4mjIaqZh1o0gJOtBW5k5GPHhRSpwyGiesYEiKqkoFiNX46UzpvCoe9kCqwtFHi8bBJPzgxNZH6YAFGV/HkqEZn5xfBxskHPph5Sh0NUK0aXXQbbcTEVcbfyJI6GiOoTEyCqkpWHSoe+j2zvBwXX/SITEehmh66N3SAEsOYwi6GJzAkTILqnC0nZOHotHQq5DMPa+kkdDlGtGlVW0L/mSByK1RqJoyGi+sIEiO5pVVnvT59QD3g4WkscDVHt6tvME+4OVkjNLsTWs8lSh0NE9YQJEN1VfpEav5ctGjmqA4ufyfRYKOQY1ra0GHrFwesSR0NE9YUJEN3Vn6cTkV1QAl9nG3Rr7CZ1OER1YkQ7f8hkwJ7LNxF7M1fqcIioHjABortaWbZW0sj2/pCz+JlMlJ+LLXo0cQfw3yVfIjJtTICoUueTsnDsegaUchkeL7tEQGSqtEPifz0aj8IStcTREFFdYwJElVp1UFv87AkPBxY/k2nr1dQdXo7WuJVbhM3RSVKHQ0R1jAkQVSi/SI21x28A+G+YMJEpUyrkGNG+dJoHFkMTmT4mQFShP04lILugBH4uNujK4mcyE8Pb+UEuAw7F3MLllGypwyGiOsQEiCqkLQQd0Y7Fz2Q+Gqhs0DvUEwB7gYhMHRMgKofFz2TORpdd8v39aDwKilkMTWSqmABROasPla6JxOJnMkfdgt3h42SDrIIS/B2dKHU4RFRHmACRnttnfh7J4mcyQwq5DCPalRZDrzrIBVKJTBUTINLDmZ+JgMfb+kEhl+FQLIuhiUyVsjqNMzMzsW7dOuzevRuxsbHIy8uDu7s7WrdujX79+qFz5851FSfVE23xM2d+JnPmpbLGAyEeiDqbjFWH4vD6wGZSh0REtaxKPUCJiYmYOHEiGjRogLfffhu5ublo1aoVevfuDV9fX2zfvh19+/ZFs2bNsGbNmrqOmerIhaRsHL2WDoVchscjWPxM5m1U+7Ji6GMshiYyRVXqAWrZsiWeeOIJHDp0CGFhYRW2yc/Px/r16/Hpp58iLi4Os2fPrtVAqe5pe3/6hHrAw5HFz2Teujdxh7fKGgmZBfjnTBIGt/KROiQiqkVVSoDOnDkDd3f3u7axsbHByJEjMXLkSKSmptZKcFR/CorVWFtW/DyqbE0kInOmkMswvJ0/Ptt6ESsPXmcCRGRiqnQJzN3dHevXr4daXbVu4HslS2R4/jyViKyCEvg4sfiZSGtYO1/IZcDBmFu4kpojdThEVIuqPAps6NCh8PHxwcsvv4zz58/XZUwkgf+Kn/1Y/ExUpoHKBg+EeAAA1hzmkHgiU1LlBOj69euYNm0a1q1bh+bNm6Nr165YsmQJcnNz6zI+qgcXk7NxRFv83NZP6nCIDMrIsmLo347Go7CExdBEpqLKCZC3tzdeffVVXLx4Edu2bUOjRo3w/PPPo0GDBnj66aexf//+uoyT6pC296d3iAc8WfxMpKdHE3c0UFnjVm4RtpxJljocIqol9zURYo8ePbB06VIkJibi008/xblz59C1a1c0b968tuOjOlZQrMbvR7XFz5z5mehOSoUcw8p6RldygVQik1GjmaDt7e3Rq1cv9OrVC05OTrh48WJtxUX15K/TtxU/B7N4nagiw9r5QS4D9l9NQ8xNXvYnMgX3lQDl5eVh6dKl6NGjB5o0aYI1a9Zg5syZiI2NreXwqK5pL3+NaFc69T8RlefjZIMeTUp/IKw+zF4gIlNQrQRo7969mDBhAry8vDB58mT4+flh69atuHTpEl599VX4+HCeDGNyKTkbh2NZ/ExUFbpi6CPxKCrRSBwNEdVUldcCa9KkCa5cuYLWrVvjgw8+wKhRo6BSqeoyNqpjqw6VDut9IMQDXioWPxPdzQMhHvBwsEJKdiGizibjoRYNpA6JiGqgyj1A/fv3x7Fjx3DkyBFMnjyZyY+RKyhW4/djLH4mqiqlQo7h7Up7SrWXjonIeFU5Afriiy/QsmXLSu+/ePEiBg0aVCtBUd37OzoRmfnF8HGyQXcWPxNVybC2fpDJgD2Xb+JaGouhiYxZtYugg4KC0LBhw3K3Dh064ODBg3UR431buHAhgoKCYG1tjYiICOzevVvqkAzGqoOll7+Gs/iZqMr8XGx1PxhWc2ZoIqNW5RogrRkzZuj9W61W48qVK1i+fDm+/vrr2oqrxtasWYMZM2Zg4cKF6NKlC7777jsMGDAAZ8+ehb+/eV/yuZySjUOxt6CQy3TzmxBR1Yxs74+dF1Px65E4vNCnCSyVNZpNhIgkIhNCiNp4ot9//x1vvvkmoqOja+PpaqxDhw5o06YNvvnmG9220NBQDBkyBPPnz7/n47OysqBSqZCZmQlHR8e6DLXevfPHWfywJwZ9m3ni+yfaSh0OkVEpVmvQ+f1tSM0uxDej22BAOIuhiQxJVb+/a+2nS5s2bXD16tXaeroaKSoqwtGjRxEZGam3PTIyEvv27avwMYWFhcjKytK7mSK94uf25t0TRnQ/LBRyDGvrCwBYyWJoIqNVawnQihUrMHTo0Np6uhq5efMm1Go1PD099bZ7enoiKSmpwsfMnz8fKpVKd/PzM81LQ5ujk5CRVwxvlTW6N2HxM9H9GNGu9MfD7ks3EXcrT+JoiOh+VLsGqHXr1pDJ9Itmk5OTkZSUhLCwMLRp00a3/dixYzWPsAbujFMIUW6b1pw5czBz5kzdv7OyskwyCdL+Yh3ezp/Fz0T3yc/FFt2C3bD70k2sPnwdL/YLkTokIqNSotZAqZC2fq7aCdCQIUPqIIza5ebmBoVCUa63JyUlpVyvkJaVlRWsrKzqIzzJXE7JwaGYW5DLgGHtfKUOh8iojWrvj92XbuKXI/GY0acJLCT+MCcyJm9uPIMLSdl4sV9TdGjoKkkM1U6A3nzzzbqIo1ZZWloiIiICUVFReOSRR3Tbo6KiMHjwYAkjk9bqst6fB0I80UBlI3E0RMatTzNPuNlbITW7EP+eS0H/MC+pQyIyCrmFJdhwIgE5hSVQ1844rPtSpZ8subnVm/Cruu3rwsyZM7F48WL8+OOPOHfuHF544QVcv34dzz77rNShSaKgWI3fdDM/m96lPaL6ZqGQ4/GyYmjODE1UdZtOliY/QW526CRR7w9QxQSocePGmDdvHhISEiptI4RAVFQUBgwYgC+++KLWArxfw4cPx4IFC/D222+jVatW2LVrF/766y8EBARIHZok/jlTWvzcQGWNHk08pA6HyCSMKFsaY9elVBZDE1WRthZ1ZHu/Suty60OVLoHt2LEDr732Gt566y20atUKbdu2hbe3N6ytrZGeno6zZ89i//79sLCwwJw5czBp0qS6jrtKnnvuOTz33HNSh2EQVh7UFj9z5mei2hLgaoeujd2w5/JN/HIkDrMim0odEpFBi76RiVPxmbBUyDE0QtqrEVVKgJo2bYpff/0V8fHx+PXXX7Fr1y7s27cP+fn5cHNzQ+vWrfH999/jwQcfhFzOQkBDcyU1BwfLip+1izkSUe0Y0d4Pey7fxJrDcZjeO1jykS1Ehkzb+9MvzAsudpaSxlKtImhfX1+88MILeOGFF+oqHqoDq8p6f3o19WDxM1Eti2zmBVc7S6RkF2Lb+RRENmcxNFFFcgtLsOH4DQCll7+kxp8qJu724ufRHTnzM1Fts1TKMTSCxdBE97LxZAJyi9SSFz9rMQEycX+dTkRGXjF8nGxY/ExUR7SXlndcTMWNjHyJoyEyTKsMpPhZiwmQiVtx8L8TjsXPRHWjobs9OjV0hRDAmsNxUodDZHAMqfhZiwmQCTuXmIWj19KhlMswrK1hnHBEpmpkh9JLzL8cjkOJWiNxNESGxZCKn7WYAJkw7dD3yOae8HC0ljgaItPWr7knnG0tkJRVgB0XUqUOh8hg5NxW/DyqveHUolY5AXrjjTdQUlJS6f3Xr19H3759ayUoqrncwhKsKzvhRncwz8kfieqTlVLBYmiiCmwqK35u6GaHjg1dpA5Hp8oJ0E8//YR27drh9OnT5e5btGgRwsLCoFRWe2kxqiMbDWSqcSJzMqLs1+32CylIYDE0EYD/rkaMbO9vEMXPWlVOgKKjoxEeHo527dph/vz50Gg0uH79Ovr06YOXXnoJn376Kf7++++6jJWqQXvCjWrvDzmLn4nqRSN3e3QIcoFGAL8cYTE00en4TJy+UVr8/FhZD6mhqHIC5OjoiJ9//hlr1qzB559/jjZt2iA8PBxKpRKnT5/G008/XZdxUjWcis8w2BOOyNSNKiuGXnM4DmqNdCtdExkCbfFzfwMqftaqdhF0hw4dEB4ejlOnTkGj0eCll16Cnx9HGBmSFQdKT7gHww3vhCMydf2ae8HJ1gKJmQXYeTFF6nCIJJNTWIKNJ7QzPxtO8bNWtRKgVatWoXnz5tBoNDh37hwmT56MAQMGYPr06cjP5/VuQ5CZX4yNJxMAAKM7sviZqL5ZWyjwWJvSnteVB3kZjMzXxhOGWfysVeUEaOjQoZg0aRLmzp2Lf//9F02bNsWHH36IHTt2YPPmzWjZsiX2799fl7FSFaw/fgP5xWo08bRH2wBnqcMhMkvaX7vbzicjKbNA4miIpPHfzM+GVfysVeUEKDExEcePH8e0adP0tnfq1AknT57EgAED0KNHj1oPkKpOCIEVB68BKB36bognHJE5aOxhj/YshiYzZsjFz1pVToB2796Nxo0bV3iftbU1Pv/8c2zdurXWAqPqO3ItHReTc2BjocAjbXykDofIrGknfGMxNJkjQy5+1qpyAiSX37tp9+7daxQM1cyKA6W9P4NaesPR2kLiaIjMW/8wL6hsLHAjIx+7LnFmaDIftxc/a0dFGiIuhWEibuUW4a/TSQCA0R0N94QjMhe3F0OvOsiZocl83F783CHI8IqftZgAmYjfjsahSK1BuI8KLXydpA6HiACMbF86Rci/51NYDE1mY+Wh0qsRhlr8rMUEyARoNAKrDpUWWo424O5GInMT7OmA9oEuUGsEVh9mLxCZvtPxmYi+kWXQxc9aTIBMwP6raYi5mQsHKyUebuktdThEdBvtJelVh66jWK2ROBqiuqXt/THk4mctJkAmQDv0fUhrH9hZcUFaIkPSP8wLbvaWSM4qxL/nkqUOh6jO5BSWYMOJ0ol4Dbn4WYsJkJFLySrAljOlH6rGcMIRmRsrpQLD2pbWAi0rG6lJZIo2nLiBvCI1GrobdvGzFhMgI/fLkTiUaAQiApwR2sBR6nCIqAKjOvhDJgP2Xk7DldQcqcMhqnVCCKwsG+04ysCLn7WYABkxNYufiYyCr7MtHmjqAeC/xYqJTMnJ+EycSciCpVKOR9sYdvGzFhMgI7bzYgpuZOTDydYCD4Y3kDocIrqLMZ1KFyf+7Wgc8ovUEkdDVLu0E/E+FN7A4IuftZgAGTHtL8mhbXxhbaGQOBoiupsewe7wc7FBVkEJNp1KkDocolqTmVesO6fHGNFEvEyAjFR8eh62XUgBAIzk5S8igyeXyzC6Q2kv0HIWQ5MJ+e1YPAqKNQjxckAbf2epw6kyJkBGas3hOAgBdG7kikbu9lKHQ0RV8HiELywVcpyKz8TJuAypwyGqMSGEbiqW0R0DjKL4WYsJkBEqVmuw+rC2+DlA4miIqKpc7a3wUIvSej32ApEp2H81DVdTc2FnqcAjrX2kDqdamAAZoX/PJSM1uxBu9lbo28xT6nCIqBq0NRIbTyYgM69Y4miIakZbizqktQ/sjWwiXiZARmhF2VwLw9v5wlLJQ0hkTNr4OyPEywGFJRr8ejRO6nCI7ltKdgH+OZMEwDivRvDb08jE3szF7ks3IZMBI9qx+JnI2MhkMowtGxK/4uB1aDRC4oiI7s8vh0sn4m3j74Rm3sY3ES8TICOz6lBp70+PJu7wc7GVOBoiuh9DWpVeLoi5mYt9V9KkDoeo2m6fiHdMR+Pr/QGYABmVwhI1fjnC4mciY2dnpcSjbUoLRlkMTcZoxwXjn4iXCZAR2RydhPS8YjRQWaNXU3epwyGiGtD+ao46l4ykzAKJoyGqHm3i/niE8U7EywTIiGir7Ue084dSwUNHZMyaeDqgfZBL2aUErg9GxiPuVh52XEwFAIwy4qsR/BY1EheTs3Eo9hYUchmGt/OTOhwiqgXaXqBVh66jWK2ROBqiqll+8BqEALoFuyHIzU7qcO4bEyAjsbJs6HufUA94qawljoaIakP/5l5ws7dESnYhtp5NljoconsqKFbjl7KJeJ/oFChtMDXEBMgI5Bep8fuxeAAsfiYyJZZKua5HdxmLockI/HkqEel5xfBxssEDIR5Sh1MjTICMwKZTCcguKIG/iy26NnaTOhwiqkUj2/tDLgP2XUnD5ZQcqcMhuqufyxL1UR38oZAbz7pfFWECZAS0Mz+P6uAPuZGfcESkz9fZVvdLWruoJJEhOhWfgZNxGbBUyE2iFpUJkIGLvlG6arSFQobHI3ylDoeI6oC2GPq3o/HIKyqROBqiii3bX5qgPxjuBTd7K4mjqTkmQAZO2/vTP6wBXE3ghCOi8roHu8PfxRbZBSXYdDJB6nCIyknPLcLGsnNTu5SLsWMCZMCyC4qx4cQNAMDoDlz3i8hUyeUy3d/48gOcE4gMz29H41FYokGzBo5o4+8sdTi1ggmQAVt/IgF5RWo0crdDhyAXqcMhojr0eFs/WCrlOF122ZvIUGg0AsvL6tPGdgqATGYatahMgAyUEAIryqrtR3cwnROOiCrmYmeJgWVrKnFIPBmSXZdScS0tDw7WSgxu5S11OLWGCZCBOnY9A+eTsmGllOOxNix+JjIHo8uKoTedTEBGXpHE0RCV0hY/D43wha2lUuJoag8TIAOlXWju4ZbeUNlaSBwNEdWHNv5OCG3giMISDX47Gi91OESIu5WHbRdSAPw3WtFUMAEyQCnZBfjjVFm1vYmdcERUOZlMpvubX3HwOjQaIXFEZO5WHLwOIYCujd3QyN1e6nBqFRMgA7TqYByK1QKt/Z3Q0s9J6nCIqB4NbuUNeyslYm7mYs/lm1KHQ2asoFiNX46UrvtlKkPfb8cEyMAUlWh01fbjOgdKGwwR1Ts7KyWGlk16unRfrLTBkFnbeCIBt3KL4ONkg95Gvu5XRQwmASouLsbLL7+M8PBw2NnZwdvbG0888QQSEvQnBSssLMS0adPg5uYGOzs7DBo0CPHx+tfK09PTMXbsWKhUKqhUKowdOxYZGRn1uDf37+/oRKRmF8LDwQoDwhpIHQ4RSeCJsl/b2y6k4HpansTRkDkSQuDHvTEAgCc7B0CpMJh0odYYzB7l5eXh2LFjeP3113Hs2DGsXbsWFy9exKBBg/TazZgxA+vWrcPq1auxZ88e5OTkYODAgVCr1bo2o0aNwokTJ7B582Zs3rwZJ06cwNixY+t7l+7Lkr2xAEqLzSyVBnN4iKgeNXS3R/cm7hACWHYgVupwyAztv5KG80nZsLVUYHhb05yIVyaEMNgqu8OHD6N9+/a4du0a/P39kZmZCXd3dyxbtgzDhw8HACQkJMDPzw9//fUX+vXrh3PnzqFZs2Y4cOAAOnToAAA4cOAAOnXqhPPnz6Np06ZVeu2srCyoVCpkZmbC0dGxzvbxdifiMjDk672wVMix95UH4O7ApS+IzNW288kY/9MROForceB/vU1q+DEZvqeXHsbWcyl4olMA3h4cJnU41VLV72+D7mLIzMyETCaDk5MTAODo0aMoLi5GZGSkro23tzfCwsKwb98+AMD+/fuhUql0yQ8AdOzYESqVStemIoWFhcjKytK71Tft9f6BLRsw+SEycz2beCDA1RZZBSVYf5zrg1H9ibmZi3/Plw59N+VaVINNgAoKCvDKK69g1KhRugwuKSkJlpaWcHbWX4fE09MTSUlJujYeHuWLtTw8PHRtKjJ//nxdzZBKpYKfn18t7s293T70/anOQfX62kRkeOTy/4bEL90XCwPurCcTU3q+AQ+EeKChiQ19v51kCdCKFStgb2+vu+3evVt3X3FxMUaMGAGNRoOFCxfe87mEEHpLRVS0bMSdbe40Z84cZGZm6m5xcXHV3KOaWXnwOorVAhEBzgj3VdXraxORYXq8rR9sLBS4kJyNA1dvSR0OmYHM/GLd0PfxXUz7x7hkF5UHDRqkd5nKx8cHQGnyM2zYMMTExGDbtm161++8vLxQVFSE9PR0vV6glJQUdO7cWdcmOTm53OulpqbC09Oz0nisrKxgZSXNZaeiEo1uBWhT7m4koupR2Vjg0TY+WHHwOpbsjUGnRq5Sh0Qm7tcjccgrUqOJpz26NDbt802yHiAHBwc0btxYd7OxsdElP5cuXcLWrVvh6qr/5kdERMDCwgJRUVG6bYmJiYiOjtYlQJ06dUJmZiYOHTqka3Pw4EFkZmbq2hiav04n4mZOITwdrdA/zEvqcIjIgDzVJRAAEHUuGXG3OCSe6k6JWqMbiTy+S5DJL8JtMDVAJSUlGDp0KI4cOYIVK1ZArVYjKSkJSUlJKCoqXRRQpVJhwoQJmDVrFv79918cP34cY8aMQXh4OPr06QMACA0NRf/+/TFx4kQcOHAABw4cwMSJEzFw4MAqjwCrT7fPtTCmQwAsTHCuBSK6f409HNAt2A1CcGJEqltbzyXjRkY+nG0tMKS1j9Th1DmD+baNj4/Hxo0bER8fj1atWqFBgwa62+2jtz777DMMGTIEw4YNQ5cuXWBra4tNmzZBoVDo2qxYsQLh4eGIjIxEZGQkWrRogWXLlkmxW/d05Fo6TsVnwlIpx6gOpjnXAhHVjLYWY82ROOQWlkgcDZmqH/fEAgBGdwiAtYXi7o1NgMFMLBEYGFilUQ7W1tb48ssv8eWXX1baxsXFBcuXL6/N8OrM4t1XAQCPtfGBqz2HvhNReT2auKOhmx2u3szF78fi8USnQKlDIhNzOj4Th2JvQSmXmeS6XxUxmB4gc3QtLRdbzpYWbJt6tT0R3T+5XIYnywZI/LQ3lqvEU61bUlaKMbBFA3g6WkscTf1gAiShJXtL51ro0cQdwZ4OUodDRAbssQhfOFgpcfVmLnZcTJE6HDIhKVkF2FQ2D934rubzY5wJkESyCorxa9lcCxPM6IQjovtjb6XEiPalE7Qu3h0jcTRkSpYfuIZitUDbAGe08HWSOpx6wwRIImsOxSG3bK6FbsFuUodDREZgXJcgKOQy7LuShugbmVKHQyagoFiN5QdL56Ezp94fgAmQJErUGvxUNpx1QlfTn2uBiGqHj5MNBrZoAAD4vmwABVFNbDyRgFu5RfBxskFks8onCzZFTIAksPlMEm5k5MPVzhKDW5n+XAtEVHsmdmsIAPjjVCISMvIljoaM2e3z0D3ZOQBKM5uHzrz21kBor9+P6Wgecy0QUe0J81GhU0NXqDVCN3KH6H7sv5KG80nZsLVUYHhb85uHjglQPTt6LR0n4jJgqZRjTEfzmGuBiGrXpO6lvUCrDsUhq6BY4mjIWGl7f4ZG+EJlayFxNPWPCVA9+2FP6XX7Ia284e7AiQ+JqPp6NHFHsIc9cgpLsOZQnNThkBGKuZmLf8+XTqdgrotwMwGqR0IIOFpbwFIpx4SuDaUOh4iMlFwuw9PdSkfs/Lg3BsVqjcQRkbFZuq90HroHQjzQ0N1e6nAkwQSoHslkMrz/WAsc/l8fNPXixIdEdP8Gt/KBm70VEjML8NfpRKnDISOSmV+MX8rmoTPnVQiYAEnAHK+1ElHtsrZQYFzn0jrCRbuuVmktRSKgdOLDvCI1mno6oEtjV6nDkQwTICIiI1W6arccZxKysP9KmtThkBEoKFbrRg8+27OhWc9DxwSIiMhIOdtZYljb0uUxODEiVcWvR+NxM6eobFJNb6nDkRQTICIiI1Y6mzyw/UIqLiZnSx0OGbAStQaLdl0BAEzsFgQLM5v48E7mvfdEREYuwNUO/Zt7AQAWsxeI7uKv6CTE3cqHi50lhrczv4kP78QEiIjIyD1dtjzG+uMJSMkukDgaMkRCCHyzo7T3Z1znQNhYchUCJkBEREYuIsAZEQHOKFJr8OOeWKnDIQO082IqziVmwdZSgSc6cRUCgAkQEZFJeLZHIwClQ5wz87g8BunT9v6MbO8PJ1tLiaMxDEyAiIhMQO8QD4R4OSCnsAQ/74+VOhwyIMeup+NgzC1YKP6bQZyYABERmQS5XIbJPUt7gX7cG4O8ohKJIyJD8W1Z78+QVj5ooLKROBrDwQSIiMhEDGzhjUBXW6TnFWPlwetSh0MG4HJKNracTYZMBjzTg2tQ3o4JEBGRiVDIZbpaoO93X0VhiVriiEhq3+4snRqhb6gnGntwDcrbMQEiIjIhj7bxRQOVNZKzCvH70RtSh0MSSsjIx/rjpefAs2WXR+k/TICIiEyIpVKOiWXzAn278wpK1BqJIyKpLN4dgxKNQMeGLmjj7yx1OAaHCRARkYkZ0d4PLnaWuH4rD3+cSpQ6HJJAem4RVh0qrQOb3LOxxNEYJiZAREQmxtZSiQldS4c7L9xxGRqNkDgiqm8/7IlBfrEazRo4onuwm9ThGCQmQEREJmhMxwA4WClxMTkHW88lSx0O1aOMvCL8tC8WAPB878aQyWTSBmSgmAAREZkglY0FnuhcuuTB19svQwj2ApmLH/fEIKewBCFeDohs5iV1OAaLCRARkYl6qksQrC3kOBmfiT2Xb0odDtWDzLxiLNkbCwCY3jsYcjl7fyrDBIiIyES52VthZHt/AMBnURfZC2QGftgbg+zCEjT1dEC/5uz9uRsmQEREJmxyj0awUspx7HoGdlxMlTocqkOZ+cVYsjcGAPA8e3/uiQkQEZEJ83C0xhOdSmuB2Atk2pbsjUF2QQmaeNpjQBh7f+6FCRARkYl7tkcj2FoqcCo+E1FnOSLMFGUVFOPHPez9qQ4mQEREJs7V3grjOgcCAD6Nush5gUzQ4t0xyCooQbCHPR4MayB1OEaBCRARkRmY1L0hHKyUOJ+Ujb+jk6QOh2rRrdwi/LC7dNHTF/o2Ye9PFTEBIiIyA062lhhfNjv0gq0XoWYvkMn4ducV5BapEebjiP4c+VVlTICIiMzEhG5BUNlY4FJKDv44lSB1OFQLkrMKsLRs1udZkU3Z+1MNTICIiMyEo7UFJnUvXSl+wdZLXCneBHy57RIKSzRoG+CMnk3cpQ7HqDABIiIyI+M6B8LFzhIxN3Ox9vgNqcOhGrielofVh+IAAC/2a8o1v6qJCRARkRmxs1Jico9GAErnBSooVkscEd2vBf9eRIlGoFuwGzo0dJU6HKPDBIiIyMyM7RQAHycbJGYW4MeymYPJuFxKzsb6sh682ZFNJY7GODEBIiIyM9YWCszu1wQA8M32K7iVWyRxRFRdH2w+D40A+jX3REs/J6nDMUpMgIiIzNDglj5o1sAR2YUl+HLbJanDoWo4cDUNW8+lQCGX4aX+IVKHY7SYABERmSG5XIb/PRgKAFh+4BqupeVKHBFVhUYjMO+vcwCAUe390cjdXuKIjBcTICIiM9U12A3dm7ijWC3w0T8XpA6HquCP04k4FZ8JO0sFnu8dLHU4Ro0JEBGRGZszIAQyGfDHqUSciMuQOhy6i8ISNT7cfB5A6QK37g5WEkdk3JgAERGZsdAGjnisjS8AYN5f5yAEl8gwVMv2X0N8ej48Ha3wdLeGUodj9JgAERGZuZl9m8BKKcehmFv491yK1OFQBTLzivHltssAgFl9m8LGUiFxRMaPCRARkZnzdrLRLZT6/ubzXCLDAC349yIy84vR1NMBj0X4Sh2OSWACREREmNyzEZxtLXA5JQdrjsRJHQ7d5lJyNn7efw0A8PrAZlBwwdNawQSIiIjgaG2hG1X08T8XkM7JEQ2CEAJv/3EWao1A32ae6BrsJnVIJsNgE6BnnnkGMpkMCxYs0NteWFiIadOmwc3NDXZ2dhg0aBDi4+P12qSnp2Ps2LFQqVRQqVQYO3YsMjIy6i94IiIjNKZjAJp6OiA9rxgfcli8Qfj3XAp2X7oJS4Ucrz0UKnU4JsUgE6D169fj4MGD8Pb2LnffjBkzsG7dOqxevRp79uxBTk4OBg4cCLX6vwX9Ro0ahRMnTmDz5s3YvHkzTpw4gbFjx9bnLhARGR0LhRxvD24OAFh9+DqHxUussESNd/48CwCY0C0IAa52EkdkWgwuAbpx4wamTp2KFStWwMLCQu++zMxM/PDDD/jkk0/Qp08ftG7dGsuXL8fp06exdetWAMC5c+ewefNmLF68GJ06dUKnTp3w/fff448//sCFC/xFQ0R0Nx0auuLR1j4QAnh9fTTUGg6Ll8ri3TG4lpYHDwcrTOnVWOpwTI5BJUAajQZjx47Fiy++iObNm5e7/+jRoyguLkZkZKRum7e3N8LCwrBv3z4AwP79+6FSqdChQwddm44dO0KlUunaVKSwsBBZWVl6NyIic/TKgyFwsFLi9I1MrDp0XepwzFLcrTx88W/pGm1zHgyBvZVS4ohMj0ElQB988AGUSiWef/75Cu9PSkqCpaUlnJ2d9bZ7enoiKSlJ18bDw6PcYz08PHRtKjJ//nxdzZBKpYKfn18N9oSIyHh5OFhjVmTpavEf/XMBaTmFEkdkXoQQeHPjGRSWaNCpoSuGtPKROiSTJFkCtGLFCtjb2+tuO3fuxOeff46ffvoJMln1hvgJIfQeU9Hj72xzpzlz5iAzM1N3i4vjMFAiMl9jOgagWQNHZOYX44Oy5ReofvxzJhnbzqfAQiHDO0PCqv2dSFUjWQI0aNAgnDhxQnfbt28fUlJS4O/vD6VSCaVSiWvXrmHWrFkIDAwEAHh5eaGoqAjp6el6z5WSkgJPT09dm+Tk5HKvl5qaqmtTESsrKzg6OurdiIjMlVIhxztDSksRfjkSj6PX0u/xCKoNuYUleGvTGQDAM90bobEHV3uvK5IlQA4ODmjcuLHuNmnSJJw6dUovKfL29saLL76If/75BwAQEREBCwsLREVF6Z4nMTER0dHR6Ny5MwCgU6dOyMzMxKFDh3RtDh48iMzMTF0bIiK6t4gAFzxeNuvw6+ujOUN0PViw9SISMwvg52KDqQ+w8LkuGUxVlaurK1xdXfW2WVhYwMvLC02bNgUAqFQqTJgwAbNmzYKrqytcXFwwe/ZshIeHo0+fPgCA0NBQ9O/fHxMnTsR3330HAJg0aRIGDhyoex4iIqqaVwaE4J8zSTibmIVlB67hqS5BUodkss4lZuHHvbEAgLcHhcHagut91SWDKoKuis8++wxDhgzBsGHD0KVLF9ja2mLTpk1QKP47UVasWIHw8HBERkYiMjISLVq0wLJlyySMmojIOLnaW+HF/iEASgui427lSRyRaSpWa/Dibyeh1gj0b+6FXiHlB/NQ7ZIJITjJQwWysrKgUqmQmZnJeiAiMmsajcCIRQdwKPYWujR2xfIJHViYW8u+3n4ZH/1zAY7WSmyd2QMejtZSh2S0qvr9bXQ9QEREVL/kchk+HNoC1hZy7L2chlWHOEq2Nl1MzsbnW0vn/Jk7qDmTn3rCBIiIiO4p0M0OsyNL6yjn/XUONzLyJY7INJSoNXjx15MoUmvQO8QDj7TmnD/1hQkQERFVyVNdghAR4IycwhK88vspsIKi5r7fHYOT8ZlwtFZi3qPhvLRYj5gAERFRlSjKLoVZKeXYfekmfjnCS2E1cSk5G59FXQQAvPFwc3jy0le9YgJERERV1sjdXrdMxlubziLmZq7EERmnwhI1pq8+gSK1Bj2buuOxNrz0Vd+YABERUbVM6NoQHRu6IK9IjedXHUdRCSdIrK6P/7mAs4lZcLa1wAePteClLwkwASIiompRyGX4bHgrONla4PSNTHy85YLUIRmV3ZdS8f3uGADAh0Nb8tKXRJgAERFRtTVQ2eCDx1oAABbtuopdF1Mljsg43MotwqxfTgIARnfwR99mla9RSXWLCRAREd2Xfs29MKajPwBg5i8ncTOnUOKIDJtGI/DCmhNIyS5EYw97vPZQM6lDMmtMgIiI6L699lAzNPG0x82cQryw5gTUGg6Nr8zX2y9j58VUWCnl+GJEa9hYcq0vKTEBIiKi+2ZtocCXI9vA2qJ0aPwnrAeq0J5LN/Hp1tIh7+8MCUMzby6xJDUmQEREVCNNvRx09UALd1zBX6cTJY7IsCRlFmD66uMQAhje1g/D2vpJHRKBCRAREdWCwa188HTXIADA7F9P4mJytsQRGYaCYjWeWXYEablFCG3giLcGN5c6JCrDBIiIiGrFKwNC0LmRK/KK1Hhm2VFk5hdLHZKkhBB46bdTOBmfCSdbC3w7pg2sLVj3YyiYABERUa1QKuT4cmRr+DjZIOZmLp5fdRzFavOdJHHhjivYeDIBSrkM34yOQICrndQh0W2YABERUa1xtbfCt2MiYG0hx86LqZiz9rRZLpr69+lEfPRPaUH424PD0KmRq8QR0Z2YABERUa0K91Xh61FtoJDL8NvReHyy5aLUIdWrA1fTMH3NCQDAk50CMKqDv7QBUYWYABERUa3rHeqJ94aEAQC+2n4Zyw5ckzii+nE2IQsTlx5BUYkGkc088fpATnZoqJgAERFRnRjR3h8v9CldOf6NDdHYHG3aw+Ovp+XhySWHkF1YgvZBLvhiZGsoFfyaNVQ8MkREVGee790YI9v7Qwhg2qrj2BydJHVIdeJaWi5Gfn8AqdmFCPFywPdPtOWILwPHBIiIiOqMTCbDO4Ob4+GW3ihWC0xdeczkJkq8mpqD4d8dwI2MfDR0t8PP49tDZWMhdVh0D0yAiIioTikVcnw2rCUeae2DEo3AtFXHselkgtRh1YrLKdkYvugAkrIKEOxhj9WTOsLD0VrqsKgKmAAREVGdUyrk+Pjxlhga4Qu1RmD66uNYdzxe6rBq5HxSFkYs+u+y1+pJHeHhwOTHWDABIiKieqGQy/DhYy0wop0fNAJ4Yc1JfLfzilHOE7T7Uioe/2Y/buYUobm3I1ZN7AhXeyupw6JqYAJERET1Ri6XYd4j4ZhQtm7Y/L/P4/UN0SgqMZ4Zo1cduo5xSw6XjvYKdMHKpzvC2c5S6rCompgAERFRvZLLZXh9YDO89lAoZDJg+YHrGL34AFKyCqQO7a4KS9R4a9MZzFl7GmqNwJBW3lj2dHuobFnwbIyYABERkSSe7tYQi59oCwcrJQ7HpmPgl3twJPaW1GFVKPZmLoZ+sx9L9sYCAKb3DsZnw1vBSsmh7saKCRAREUmmd6gnNk7riiae9kjJLsSw7/bjw83nUViiljo0nXXH4/HQF7tx+kbpqu7fP9EWL/RtAplMJnVoVAMyYYzVZ/UgKysLKpUKmZmZcHR0lDocIiKTlltYgtfWR2Pd8RsAgBAvB3z8eEuE+agkiyklqwDv/HlON2S/fZALPh/RCg1UNpLFRPdW1e9vJkCVYAJERFT/Nkcn4tV10UjLLYJcBgxv54cX+jap1+HlhSVqLNt/DZ9vvYTswhLIZcDzvYMx7YFgKOTs9TF0TIBqiAkQEZE0buYUYu7GM/jjVOmM0XaWCkzq3gjjOgfWacFxUYkGG07cwOf/XkJ8ej4AoKWvCu8OCUe4r3Q9UVQ9TIBqiAkQEZG0jsTewjt/nMXJ+EwAgL2VEiPa+WF4Oz8EezrU2utk5hdj9aHrWLI3FkllI9E8HKwwK7IJhkb4sdfHyDABqiEmQERE0tNoBP44nYiF2y/jfFK2bntrfycMaeWDbsFuCHKzq3ZBcnpuEXZdSsVfpxOx/XwqitSl8xB5OFhhfNcgPNEpALaWylrdF6ofTIBqiAkQEZHhEEJgx4VUrDx0HdvOp0Ct+e+ry1tljbaBLmjsYY+G7nbwcbKBg7UFLBVylGg0yC1UIzWnADE383AmIRNnE7JwITkbt3/7hXg5YHzXIAxu5c2h7UaOCVANMQEiIjJMKdkF2HA8AdsvpOBIbLqu96a6Qrwc8ECIBx5u6Y0QLwcOazcRTIBqiAkQEZHhyy9S43DsLZxJyMKV1BxcSc1BSlYhcgpLUFSigVIhg62lAu4OVvBW2aCZtyOae6vQwlcFT67abpKq+v3NC5xERGS0bCwV6N7EHd2buEsdChkZzgRNREREZocJEBEREZkdJkBERERkdpgAERERkdlhAkRERERmhwkQERERmR0mQERERGR2mAARERGR2WECRERERGaHCRARERGZHSZAREREZHaYABEREZHZYQJEREREZocJEBEREZkdpdQBGCohBAAgKytL4kiIiIioqrTf29rv8cowAapEdnY2AMDPz0/iSIiIiKi6srOzoVKpKr1fJu6VIpkpjUaDhIQEODg4QCaT1drzZmVlwc/PD3FxcXB0dKy156XaweNjuHhsDBePjWEzt+MjhEB2dja8vb0hl1de6cMeoErI5XL4+vrW2fM7OjqaxYlorHh8DBePjeHisTFs5nR87tbzo8UiaCIiIjI7TICIiIjI7DABqmdWVlZ48803YWVlJXUoVAEeH8PFY2O4eGwMG49PxVgETURERGaHPUBERERkdpgAERERkdlhAkRERERmhwkQERERmR0mQPVs4cKFCAoKgrW1NSIiIrB7926pQzJp8+fPR7t27eDg4AAPDw8MGTIEFy5c0GsjhMDcuXPh7e0NGxsb9OzZE2fOnNFrU1hYiGnTpsHNzQ12dnYYNGgQ4uPj63NXTN78+fMhk8kwY8YM3TYeG2nduHEDY8aMgaurK2xtbdGqVSscPXpUdz+PjzRKSkrw2muvISgoCDY2NmjYsCHefvttaDQaXRsemyoQVG9Wr14tLCwsxPfffy/Onj0rpk+fLuzs7MS1a9ekDs1k9evXTyxZskRER0eLEydOiIceekj4+/uLnJwcXZv3339fODg4iN9//12cPn1aDB8+XDRo0EBkZWXp2jz77LPCx8dHREVFiWPHjolevXqJli1bipKSEil2y+QcOnRIBAYGihYtWojp06frtvPYSOfWrVsiICBAjBs3Thw8eFDExMSIrVu3isuXL+va8PhI49133xWurq7ijz/+EDExMeLXX38V9vb2YsGCBbo2PDb3xgSoHrVv3148++yzettCQkLEK6+8IlFE5iclJUUAEDt37hRCCKHRaISXl5d4//33dW0KCgqESqUS3377rRBCiIyMDGFhYSFWr16ta3Pjxg0hl8vF5s2b63cHTFB2drYIDg4WUVFRokePHroEiMdGWi+//LLo2rVrpffz+EjnoYceEuPHj9fb9uijj4oxY8YIIXhsqoqXwOpJUVERjh49isjISL3tkZGR2Ldvn0RRmZ/MzEwAgIuLCwAgJiYGSUlJesfFysoKPXr00B2Xo0ePori4WK+Nt7c3wsLCeOxqwZQpU/DQQw+hT58+ett5bKS1ceNGtG3bFo8//jg8PDzQunVrfP/997r7eXyk07VrV/z777+4ePEiAODkyZPYs2cPHnzwQQA8NlXFxVDryc2bN6FWq+Hp6am33dPTE0lJSRJFZV6EEJg5cya6du2KsLAwANC99xUdl2vXrunaWFpawtnZuVwbHruaWb16NY4dO4bDhw+Xu4/HRlpXr17FN998g5kzZ+J///sfDh06hOeffx5WVlZ44okneHwk9PLLLyMzMxMhISFQKBRQq9V47733MHLkSAD826kqJkD1TCaT6f1bCFFuG9WNqVOn4tSpU9izZ0+5++7nuPDY1UxcXBymT5+OLVu2wNrautJ2PDbS0Gg0aNu2LebNmwcAaN26Nc6cOYNvvvkGTzzxhK4dj0/9W7NmDZYvX46VK1eiefPmOHHiBGbMmAFvb288+eSTunY8NnfHS2D1xM3NDQqFolxmnZKSUi5Lp9o3bdo0bNy4Edu3b4evr69uu5eXFwDc9bh4eXmhqKgI6enplbah6jt69ChSUlIQEREBpVIJpVKJnTt34osvvoBSqdS9tzw20mjQoAGaNWumty00NBTXr18HwL8dKb344ot45ZVXMGLECISHh2Ps2LF44YUXMH/+fAA8NlXFBKieWFpaIiIiAlFRUXrbo6Ki0LlzZ4miMn1CCEydOhVr167Ftm3bEBQUpHd/UFAQvLy89I5LUVERdu7cqTsuERERsLCw0GuTmJiI6OhoHrsa6N27N06fPo0TJ07obm3btsXo0aNx4sQJNGzYkMdGQl26dCk3ZcTFixcREBAAgH87UsrLy4Ncrv/1rVAodMPgeWyqSKLia7OkHQb/ww8/iLNnz4oZM2YIOzs7ERsbK3VoJmvy5MlCpVKJHTt2iMTERN0tLy9P1+b9998XKpVKrF27Vpw+fVqMHDmywuGivr6+YuvWreLYsWPigQceMKvhovXl9lFgQvDYSOnQoUNCqVSK9957T1y6dEmsWLFC2NraiuXLl+va8PhI48knnxQ+Pj66YfBr164Vbm5u4qWXXtK14bG5NyZA9ezrr78WAQEBwtLSUrRp00Y3HJvqBoAKb0uWLNG10Wg04s033xReXl7CyspKdO/eXZw+fVrvefLz88XUqVOFi4uLsLGxEQMHDhTXr1+v570xfXcmQDw20tq0aZMICwsTVlZWIiQkRCxatEjvfh4faWRlZYnp06cLf39/YW1tLRo2bCheffVVUVhYqGvDY3NvMiGEkLIHioiIiKi+sQaIiIiIzA4TICIiIjI7TICIiIjI7DABIiIiIrPDBIiIiIjMDhMgIiIiMjtMgIiIiMjsMAEiIiIis8MEiIgMyty5c9GqVSvJXv/111/HpEmT6uz5U1JS4O7ujhs3btTZaxDRvXEmaCKqNzKZ7K73P/nkk/jqq69QWFgIV1fXeorqP8nJyQgODsapU6cQGBhYZ68zc+ZMZGVlYfHixXX2GkR0d0yAiKjeJCUl6f5/zZo1eOONN/RWHLexsYFKpZIiNADAvHnzsHPnTvzzzz91+jqnT59G+/btkZCQAGdn5zp9LSKqGC+BEVG98fLy0t1UKhVkMlm5bXdeAhs3bhyGDBmCefPmwdPTE05OTnjrrbdQUlKCF198ES4uLvD19cWPP/6o91o3btzA8OHD4ezsDFdXVwwePBixsbF3jW/16tUYNGiQ3raePXti2rRpmDFjBpydneHp6YlFixYhNzcXTz31FBwcHNCoUSP8/fffusekp6dj9OjRcHd3h42NDYKDg7FkyRLd/eHh4fDy8sK6devu/80kohphAkREBm/btm1ISEjArl278Omnn2Lu3LkYOHAgnJ2dcfDgQTz77LN49tlnERcXBwDIy8tDr169YG9vj127dmHPnj2wt7dH//79UVRUVOFrpKenIzo6Gm3bti1339KlS+Hm5oZDhw5h2rRpmDx5Mh5//HF07twZx44dQ79+/TB27Fjk5eUBKK0jOnv2LP7++2+cO3cO33zzDdzc3PSes3379ti9e3ctv1NEVFVMgIjI4Lm4uOCLL75A06ZNMX78eDRt2hR5eXn43//+h+DgYMyZMweWlpbYu3cvgNKeHLlcjsWLFyM8PByhoaFYsmQJrl+/jh07dlT4GteuXYMQAt7e3uXua9myJV577TXda9nY2MDNzQ0TJ05EcHAw3njjDaSlpeHUqVMAgOvXr6N169Zo27YtAgMD0adPHzz88MN6z+nj43PPHikiqjtKqQMgIrqX5s2bQy7/7/eap6cnwsLCdP9WKBRwdXVFSkoKAODo0aO4fPkyHBwc9J6noKAAV65cqfA18vPzAQDW1tbl7mvRokW51woPD9eLB4Du9SdPnozHHnsMx44dQ2RkJIYMGYLOnTvrPaeNjY2ux4iI6h8TICIyeBYWFnr/lslkFW7TaDQAAI1Gg4iICKxYsaLcc7m7u1f4GtpLVOnp6eXa3Ov1taPbtK8/YMAAXLt2DX/++Se2bt2K3r17Y8qUKfj44491j7l161alsRBR3eMlMCIyOW3atMGlS5fg4eGBxo0b690qG2XWqFEjODo64uzZs7USg7u7O8aNG4fly5djwYIFWLRokd790dHRaN26da28FhFVHxMgIjI5o0ePhpubGwYPHozdu3cjJiYGO3fuxPTp0xEfH1/hY+RyOfr06YM9e/bU+PXfeOMNbNiwAZcvX8aZM2fwxx9/IDQ0VHd/Xl4ejh49isjIyBq/FhHdHyZARGRybG1tsWvXLvj7++PRRx9FaGgoxo8fj/z8fDg6Olb6uEmTJmH16tW6S1n3y9LSEnPmzEGLFi3QvXt3KBQKrF69Wnf/hg0b4O/vj27dutXodYjo/nEiRCKiMkIIdOzYETNmzMDIkSPr7HXat2+PGTNmYNSoUXX2GkR0d+wBIiIqI5PJsGjRIpSUlNTZa6SkpGDo0KF1mmAR0b2xB4iIiIjMDnuAiIiIyOwwASIiIiKzwwSIiIiIzA4TICIiIjI7TICIiIjI7DABIiIiIrPDBIiIiIjMDhMgIiIiMjtMgIiIiMjs/B95kto68jh0iQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "do0d(lockin1.ch1_datatrace, do_plot=True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Measurements using trigger" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lockin1.ch1_display('R_V')\n", + "lockin1.ratio_mode('none')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to set up the lock-in to use the trigger" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "lockin1.buffer_SR(\"Trigger\")\n", + "lockin1.buffer_trig_mode.set('ON')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to connect the data points stored in the buffer to the corresponding values of the sweep parameter for which the data was taken,\n", + "i.e we need to give the set points.\n", + "For this purpose the driver has the convinence function set_sweep_parameters, that generates the set point with units and labels corresponding to the independent parameter here frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [], + "source": [ + "lockin1.set_sweep_parameters(lockin1.frequency, 25000, 35000, 101)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To fill the buffer we iterate through values of the sweep_setpoints and change the value of the frequency followed by a trigger statement. To get and plot the data we use the do0d." + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "lockin1.buffer_reset()\n", + "for v in lockin1.sweep_setpoints.get():\n", + " lockin1.frequency(v)\n", + " sleep(0.05)\n", + " lockin1.send_trigger()" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting experimental run with id: 558. Using 'qcodes.dataset.do0d'\n" + ] + }, + { + "data": { + "text/plain": [ + "(results #558@C:\\Users\\Farzad\\experiments.db\n", + " -------------------------------------------\n", + " lockin_sweep_setpoints - array\n", + " lockin_ch1_datatrace - array,\n", + " (,),\n", + " (None,))" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHFCAYAAAD2eiPWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo6klEQVR4nO3dd3xT5eIG8CdJ0zSddA9aWkbZCDJkQ9mgDPGHICiCICrDKyJyRS8CiqAo4woXxKsyRAQXuBHwshEpS6bMslsKpXukGe/vjzanTZu2SVfoyfP9fPKBnpyevDlNTp68UyGEECAiIiKSMaWjC0BERERU1Rh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHjKsGbNGigUCunm4uKC0NBQPPHEE7hw4YKjiwcASElJgVKpxG+//QYA2Lx5MzQaDXQ6ncV+u3btsnguhW8HDx602Hfs2LFW92vcuHGxx09ISMCUKVNQr149aLVaREZGYvz48bh27Vq5n1NUVFSJZY2JiSn3catLTEzMfV/OrKwszJkzB7t27bL5d65fv45JkyahYcOG0Gq18PPzQ4sWLTBhwgRcv35d2m/OnDkWfzO1Wo06depgwoQJSEhIKHZcnU6H999/H82bN4eHhweCg4MxYMAAHDhwoNTy7NixQ3qMu3fvlrrvU089BYVCgYEDB9r8fKtKec59Ueb38zfffFN5BbOR+bp4+PDhan/swsaNG4f+/fs7tAxUMvN1oDxmzZqF1q1bw2QyVVp5XCrtSDK3evVqNG7cGDk5Odi/fz/eeecd7Ny5E3///Td8fX0dWrbDhw9DCIF27doBAA4ePIiWLVtCo9FY3X/+/Pno0aOHxbbmzZsX20+r1eJ///tfsW2F6XQ6dOvWDcnJyZg7dy6aNm2Kc+fOYfbs2fjtt99w9uxZeHl5let5de7cGR988EGx7d7e3uU6XnVasWKFo4tQpqysLMydOxcAbApnN27cQOvWrVGrVi288soraNSoEVJTU3HmzBl89dVXuHz5MiIiIix+Z+vWrfDx8UFGRga2bduGRYsW4cCBAzh+/DjUarW034QJE/DFF19g5syZ6NmzJ+7du4d3330X3bt3x/79+/HQQw8VK09GRgYmTJiAsLAw3Lp1q9Sy//zzz9iyZct989qx99xTcceOHcPatWvx559/OrooVAWmT5+O5cuXY+3atXjmmWcq5ZgMPDZq3rw52rZtCyDvAmU0GjF79mxs2bKl0v4Y5RUbG4uGDRvCz88PQF7gsfYBYRYdHY0OHTqUeVylUlnmfnv37sWFCxfwySefYPz48QDyzo+3tzdGjRqFHTt2YOjQoXY8mwK1atWyqZz3k6ysLLi7u6Np06aOLkql++9//4u7d+/i0KFDqFu3rrT90Ucfxeuvv271m1ibNm0QEBAAAOjduzfu3r2L1atXY9++fVLo1ul02LBhA0aNGoV58+ZJv9u5c2eEhYXhiy++sPp6fu211+Dr64tHHnnE4veKSk1NxfPPP4+3334b//73v8v9/On+8u677+Khhx6SrsskLz4+Pnjqqafw7rvvSi0OFcUmrXIyv8lu374tbSupGWPs2LGIioqSfr5y5QoUCgU++OADLF68GHXr1oWnpyc6duxYrGnJFrGxsdIHgtFoxJEjR0oNPJXJ/C3dx8fHYnutWrUAAG5ublX22Dk5OXjwwQfRoEEDpKamStsTEhIQEhIiBVMg72/g6emJ06dPo1evXvDw8EBgYCCmTJmCrKwsi+MKIbBixQq0atUKWq0Wvr6+GDZsGC5fvmyxX0xMDJo3b449e/agU6dOcHd3x7hx46T7Cr8WzH/z999/H++99x6ioqKg1WoRExOD8+fPQ6/X47XXXkNYWBh8fHwwdOhQJCYmFnvOmzZtQseOHeHh4QFPT0/069cPx44ds9jH/FwvXryIhx9+GJ6enoiIiMArr7wiNXNeuXIFgYGBAIC5c+dKzUJjx44t8XwnJSVBqVQiKCjI6v1KZdmXE2vvG6VSCaVSWew15O3tDaVSafU1tHfvXnz88cf45JNPoFKpSn3MV155BaGhofjHP/5RZvlKYv5bx8bGomvXrnB3d0e9evXw7rvvFgt6165dw1NPPYWgoCBoNBo0adIEixYtkvaz5dxfuHABo0aNsjjGf/7zH6tly8nJwbRp0xASEgKtVovu3bsXe00AwA8//ICOHTvC3d0dXl5e6NOnD/74449i++3btw+9evWCl5cX3N3d0alTJ/z8889lnqP4+Hi0adMG0dHRVd7cf/v2bWzevBmjR4+22G4ymTBv3jw0atQIWq0WtWrVwgMPPFAs6NryHM3Ndv/73/8wYcIE+Pv7w9vbG08//TQyMzORkJCA4cOHo1atWggNDcX06dOh1+stjpGbm4t58+ahcePG0Gg0CAwMxDPPPIM7d+7Y9Xzv3LmD5557DhEREdJxOnfujB07dkj7bN++HUOGDEF4eDjc3NzQoEEDPP/888Waes3NTCdOnMDjjz8OHx8f+Pn5Ydq0aTAYDDh37hz69+8PLy8vREVFYeHChRa/b25KXb9+vU2vO2tsuY4BwOjRo3H+/Hns3LnTrvNVIkGlWr16tQAgYmNjLbYvX75cABDffvuttK179+6ie/fuxY4xZswYERkZKf0cFxcnAIioqCjRv39/sWXLFrFlyxbRokUL4evrK1JSUsosV/fu3QWAMm+Fy7Nz504BQAQFBQmVSiW8vLxE3759xd69e62WWalUiuDgYKFUKkXt2rXF5MmTRVJSksV+er1etGnTRjRr1kwcOnRIpKeniyNHjohWrVqJ1q1bi9zc3DKfizWRkZHi4YcfFnq9vtjNZDJJ+50/f154eXmJxx57TAghhNFoFD179hRBQUHi1q1bFs/H1dVV1KlTR7zzzjti27ZtYs6cOcLFxUUMHDjQ4rEnTJgg1Gq1eOWVV8TWrVvFhg0bROPGjUVwcLBISEiw+Bv4+fmJiIgIsWzZMrFz506xe/du6b7C5978N4+MjBSDBg0SP/30k1i/fr0IDg4WDRs2FKNHjxbjxo0Tv/76q/joo4+Ep6enGDRokEW53nnnHaFQKMS4cePETz/9JL777jvRsWNH4eHhIU6fPl3suTZp0kR88MEHYseOHeLNN98UCoVCzJ07VwghRE5Ojti6dasAIMaPHy/++OMP8ccff4iLFy+W+DdZv369ACD69u0rtm7dKlJTU0vcd/bs2QKAuHPnjsX26dOnCwDiyJEjFttfeukl4enpKTZv3ixSU1NFXFycGDlypPD19RUXLlyw2DcrK0tER0eLV199tdTHEkKI7du3C7VaLY4fPy6EyHtdPfLIIyWWuyTdu3cX/v7+Ijo6Wnz00Udi+/btYtKkSQKAWLt2rbRfYmKiqF27tggMDBQfffSR2Lp1q5gyZYoAICZOnCiEKPvcnz59Wvj4+IgWLVqIdevWiW3btolXXnlFKJVKMWfOHOmxzO/niIgIMWTIEPHjjz+K9evXiwYNGghvb29x6dIlad8vvvhC+ttt2bJFbNq0SbRp00a4urpavP937dol1Gq1aNOmjdi0aZPYsmWL6Nu3r1AoFGLjxo3SfkWviydPnhQRERGiY8eOVv8OlW3dunUCgDhz5ozF9gULFgiVSiVmz54tfv/9d7F161axdOlSi/Nm73OsW7eueOWVV8S2bdvEe++9J1QqlRg5cqRo3bq1mDdvnti+fbv45z//KQCIRYsWSb9vNBpF//79hYeHh5g7d67Yvn27+OSTT0Tt2rVF06ZNRVZWls3Pt1+/fiIwMFB8/PHHYteuXWLLli3izTfftCjvypUrxYIFC8QPP/wgdu/eLdauXStatmwpGjVqZHEdNr9fGjVqJN5++22xfft2MWPGDAFATJkyRTRu3Fh8+OGHYvv27eKZZ54p9jlnz+vO/FiF2XodE0IIg8EgPD09xbRp02w+V6Vh4CmD+UV/8OBBodfrRXp6uti6dasICQkR3bp1E3q9XtrX3sDTokULYTAYpO2HDh0SAMSXX35ZZrkuXLggjh07Jn0I/frrr+LYsWNi0qRJom7duuLYsWPi2LFjFh8WR48eFS+99JLYvHmz2LNnj/jss89EkyZNhEqlElu3brU4/uLFi8XixYvFtm3bxLZt28Qbb7wh3N3dRePGjUV6errFvmlpaWLQoEEWQSsmJqZYOLJHZGRkiSHu7bfftth306ZNAoBYunSpePPNN4VSqRTbtm2z2GfMmDECgPj3v/9tsf2dd94RAMS+ffuEEEL88ccfxS5cQghx/fp1odVqxYwZM6Rt5tD5+++/Fyt/SYGnZcuWwmg0StuXLl0qAIjBgwdb/P7UqVMFAClUXLt2Tbi4uIgXX3zRYr/09HQREhIihg8fXuy5fvXVVxb7Pvzww6JRo0bSz3fu3BEAxOzZs4uV3xqTySSef/55oVQqBQChUChEkyZNxMsvvyzi4uIs9jVf6BISEoRerxfJycniq6++Eh4eHmLkyJFWj23+25n/znXq1BHHjh0rtu8rr7wi6tWrJ31glBR40tPTRVRUlJg5c6a0rSKBB4D4888/LbY3bdpU9OvXT/r5tddes7rfxIkThUKhEOfOnRNClH7u+/XrJ8LDw4sFyilTpgg3Nzdx7949IUTBB0/r1q0tvgRcuXJFqNVq8eyzzwoh8j54w8LCRIsWLSxee+np6SIoKEh06tRJ2tahQwcRFBRk8R43GAyiefPmIjw8XHqcwoFn+/btwtvbWwwbNkxkZ2eXfTIrwcSJE4VWq7V43kIIMXDgQNGqVatSf9fe51j0Pffoo48KAGLx4sUW281f8sy+/PLLYmFBCCFiY2MFALFixQqbn6+np6eYOnWqzfubTCah1+vF1atXBQDx/fffS/eZ3y9Fr3GtWrUSAMR3330nbdPr9SIwMFD6QimE7a+7wo9lZs91zKxz586iffv2Nj/30jDwlMH8oi96a9KkiUhOTrbY197A89prr1nsl5OTIwCId9991+byLV26VNSuXVv6+eGHHxZjx461+feTk5NFeHi4eOCBB8rc95tvvin2Rs/NzRUDBgwQERER4r///a/Ys2ePWLt2rYiOjhatW7e2qbbKmsjISNGlSxcRGxtb7Fa45sZs4sSJQq1WC6VSKf71r38Vu98cAu7evWux3fy3MIeoN954QygUCnH79u1iNUsdOnQQDz30kPS73bt3F76+vlbLX1LgKfzhK4QQv/32mwAgVq1aZbF91apVAoA4efKkEEKI//73v9IHTNFyjRgxQgQFBVk8V4VCUezD57XXXhNubm7Sz/YGHrMrV66IFStWiHHjxokGDRoIAMLd3V3s2rVL2sd8oSt669atm9Vav7ffflu4u7uLt956S+zcuVN8//33ok+fPiIgIEAcPXpU2u/PP/8UKpVKbN++vdhjFQ08kydPFtHR0RbnoSKBJyQkpNj2J554QjRu3Fj6+aGHHhJNmzYttt+ff/4pAIiVK1cKIUo+99nZ2dIHQtG/8y+//CIAiF9++UUIUfDB88EHH1gtb/369YUQQpw5c0YAEAsXLiy238SJE4VSqRSZmZkiIyNDKBQKMWnSpGL7vffeewKAOHv2rBCi4Lo4ZcoUoVarxbRp04qFj6o0ZMgQUadOnWLb33rrLaFQKMTEiROt1kKW5zn+9ttvFvvNnDlTAJDCq9nIkSOFv7+/9POTTz4patWqJXJzc4v9LUv6cC9Jz549Ra1atcTbb78t/vjjD6vvodu3b4vnn39ehIeHW3xxKPqZYn6/WCu/tetGx44dRZs2baSfbX3dFX4sM3uuY2ZDhw4V4eHhNpylsrHTso3WrVuHJk2aID09HZs2bcKqVaswcuRI/Prrr+U+pr+/v8XP5lFV2dnZpf6eyWSS+gPs3r0bXbt2hcFggMlkwv79+/HBBx/AYDBAoVCU2b+hVq1aGDhwID766CNkZ2cXG4VV2NChQ+Hh4WHRz+jTTz/Fr7/+itjYWKl/RteuXdGlSxfUr18fS5cuxezZs0stQ0l8fHxs7pA4btw4rFy5Eq6uriX21XBxcSl2zkNCQgDk9U8B8voGCCEQHBxs9Rj16tWz+Dk0NNSm8pmZO5abubq6lro9JydHKhcAaSReUUX7z7i7uxfr+6LRaKTjVURkZCQmTpwo/fzVV19h5MiRePXVV3Ho0CGLfXfs2AEfHx/cu3cPH3/8Mb799lu8+OKL+Oijj6R9zp49izfffBMLFy7E9OnTpe0DBgxA06ZNMW3aNKkNf9y4cXjsscfQtm1bpKSkACg4R2lpadBoNPDy8sKhQ4ewYsUKfPfdd8jJyZH2MZlMMBgMSElJgVarLXEkozVFXztA3jkt/H5NSkqy6K9nFhYWJt1fmqSkJBgMBixbtgzLli2zuk/RPhnm13DRbX/99ZfFY1p7rYaFhcFkMiE5ORki7wtwiftZK//GjRuh1Wrx7LPPVkqnUltlZ2db7ds1c+ZMeHh4YP369fjoo4+gUqnQrVs3vPfee2jbtq30PO15jva8Zwu/v27fvo2UlBRp/6LKmkahsE2bNmHevHn45JNPMGvWLHh6emLo0KFYuHAhQkJCYDKZ0LdvX9y6dQuzZs1CixYt4OHhAZPJhA4dOlj9TLFWfmvXDVdXV6SlpRX7/bJed9bYex0D8vqBlvWZaCsGHhs1adJE+vDt0aMHjEYjPvnkE3zzzTcYNmwYgLw/TOHOs2b2vLBtMW7cOKxdu9Zi28aNG6X/T5gwARMmTEBkZCSuXLlS5vGEEABg0wVLCGHxojx+/DhUKhVat25tsV+9evXg7++PU6dOlXnMisrMzMTo0aPRsGFD3L59G88++yy+//77YvsZDAYkJSVZfHCZ54QxbwsICIBCocDevXutfhgW3VZdF3nzSKdvvvkGkZGR1fKYtho+fDgWLFhg9W/dsmVLqex9+vRBv3798PHHH2P8+PHSRe+vv/6ymFbBTK1Wo2XLlti9e7e07fTp0zh9+jS+/vrrYo9Vv359tGzZEsePH8eZM2cghLA6QvD69evw9fXFkiVLMHXq1Io89WL8/f0RHx9fbLt52Lz5XJTE19cXKpUKo0ePxuTJk63uU3iEHACr8xolJCRIr2nzvyWVS6lUwtfXV3pv21P+L774ArNmzUL37t2xbds2tGrVqtTnV1kCAgJw9OjRYttdXFwwbdo0TJs2DSkpKdixYwdef/119OvXT/q72/scK1JGf39/bN261er99kzXERAQgKVLl2Lp0qW4du0afvjhB7z22mtITEzE1q1bcerUKfz1119Ys2YNxowZI/3exYsXK/w8SlLW686a8lzH7t27V2l/E47SKqeFCxfC19cXb775plTbEhUVhfPnz1tM+JeUlFTm5Gn2mjNnDmJjY7F69WoAkGpYnnvuOURHRyM2NhaxsbH48ccfyzxWcnIyfvrpJ7Rq1arMEVXffPMNsrKyLIaKh4WFwWg0IjY21mLf8+fPIykpCeHh4eV4hvZ54YUXcO3aNXz33Xf49NNP8cMPP2DJkiVW9/3iiy8sft6wYQOAgrlQBg4cCCEEbt68ibZt2xa7tWjRokqfS0n69esHFxcXXLp0yWq5yjM019YaRTNrHxJA3nw4169fl74hl0ShUOA///kPVCoV/vWvf0nbzb9XdISiTqfD0aNHLV5DO3fuLHYzX+C3bNmCTz75BADQv39/q/sGBwejQ4cO2Llzp/RFpTL16tULZ86cKfZhvG7dOigUCmkofknn3t3dHT169MCxY8fwwAMPWP07F/1A+fLLL6UvLQBw9epVHDhwQHpNN2rUCLVr18aGDRss9svMzMS3334rjdzy8PBA+/bt8d1331mUy2QyYf369QgPD0fDhg0tHtvPzw87duxAkyZN0KNHj3KNMi2Pxo0bIykpyeoXTLNatWph2LBhmDx5Mu7du4crV66U6zmW18CBA5GUlASj0Wj179ioUaNyHbdOnTqYMmUK+vTpI73OzF+8in4hW7VqVcWeRCnKet1ZU57r2OXLlyttmg/W8JSTr68vZs6ciRkzZmDDhg146qmnMHr0aKxatQpPPfUUJkyYgKSkJCxcuLDSJzuLiopCVFQUfvnlFzRv3lyaaXTq1KkYMmRIiR9+o0aNQp06ddC2bVsEBATgwoULWLRoEW7fvo01a9ZI+129ehWjRo3CE088gQYNGkChUGD37t1YunQpmjVrhmeffVba95lnnsGSJUvwf//3f/jXv/6FRo0a4fLly5g/fz48PDzwwgsvSPteuXIFdevWxZgxYyweryQpKSlWL6AajQYPPvggAOCTTz7B+vXrsXr1ajRr1gzNmjXDlClT8M9//hOdO3e2GJ7v6uqKRYsWISMjA+3atcOBAwcwb948DBgwAF26dAGQN/fLc889h2eeeQaHDx9Gt27d4OHhgfj4eOzbtw8tWrSwaM6pLlFRUXjrrbfwxhtv4PLly+jfvz98fX1x+/ZtHDp0CB4eHtJEdrby8vJCZGQkvv/+e/Tq1Qt+fn4ICAiw2iQDAO+88w7279+PESNGSEP24+LisHz5ciQlJeH9998v8zGjo6Px3HPPYcWKFdi3bx+6dOmCLl26oF27dpgzZw6ysrLQrVs3pKamYtmyZYiLi8Pnn38u/b61i6l5tuLOnTtL3wRDQkKsVrm7ubnB39+/yib7e/nll7Fu3To88sgjeOuttxAZGYmff/4ZK1aswMSJE6UP09LO/b///W906dIFXbt2xcSJExEVFYX09HRcvHgRP/74Y7HJQBMTEzF06FBMmDABqampmD17Ntzc3DBz5kwAec0ECxcuxJNPPomBAwfi+eefl2a2TklJwbvvvisda8GCBejTpw969OiB6dOnw9XVFStWrMCpU6fw5ZdfWq3R9PLywtatW/HYY4+hT58++OGHH4pNbFrZYmJiIITAn3/+ib59+0rbBw0aJM2ZFhgYiKtXr2Lp0qWIjIxEdHR0uZ9jeTzxxBP44osv8PDDD+Oll17CQw89BLVajRs3bmDnzp0YMmSITXOUpaamokePHhg1ahQaN24MLy8vxMbGSuccyAuA9evXx2uvvQYhBPz8/PDjjz9i+/btlfJcrCnrdWeNvdexpKQkXLhwAS+++GLlFLpSegLJWEnD0oXI62BYp04dER0dLY22Wrt2rWjSpIlwc3MTTZs2FZs2bSqx0/L7779f7JiwoxNp69atpU6wd+7cEUqlUhoWbc2CBQtEq1athI+Pj1CpVCIwMFAMHTpUHDp0yGK/e/fuiaFDh4qoqCih1WqFq6uriI6OFjNmzLDaCfnChQti9OjRIioqSmg0GlGnTh0xYsSIYkMMT548abWztjWljdIyd9I+ceKE0Gq1YsyYMRa/m5OTI9q0aSOioqKkjuVjxowRHh4e4sSJEyImJkZotVrh5+cnJk6cKDIyMoo9/meffSbat28vPDw8hFarFfXr1xdPP/20OHz4sLRP9+7dRbNmzayWv6ROy0X/5uYOgF9//bXF9pJed1u2bBE9evQQ3t7eQqPRiMjISDFs2DCxY8cOaR/zcy3K2hDRHTt2iAcffFBoNBoBoNi5LOzgwYNi8uTJomXLlsLPz096DfXv31/qSFv0sawNUb59+7bw9PQUPXr0kLalpKSIN954QzRp0kS4u7uLoKAgERMTU+y41pT2WEVVpNOytb910fe2EEJcvXpVjBo1Svj7+wu1Wi0aNWok3n//fYsRUkKUfu7j4uLEuHHjRO3atYVarRaBgYGiU6dOYt68edI+5tfO559/Lv7xj3+IwMBAodFoRNeuXS1ep2ZbtmwR7du3F25ubsLDw0P06tVL7N+/v9h+e/fuFT179pRe+x06dBA//vijxT7WXp86nU783//9n3BzcxM///xzqeezooxGo4iKiirW+XjRokWiU6dOIiAgQJqGYvz48eLKlSsW+5X3OQpR8uvN2vtOr9eLDz74QLRs2VK4ubkJT09P0bhxY/H8888Xm26hJDk5OeKFF14QDzzwgPD29hZarVY0atRIzJ49W2RmZkr7nTlzRvTp00d4eXkJX19f8fjjj4tr164V+0yxp/xCFH/t2/O6s3bNEcK265gQQnz66adCrVZbTAdSEQohCtVJEVWhFStWYMaMGbh06VKJnYKrytixY/HNN98gIyOjWh+XiKrGokWL8M477+DmzZulDragyrVr1y706NEDX3/9dZU0CxfWtWtX1KlTp1hXhPJiHx6qNjt37sQ//vGPag87RCQ/kydPho+PT4kzUFPNtmfPHsTGxuLtt9+utGOyDw9VG2sja4gcyWg0orRKblumdqDihBDSsi4lUSgUFTr3bm5u+Pzzz21ezuB+VHiKkZK4uDjnx3RSUhLWrVtXbCqQimCTFhE5rZiYGIth70XZOrUDWTI3e5QmMjISV69eLfH+7t27Sx3S5WrOnDllDjaIi4srcSAB2YeBh4ic1rlz55Cenl7i/RqNxmFTEdRk6enpOHfuXKn7ZGZmwsPDo8T7vby8yj10u6a4deuWNP9PSR544IESJy8k+zDwEBERkeyx0zIRERHJnnP2hirCZDLh1q1b8PLyqtb1YIiIiKj8hBBIT09HWFiY1bW4CmPgQV47akREhKOLQUREROVw/fr1MpcyYuBBwSJu169fr/RlIIiIiKhqpKWlISIiwqbFWBl4ULDwmre3NwMPERFRDWNLdxR2WiYiIiLZY+AhIiIi2WPgISIiItlj4CEiIiLZY+AhIiIi2WPgISIiItlj4CEiIiLZY+AhIiIi2WPgISIiItlj4CEiIiLZY+AhIiIi2WPgISIiItlj4CEipyKEQI7e6OhiEFE142rpRCR7KVm5OHApCXsv3MGe83dxMyUbC4c9gOFtIxxdNCKqJgw8RCRr07/+C98evQEhLLcfuZLMwEPkRBh4iEi2TCaBb47cAAA0CPJEt+hAJGflYvOxm8g1mhxcOiKqTuzDQ0SyZTAVVOt8+0InvDmoKVpF1AIA5BoYeIicCQMPEcmWqVA7lkqlAACoVXmXPR0DD5FTYeAhItkqXMPjoswLPK4ueZc9NmkRORcGHiKSLaOxIPAoFUUCj4FD04mcCQMPEcmWUVip4VGZAw9reIicCQMPEcmWwZQXahQKQJkfeDRs0iJySgw8RCRbxvw+PObaHaBwkxYDD5EzYeAhItkyBx5z/x2AgYfIWTHwEJFsWa3hYR8eIqfEwENEsmUelq6y1qRlFFZ/h4jkiYGHiGTLWFrg4bB0IqfCwENEslUQeAoudVKTFkdpETkVBh4iki1rfXg07LRM5JQYeIhItkrrw2MSgIG1PEROg4GHiGSrtD48AJu1iJwJAw8RyVZpw9IBNmsRORMGHiKSLfPSEspCgUelVMA8DyEDD5HzYOAhItnKzzsWNTwKhUKq5dEx8BA5DQYeIpItcw1P4T48QOHJBxl4iJwFAw8RyZa1TssAh6YTOSMGHiKSrZICD9fTInI+DDxEJFvWRmkBbNIickYMPEQkW9YmHgQKr6fFwEPkLBh4iEi2TIKBh4jyMPAQkWwZjMUXDwW4gCiRM2LgISLZKrMPD2t4iJwGAw8RyZYxv0lLqSgaeFQAGHiInAkDDxHJlqGkGh42aRE5HQYeIpItY36gUak48SCRs2PgISLZkoalF2vSYuAhcjYMPEQkW+Zh6WzSIiIGHiKSrbImHuRq6UTOg4GHiGTLaLQeeNRcS4vI6TDwEJFsGTnTMhHlY+AhItkqe/FQY7WXiYgcg4GHiGTL3IdHqeSwdCJn59DAs2DBArRr1w5eXl4ICgrCo48+inPnzlnsI4TAnDlzEBYWBq1Wi5iYGJw+fdpiH51OhxdffBEBAQHw8PDA4MGDcePGjep8KkR0HzKVNfEgAw+R03Bo4Nm9ezcmT56MgwcPYvv27TAYDOjbty8yMzOlfRYuXIjFixdj+fLliI2NRUhICPr06YP09HRpn6lTp2Lz5s3YuHEj9u3bh4yMDAwcOBBGVlcTObWCUVpFFg914bB0Imfj4sgH37p1q8XPq1evRlBQEI4cOYJu3bpBCIGlS5fijTfewGOPPQYAWLt2LYKDg7FhwwY8//zzSE1NxaefforPP/8cvXv3BgCsX78eERER2LFjB/r161ftz4uI7g9cPJSIzO6rPjypqakAAD8/PwBAXFwcEhIS0LdvX2kfjUaD7t2748CBAwCAI0eOQK/XW+wTFhaG5s2bS/sUpdPpkJaWZnEjIvkxltCHp2DiQVHtZSIix7hvAo8QAtOmTUOXLl3QvHlzAEBCQgIAIDg42GLf4OBg6b6EhAS4urrC19e3xH2KWrBgAXx8fKRbREREZT8dIroPlLh4qFTDw2ZvImdx3wSeKVOm4MSJE/jyyy+L3acosg6OEKLYtqJK22fmzJlITU2VbtevXy9/wYnovmU05S8eyiYtIqd3XwSeF198ET/88AN27tyJ8PBwaXtISAgAFKupSUxMlGp9QkJCkJubi+Tk5BL3KUqj0cDb29viRkTyY+6TXGLgYadlIqfh0MAjhMCUKVPw3Xff4X//+x/q1q1rcX/dunUREhKC7du3S9tyc3Oxe/dudOrUCQDQpk0bqNVqi33i4+Nx6tQpaR8ick7mGp6iTVoaDksncjoOHaU1efJkbNiwAd9//z28vLykmhwfHx9otVooFApMnToV8+fPR3R0NKKjozF//ny4u7tj1KhR0r7jx4/HK6+8An9/f/j5+WH69Olo0aKFNGqLiJxTWYuHMvAQOQ+HBp6VK1cCAGJiYiy2r169GmPHjgUAzJgxA9nZ2Zg0aRKSk5PRvn17bNu2DV5eXtL+S5YsgYuLC4YPH47s7Gz06tULa9asgUqlqq6nQkT3IRPX0iKifA4NPEKUPSRUoVBgzpw5mDNnTon7uLm5YdmyZVi2bFkllo6IajpDCaulsw8PkfO5LzotExFVhZImHlTn9+HRsYaHyGkw8BCRbEmLhyq4lhaRs2PgISLZMvfhcVGVsFq60WRT0zoR1XwMPEQkWwV9eKwvHipEQS0QEckbAw8RyZa5D4+qaJOWS8Glj81aRM6BgYeIZMtY0rB0FQMPkbNh4CEi2Spp8VAXlRLmTRyaTuQcGHiISLakxUNVxRcS5uSDRM6FgYeIZEtaPFRhJfCoOPkgkTNh4CEi2Spp8VAAcHXJW3qGNTxEzoGBh4hkq6TFQ4FCc/Ew8BA5BQYeIpItUymBh+tpETkXBh4ikq3Sani4vASRc2HgISLZKlg8tPiljqO0iJwLAw8RyZY58FjJO1Lg4YrpRM6BgYeIZKu0Gh51/tw87MND5BwYeIhItkrtw8Nh6UROhYGHiGSr1FFa7LRM5FQYeIhItkpaSwsoPA+PsVrLRESOwcBDRLJl5Dw8RJSPgYeIZMtgXjyUTVpETo+Bh4hkSQiB/Aqe0mt4GHiInAIDDxHJkrk5Cyhp8dD8eXjYpEXkFBh4iEiWDIUCT2k1PHqDKHYfEckPAw8RyZJJlBF4zH14jBylReQMGHiISJZsreFhHx4i58DAQ0SyZDQW7sNT/FKnYeAhcioMPEQkS8ZCTVpWKng4Dw+Rk2HgISJZKjzpoELBeXiInB0DDxHJUmkLhwKFhqUz8BA5BQYeIpIlaeFQK7U7ADstEzkbBh4ikqXSFg4FALWKfXiInAkDDxHJktG8jpaKNTxExMBDRDJlrrgpqUlLw07LRE6FgYeIZKm0ldIBDksncjYMPEQkS8Yy+vCwSYvIuTDwEJEsmQOPkoGHiMDAQ0QyVWYND/vwEDkVBh4ikiVbJx5kHx4i58DAQ0SyVFDDY/0yVzjwiELrbhGRPDHwEJEsldWHR6NSAQCEKKgNIiL5YuAhIlmydZQWwH48RM6AgYeIZMnWPjwAAw+RM2DgISJZMpYReFRKhXQfOy4TyR8DDxHJUlmBB+DQdCJnwsBDRLJkXlqipD48QEGzlo6Bh0j2GHiISJZMouwaHjVreIicBgMPEcmSwVh24NFw8kEip8HAQ0SyVNawdIDraRE5EwYeIpIlY36TllLBTstExMBDRDIl1fCobKjhMRqrpUxE5DgMPEQkSwV9eEq+zLFJi8h5MPAQkSyZR2mV2odHxWHpRM6CgYeIZMm8tESpfXjya3j0Ri4eSiR3DDxEJEscpUVEhTHwEJEsSUtL2NJp2cBOy0Ryx8BDRLIkrZZeSpOWRsWJB4mcBQMPEcmSMX8trVIXD2WTFpHTYOAhIlkysA8PERXCwENEsmQylb2WljQsnU1aRLLHwENEsmSwJfCwhofIaTDwEJEs2TIsXc21tIichkMDz549ezBo0CCEhYVBoVBgy5YtFvePHTsWCoXC4tahQweLfXQ6HV588UUEBATAw8MDgwcPxo0bN6rxWRDR/cgceJSs4SEiODjwZGZmomXLlli+fHmJ+/Tv3x/x8fHS7ZdffrG4f+rUqdi8eTM2btyIffv2ISMjAwMHDoSRiwESOTVbang0LhyWTuQsXBz54AMGDMCAAQNK3Uej0SAkJMTqfampqfj000/x+eefo3fv3gCA9evXIyIiAjt27EC/fv0qvcxEVDMU9OHh4qFEVAP68OzatQtBQUFo2LAhJkyYgMTEROm+I0eOQK/Xo2/fvtK2sLAwNG/eHAcOHHBEcYnoPlEwSqvkfVzZh4fIaTi0hqcsAwYMwOOPP47IyEjExcVh1qxZ6NmzJ44cOQKNRoOEhAS4urrC19fX4veCg4ORkJBQ4nF1Oh10Op30c1paWpU9ByJyDLtqeNikRSR793XgGTFihPT/5s2bo23btoiMjMTPP/+Mxx57rMTfE0JAUcp08gsWLMDcuXMrtaxEdH+xZ/FQHWt4iGTvvm/SKiw0NBSRkZG4cOECACAkJAS5ublITk622C8xMRHBwcElHmfmzJlITU2VbtevX6/SchNR9TPaMfEgm7SI5K9GBZ6kpCRcv34doaGhAIA2bdpArVZj+/bt0j7x8fE4deoUOnXqVOJxNBoNvL29LW5EJC/2TDyoZ5MWkew5tEkrIyMDFy9elH6Oi4vD8ePH4efnBz8/P8yZMwf/93//h9DQUFy5cgWvv/46AgICMHToUACAj48Pxo8fj1deeQX+/v7w8/PD9OnT0aJFC2nUFhE5Jy4eSkSFOTTwHD58GD169JB+njZtGgBgzJgxWLlyJU6ePIl169YhJSUFoaGh6NGjBzZt2gQvLy/pd5YsWQIXFxcMHz4c2dnZ6NWrF9asWQOVSlXtz4eI7h/GvAoezsNDRAAcHHhiYmIghCjx/t9++63MY7i5uWHZsmVYtmxZZRaNiGo4m2p48r8YsYaHSP5qVB8eIiJbGYxcPJSICjDwEJEs2TMsnYGHSP4YeIhIloz5zeXKUubkkubhYR8eItlj4CEiWZJqeFS2zcNTWn9CIqr5GHiISJYK+vCUsrREoYW29EYGHiI5Y+AhIlky5dfYqGxo0gI4NJ1I7hh4iEiW7JlpGWDHZSK5Y+AhIlmypQ+PSqmQAhEDD5G8MfAQkSyZA09po7QALiBK5CwYeIhIlmyZhwcoNBeP0VjlZSIix2HgISJZMtiwtARQaC4e1vAQyRoDDxHJknnQVWl9eICCJi0OSyeSNwYeIpIlafHQMvrwaLi8BJFTYOAhIlmyZVg6wPW0iJwFAw8RyZJJ6rRc+mWOnZaJnAMDDxHJkrmGp4y8w2HpRE6CgYeIZMloZw0PR2kRyRsDDxHJklGwDw8RFXCx9xeuXLmCvXv34sqVK8jKykJgYCAefPBBdOzYEW5ublVRRiIiu5hMAvl5p+zAY27S4uKhRLJmc+DZsGEDPvzwQxw6dAhBQUGoXbs2tFot7t27h0uXLsHNzQ1PPvkk/vnPfyIyMrIqy0xEVCpz/x2g7MCjZg0PkVOwKfC0bt0aSqUSY8eOxVdffYU6depY3K/T6fDHH39g48aNaNu2LVasWIHHH3+8SgpMRFQWY6HAU9bSEhp2WiZyCjYFnrfffhuPPPJIifdrNBrExMQgJiYG8+bNQ1xcXKUVkIjIXub+OwD78BBRHpsCzyOPPII7d+4gMDCwzH0DAgIQEBBQ4YIREZWX0ViOwMM+PESyZvMordq1a2PYsGH49ddfIQTXnCGi+5d54VCg7KUlOA8PkXOwOfCsXbsWaWlpGDRoECIiIjBr1ixcunSpKstGRFQu5iYthQJQcrV0IoIdgWfkyJHYtm0b4uLiMGHCBHzxxRdo2LAhevTogS+++AI5OTlVWU4iIpsVTDpYetgB2KRF5CzsnngwIiICs2fPxuXLl7Ft2zbUrl0bzz33HEJDQzFp0qSqKCMRkV0MRtsmHQQKAo+eNTxEslahmZZ79eqF9evXY926dVAqlVi1alVllYuIqNxMwrZlJQBOPEjkLOyeadnsypUrWL16NdauXYsbN26gR48eGD9+fGWWjYioXKSFQ8uu4IGGw9KJnIJdgScnJwdff/01Vq9ejT179qB27doYO3YsnnnmGURFRVVREYmI7CP14VHZUMPDwEPkFGwOPM899xy++uor5OTkYMiQIfj555/Rt29fKMoY8klEVN3MgceePjxs0iKSN5sDz8GDBzF37lyMHj0afn5+VVkmIqIKkQKPDV/IXFUqAByWTiR3NgeeEydOlHp/fHw8Pv/8c8yYMaPChSIiqghDeWp4GHiIZM3uTsvjxo2zuv3q1as4dOgQAw8ROVxBHx4GHiLKY3fgSU5OtvjZaDTi8uXLOHv2LFasWFFpBSMiKi97mrTU+aGIfXiI5M3uwLN582ar29955x1s2bIFzz//fIULRURUEea1tGxp0uKwdCLnUKGJBwsbOXIkdu3aVVmHIyIqN/PaoTb14cnvtMzAQyRvlRZ4/vrrLzz44IOVdTgionKzp4aHw9KJnIPdTVrTpk0rti0hIQE//PADHnnkEYv7Fy9eXLHSERGVQ7kWD2UND5Gs2R14jh07ZnV7u3btkJiYiMTERADghIRE5DAclk5ERdkdeHbu3FkV5SAiqjQmewJPocVDhRD8skYkU5XWh4eI6H5RnhoeANAbRZWViYgcy6bA079/fxw4cKDM/dLT0/Hee+/hP//5T4ULRkRUXgV9eMq+xGkKBR52XCaSL5uatB5//HEMHz4cXl5eGDx4MNq2bYuwsDC4ubkhOTkZZ86cwb59+/DLL79g4MCBeP/996u63EREJbJr8dBCK6rnGkyApsqKRUQOZFPgGT9+PEaPHo1vvvkGmzZtwn//+1+kpKQAyOuc3LRpU/Tr1w9HjhxBo0aNqrK8RERlsifwKJUKqFUK6I0COXpjVReNiBzE5k7Lrq6uGDVqFEaNGgUASE1NRXZ2Nvz9/aFWq6usgERE9rKnDw8AuLu6IDVbj6xcBh4iubJ7lJaZj48PfHx8KrMsRESVwihsn4cHADxcVfmBx1CVxSIiB+IoLSKSHWN+52OljYFH65q3vARreIjki4GHiGTHYMdMywDgocmr7GYND5F8MfAQkeyYhL19ePJqeDJ1rOEhkiubA4/BwG8+RFQzSJ2WbZw12cOVNTxEcmdz4AkNDcX06dNx9uzZqiwPEVGFGfNnTHZR2VjDk9+kxRoeIvmyOfBMmzYNP/74I5o3b46OHTvi008/RUZGRlWWjYioXIx2Nml5SJ2WWcNDJFc2B56ZM2fi3Llz2LVrFxo3boypU6ciNDQUzzzzDPbv31+VZSQisovRziYt9/wmrUyO0iKSLbs7LXft2hWrV69GQkICli5diosXL6Jr165o1KgRFi5cWBVlJCKyS8HEg7Zd4jw0+TU8OtbwEMlVuUdpeXh4YPz48di7dy9+/PFH3L17FzNnzqzMshERlYvJZGcfHtbwEMleuQNPVlYWVq9ejW7dumHw4MHw9/fHO++8U5llIyIqF3MNj9LmJq28Gp5sBh4i2bJ7aYm9e/di9erV+Oabb2A0GjFs2DDMmzcP3bp1q4ryERHZzWjnxIPSPDzstEwkWzYHnvnz52PNmjW4dOkS2rZti/fffx8jR46Et7d3VZaPiMhuBlPe0hI2j9Iyz7TMYelEsmVz4FmyZAmeeuopjB8/Hs2bN6/KMhERVUj+Ulqs4SEiic2B59atW1Cr1TYfuEWLFvjll18QERFRroIREZWX0WTf4qEFa2mxhodIrmzutGxP2AGAK1euQK/X210gIqKKsnfx0IK1tFjDQyRXXDyUiGTHZLJ3pmXW8BDJnUMDz549ezBo0CCEhYVBoVBgy5YtFvcLITBnzhyEhYVBq9UiJiYGp0+ftthHp9PhxRdfREBAADw8PDB48GDcuHGjGp8FEd1vDHYGHndNQR8ekb8sBRHJi0MDT2ZmJlq2bInly5dbvX/hwoVYvHgxli9fjtjYWISEhKBPnz5IT0+X9pk6dSo2b96MjRs3Yt++fcjIyMDAgQNhNPKbGpGzsndYurmGRwggR2+qsnIRkePYPQ9PZRowYAAGDBhg9T4hBJYuXYo33ngDjz32GABg7dq1CA4OxoYNG/D8888jNTUVn376KT7//HP07t0bALB+/XpERERgx44d6NevX7U9FyK6fxjtXFpCq1ZJ/8/KNUDrqiplbyKqie7bPjxxcXFISEhA3759pW0ajQbdu3fHgQMHAABHjhyBXq+32CcsLAzNmzeX9rFGp9MhLS3N4kZE8lEQeGzbX6lUSKGH/XiI5KlSA8/Nmzel/69atQrBwcHlPlZCQgIAFDtGcHCwdF9CQgJcXV3h6+tb4j7WLFiwAD4+PtKNQ+eJ5MXexUOBggVEORcPkTxVSuBJSEjAiy++iAYNGkjbRo0aBQ8PjwofW1FkLRwhRLFtRZW1z8yZM5Gamirdrl+/XuFyEtH9wyTs68MDFFpAlLMtE8mSzYEnJSUFTz75JAIDAxEWFoYPP/wQJpMJb775JurVq4eDBw/is88+q7SChYSEAECxmprExESp1ickJAS5ublITk4ucR9rNBoNvL29LW5EJB8GY/7ioXYFHnOTFmt4iOTI5sDz+uuvY8+ePRgzZgz8/Pzw8ssvY+DAgdi3bx9+/fVXxMbGYuTIkZVWsLp16yIkJATbt2+XtuXm5mL37t3o1KkTAKBNmzZQq9UW+8THx+PUqVPSPkTkfOwdpQUUzLbMGh4iebJ5lNbPP/+M1atXo3fv3pg0aRIaNGiAhg0bYunSpeV+8IyMDFy8eFH6OS4uDsePH4efnx/q1KmDqVOnYv78+YiOjkZ0dDTmz58Pd3d3jBo1CgDg4+OD8ePH45VXXoG/vz/8/Pwwffp0tGjRQhq1RUTOxyjsm4cHYA0PkdzZtZZW06ZNAQD16tWDm5sbnn322Qo9+OHDh9GjRw/p52nTpgEAxowZgzVr1mDGjBnIzs7GpEmTkJycjPbt22Pbtm3w8vKSfmfJkiVwcXHB8OHDkZ2djV69emHNmjVQqTislMhZ2bu0BFAwF08mR2kRyZLNgcdkMlmsp6VSqSrcKTkmJqbUWU0VCgXmzJmDOXPmlLiPm5sbli1bhmXLllWoLEQkH/YuHgoUquHhelpEsmRz4BFCYOzYsdBoNACAnJwcvPDCC8VCz3fffVe5JSQispMxf7Jku0ZpaTgPD5Gc2Rx4xowZY/HzU089VemFISKqDOYaHnv68BQsIMoaHiI5sjnwrF69uirLQURUaaSJB8uYs6swd/bhIZK1+3ZpCSKi8pKGpavsGZbOPjxEcsbAQ0SyY+/ioQBreIjkjoGHiGTHWI4mLamGh314iGSJgYeIZKdg8VCupUVEeRh4iEh2TOXpw8OZlolkjYGHiGTHXMOjtKNJS+vKeXiI5IyBh4hkpyKLhzLwEMkTAw8RyY6xXH148mp4MjksnUiWGHiISHbKE3jMMy3rDCYYzGtTEJFsMPAQkewY8peWKM9aWgCQpWezFpHcMPAQkawIIZBfwWNXDY+rSikFpCwOTSeSHQYeIpIVc3MWALjYMdOyQqEo6MfDoelEssPAQ0SyYigUeOzIOwAKjdRiDQ+R7DDwEJGsmET5angAsIaHSMYYeIhIVgrX8NjThwcoWF4im3PxEMkOAw8RyYrRWJHAwxoeIrli4CEiWTEWatKyM++wDw+RjDHwEJGsFF5WQmHHWloAa3iI5IyBh4hkRVo41N7qHRTMtsz1tIjkh4GHiGTF3IfHnlmWzcyzLXM9LSL5YeAhIlkx9+Gxt8MywBoeIjlj4CEiWTHmr6NVnsDDGh4i+WLgISJZMZgq0KSlzgs8rOEhkh8GHiKSFfMorfLV8JibtFjDQyQ3DDxEJCtS4LFzSDpQ0IcnkzU8RLLDwENEsmJu0lKpyt+HhzU8RPLDwENEsmKS+vDYf3mTRmlxpmUi2WHgISJZMVSkDw9nWiaSLQYeIpKVCvXh4VpaRLLFwENEslKRUVoehWp4RKFFSImo5mPgISJZkRYPLVen5bwaHpMAdAZTpZaLiByLgYeIZEVaPLQcTVra/IkHAc62TCQ3DDxEJCvGCsy0rFIq4KbOuyxytmUieWHgISJZqUgfHoALiBLJFQMPEcmKoQKLhwKFFhDl0HQiWWHgISJZMYlKquHh0HQiWWHgISJZMRjL34cH4OSDRHLFwENEslLhPjxcMZ1Ilhh4iEhWKrK0BFCohodNWkSywsBDRLJi7sNTnsVDgcKjtFjDQyQnDDxEJCvmPjzKctbwaFnDQyRLDDxEJCsVmXgQKOjDk61n4CGSEwYeIpIVYwWHpRf04WGTFpGcMPAQkaxUuIaHMy0TyRIDDxHJSkX78EgzLbOGh0hWGHiISFaMgjU8RFQcAw8RyYqxomtpcaZlIlli4CEiWZEmHlRUcKZlDksnkhUGHiKSFZM58KgqOA8Pa3iIZIWBh4hkxVBJo7Sy2YeHSFYYeIhIVowVbNJiHx4ieWLgISJZKVgtvZxraeX34cnRm6RjEVHNx8BDRLIiTTxYzj485hoegAuIEskJAw8RyYq5D4+ynE1aGhelNKSdc/EQyQcDDxHJiqmCnZYVCgXX0yKSIQYeIpIVaR6ecgYegLMtE8kRAw8RyYqxEgIP19Mikh8GHiKSFUMFl5YACjous4aHSD4YeIhIVox5eafcfXgAwJ1NWkSyc98Hnjlz5kChUFjcQkJCpPuFEJgzZw7CwsKg1WoRExOD06dPO7DERORIFV08FAA8OPkgkezc94EHAJo1a4b4+HjpdvLkSem+hQsXYvHixVi+fDliY2MREhKCPn36ID093YElJiJHqYxOy+7SAqIMPERyUSMCj4uLC0JCQqRbYGAggLzanaVLl+KNN97AY489hubNm2Pt2rXIysrChg0bHFxqInIEk6iMUVrmGh42aRHJRY0IPBcuXEBYWBjq1q2LJ554ApcvXwYAxMXFISEhAX379pX21Wg06N69Ow4cOOCo4hKRAxmM5nl4yn95K+jDwxoeIrlwcXQBytK+fXusW7cODRs2xO3btzFv3jx06tQJp0+fRkJCAgAgODjY4neCg4Nx9erVEo+p0+mg0+mkn9PS0qqm8ERU7QqGpZf/GB7SsHTW8BDJxX0feAYMGCD9v0WLFujYsSPq16+PtWvXokOHDgDyZkYtTAhRbFthCxYswNy5c6umwETkUEZRscVDgYIFRNNy9JVSJiJyvBrRpFWYh4cHWrRogQsXLkijtcw1PWaJiYnFan0KmzlzJlJTU6Xb9evXq7TMRFR9jBVcWgIAQrzdAAC303IqpUxE5Hg1LvDodDqcPXsWoaGhqFu3LkJCQrB9+3bp/tzcXOzevRudOnUq8RgajQbe3t4WNyKSB3MfHmUFAk+ojxYAcCuFgYdILu77Jq3p06dj0KBBqFOnDhITEzFv3jykpaVhzJgxUCgUmDp1KubPn4/o6GhER0dj/vz5cHd3x6hRoxxddCJyAPMorYrU8NSuZQ482WU2kRNRzXDfB54bN25g5MiRuHv3LgIDA9GhQwccPHgQkZGRAIAZM2YgOzsbkyZNQnJyMtq3b49t27bBy8vLwSUnIkeojHl4gn00UCgAncGEe5m58PfUVFbxiMhB7vvAs3HjxlLvVygUmDNnDubMmVM9BSKi+1plLB6qcVEhwFODO+k6xKfmMPAQyUCN68NDRFSaygg8ABCW36x1MyW7wmUiIsdj4CEiWamMUVoAEOaTN1LrFgMPkSww8BCRrBjyFw9VVrCjsbmGJz6VI7WI5ICBh4hkxZiXd+CiqljgCc2v4WGTFpE8MPAQkawY82t4KtqkZR6aHs/AQyQLDDxEJCsFw9IrdnkLq8XJB4nkhIGHiGRFGqVVwT48obXymrQS03OgN7eTEVGNxcBDRLIiBZ4K9uEJ8NDAVaWESXBNLSI5YOAhIlmprGHpSqUCIfkdlzlSi6jmY+AhIlkx9+Gp6LB0AAirxbl4iOSCgYeIZMOUH3aAitfwAEAYV00nkg0GHiKSDUOhwFPRPjxA4ZFarOEhqukYeIhINoyFA08lNGmZR2rFpzLwENV0DDxEJBtGUSjwVEaTlrSAKJu0iGo6Bh4ikg2jsXL78NRmkxaRbDDwEJFsmBcOBSqnhse8nlZqth6ZOkOFj0dEjsPAQ0SyYW7SUioARSX04fFyU8PLzQUA+/EQ1XQMPEQkGwWTDlbepY1D04nkgYGHiGTDkN+HpxLzDicfJJIJBh4ikg2TqPwanlBzx2UuL0FUozHwEJFsmCcerIwOy2YcqUUkDww8MnbyRip+PhHv6GIQVZvKWji0sDBOPkgkCy6OLgBVnRe/PIorSVkI8emINpF+ji4OUZUzBx5lJQaeUHZaJpIF1vDIlMFowrV7WQCAX08mOLg0RNWjKmp4CjdpiUIzORNRzcLAI1N3MnQwLyu07cxtXqjJKVRFH55gbzcoFIDOYMK9zNxKOy4RVS8GHplKKDSi5Nq9LPydkO7A0hBVD2P+TMuVGXhcXZQI9NQAYLMWUU3GwCNTt9MsL8zbTt92UEmIqo8xf2WJygw8QOGh6ey4TFRTMfDIlLmGx9Ul70/822n24yH5M6+lVZl9eACgNicfJKrxGHhkKiFNBwAY0DwESgVwJj4N1/M7MRPJlTRKqxLW0SrMPFIrnpMPEtVYDDwyZW7SahLqjXZReUPSt59hsxbJmzRKS1W5gScsv0nrJmt4SMY++O0cPtl72dHFqDIMPDJlbtIK8XZD32YhANisRfJnlEZpVe6lzdykFc/AQzJ1MyUby3dexLyfzyI1S+/o4lQJBh6ZMtfwBHu7oW/TYABA7JV7HFZLsiYNS6/cCh5OPkiyV7jLw183UhxXkCrEwCNDQggk5AeeEB83RPi5o2moN0wC2HGWzVokXyZT5S8eChQ0aSWm50BvHgpGJCM3kgtqL49fT3FcQaoQA48MpesMyMo1Ashr0gKAvs3yank4PJ3krComHgQAfw9XaFyUMAlIM5gTycmN5ILX9bFryQ4sSdVh4JGh2/n9d7zdXKB1VQEA+uX349l74Q6ycg0OKxtRVaqqTstKpQItw2sBAA7F3avUYxPdD24WqeGR4+z8DDwyVLg5y6xxiBci/LTQGUzYc/6Oo4pGVKWqalg6AHSo7w8AOHApqdKPTeRohZu0krP0sqzJZOCRIfNcIcHeBYFHoVCgX9O8Wp5tHJ5OMlUVi4eadcoPPH9cSpLlt19ybjdS8gKOJn+y2mPXUhxYmqrBwCNDtwsNSS+sW8NAAMCRq/JsnyWqqj48APBgnVrQuChxN0OHS3cyKv34RI5iNAnE549A7Nk4CIA8Oy4z8MiQuUkr1Mcy8LSMqAUAuJqUxeHpJEtGUXWBR+OiQptIXwB5tTxEcnE7LQcGk4BapZD6e8qx4zIDjwxJc/AUCTw+WjXqBXoAAI5fl9+LmchorPzV0gvrWC+/WesyAw/Jh7n/TqiPVgr1Z+LTkKM3OrJYlY6BR4akTstFmrQAoFV+Lc9xGbbPEhmqsA8PAHRqUNCPxzznD1FNdzO//064rxbhvlr4e7hCbxQ4E5/m4JJVLgYeGUpIzVs4NNhK4HkwP/Ack2H7LJEpv0lLWUWB54HwWnB3VSE5S49zt9Or5DGIqtuNe3k1POG+WigUCjxYpxYA+XVcZuCRGb3RhKTMvMAT4mOthievuvKv6yn8hkqyU9U1PGqVEm3zF+NlPx6SC3OTVu1a7gAKtQTI7IsxA4/MJKbrIASgVing5+5a7P7GoV7QuCiRlmNAXFKmA0pIVHWMxqpZPLQw9uMhubmZUlDDAwAP1sn7Yiy3vp4MPDJjXiU9yMvNarW+WqVEi9o+ANiPh+SnYFh61T2GeT6eg5eTpHl/iGoy87IS5sDzQLgPFArg+r1s3M3QObJolYqBR2ZuW5lluahWUj8eeaV3or8T8jpZ+mjVVfYYzcK84aVxQXqOAWduyatTJzkfk0ngVv4cPLXzA4+XmxoNAj0ByOuLMQOPzCSUMOlgYa3yO6TJrX2WnNvttBzsOJsIABjSqnaVPY6LSomH6ub347l8t8oeh6g63MnQIddogkqpsPjckDouy+iLMQOPzEhz8JQWePJreP6OT5fdPAvkvDbFXofRJNAuyhcNg72q9LE6FlpmgqgmMzdnhfq4waVQW7B5gIucvhgz8MhMwcKhmhL3qV1LiwBPDQwmgVM3U6uraERVxmA04ctD1wAAT7aPrPLH65DfcflQ3D3o8yc7JKqJCkZoaS22m2t4/rqeKpu+agw8MpNgZeHQogrPsyCn9E7Oa9e5O4hPzYGvuxr9m4dU+eM1DfWGj1aNzFwjTvJLA9Vg5sAT7utusb1hsBfcXVXI0Blks3YcA4/MlDbLcmGtOAEhyciG/Nqdx9tGwE2tqvLHUyoV6FCP8/FQzVcQeCxreFRKBR4IzxvRe1QmC04z8MiIEKKg03Ipo7SAghmX5dQDn5zTjeQs7DyX11l55EN1qu1xu0QHAgB+ORlfbY9JVNnMfXhqFwk8QEHT7VeHr0OImt+sxcAjI6nZeugMef0JSmvSAoAW+fMs3EzJRmJ6TnUUj6hKbDx0HUIAnRv4o26AR7U97sAWoXBVKXH6Vhr7wlGNVXTSwcJGta8DVxcljl5LwZ9x96q7aJWOgUdGzM1ZtdzVZVbre7mpER0kv3kWyLnojSZsjL0OoHo6Kxfm6+GKfvn9hTbGXqvWxyaqDEII3Mxv0ooo0ocHyJvAdnjbcADAil2XqrVsVYGBR0ZsmYOnMLmul0LOY/uZ27iboUOglwZ9mgZX++M/0S4CAPD9sVvIzuUUD1Sz3MnQQWcwQakouRvEc13rQ6kA9py/U+NrMhl4ZMSWOXgKk+M8C+RcNvyZV7Myom0E1FW5nkQJOtbzR4SfFuk6A349xb48VLOYa3dCvN1KfP/U8XfHoJZhAICVNbyWh4FHRhJS81dJtzHwmIemn7ghn3kWyHmcvpWKfRfvQqEARuTXtFQ3pVKBEW3zHtvctEZUU5Q0JL2oiTH1AQC/nIrH5Ro8RJ2BpwoJIaS1fapDgg3raBVWeJ6FdX9cqcKSEVW+5f+7CAAY9EAYIvxKv2BXpWFtIqBU5E1CWJM/DMj5SJMOWumwXFjjEG/0ahwEIYBVuy9XR9GqBANPFdpxNhH9l+7FtK+O40561a84a8vCoYWplAo83TEKADD3xzNY8OtZmFjTQzXAuYR0/HoqAQAwpWcDh5YlxMcNPRoFAQA2HWYtD9UcN1MsV0kvzaQeebU83x27gfjU7CotV1Vh4KlCp26mQqEAvjt6Ez0/2IU1++NgqMJp6O3ttAwA/+zfCNP6NASQl9z/sfEY19ei+97ynXm1OwOah1T5ulm2GJ7fpPbtkRtlLjVhNAkuR0H3hZImHbSmTaQfHqrrB71R4L974qq6aFWCgacKvdynITZP6owWtX2QrjNgzo9nMGj5fhyqovkM7O20DOQtM/GPXtFY9HhLuCgV+OlEPEZ/+ieSMqq+Roqci8Fowt8JafjmyA289eMZLN52DucS0u0+zsXEDPx04hYAx9fumPVsHIQATw3uZuTi9/wV262Ju5uJRz7ci+azf8Oza2OxKfYa7vK9Rg5SsI6WbU3Ck/L78ny2Pw4T1x/Bhdv2v38dSSHkMH1iBaWlpcHHxwepqanw9vau9OMbTQJfHrqG9387h9RsPYC8IeFjO0Xh4RahcHWpeO7UGYxo9K+tAICjs/rAz8PV7mMcuHgXz68/gvQcA9zUSgx9sDbGdIpC45DKPyfkHIQQ+OGvW1i9/wrOxqdJE2MW1ijYC4NbhWFwS9v64kzbdBzfHbuJ3k2C8cmYtlVR7HJ599e/8dHuS+jRKBCrn3mo2P3/+/s2Xtp4HOk5BovtCgXQuo4vIv3d4e2mhpebC7zcXBDu646YRoFwd3WprqdATkQIgaZv/oZsvRG7pscgyoZJO4UQmPvjGaz94wqEAJQKYOiD4ZjaO9ph/ejs+fxm4EHVBx6zpAwdPth2Ht8euYHc/CrtAE8NnmxfB4+1ro1I//LPEnv9Xha6LtwJVxclzr3dHwqFolzHOZeQjmlfHcfpWwWdrTvU88PTHaPQs3FQtaxTRPcfvdGEI1eTsfv8HSRl6OCiUsJFqYCLUgl3VxU6NfBH+7r+UCkLXnfnb6fjze9P4eDlghpNL40LmoR5o1mYN24kZ2P3uTvSewEAWtephcEtw/DIA2EI9NIUK8eVu5notXg3jCaBH6Z0xgPhtar0edsj7m4menywCwDQJtIXI9pF4JEWodCqVVi+8yKW7DgPIYC2kb6Y0b8xDl5OwvYzt0tdfFSrVqFP02AMbhmGbg0DK+XLERGQ93nUZt4OKBTA32/3h8bF9mv7+dvpWLTtHH47fRsAoFYpMPKhOpjSswGCvGxvYagMThl4VqxYgffffx/x8fFo1qwZli5diq5du9r0u9UVeMzuZujw5Z/X8PnBq0gs1Jm5UbAX+jYLRp+mwWhR28eu0HL4yj0M++gPRPhpsXdGzwqVTwiBw1eTsWb/FWw9nSANWfdyc0H/ZiEY0qo2Ota3/HAjeRFC4Pq9bBy6cg87/07Engt3itVMFBXg6Yp+zULQr1kI9l28i8/2xcFgEnBTKzEppgEGtwxDHT93KAu9blKz9Nh6Oh4//HULBy4lwXw1UiqAzg0C0K9ZCB6q64cGgZ5QKhWY8c1f+OrwDcQ0CsQaK7UojrZw699Yteey9J7xcFWhfpAnTtzICzWjO0Ri1sCmFsHlVko29l28i3uZuUjP0SM9x4D0HAOOXkvG1aQsaT8frRr9mgXj4Rah6FQ/oFj4ydEbcflOJvw8XBHsrbG4fmToDPj97G38cjIe+y7cRZC3G9pG+qJdlB/aRvmiboBHidcbIQTScgzQGYwI9NSU+8sU3V/+up6CIf/Zj2BvDf58vXe5jnH8egre/+1v7L+Yt4Cum1qJZzrXxQvd6sPHXV2ZxS2R0wWeTZs2YfTo0VixYgU6d+6MVatW4ZNPPsGZM2dQp07ZiwlWd+Ax0xtN2HoqARtjr+Hg5XsWc+FoXJRwdVFCnf9NWq1SwkWlsPi/AgoYTAIGownpOQYkpOWgXZQvvn6hU6WVMT41G+sPXsV3R28iPrVgza0ATw26RgegZbgPWtXxRZNQL4tvCHqjCZk6A1xdlNCqVbxIVpFMXd4H473MXIvtSoUCnhqX/OaRvGYSD40LtGoV1CqF9PfQGYy4m5GLxLQc3E7T4VxCOo5fT8ZfN1KLHdPPwxXdGwaiQZAnDEYBo8kEvUngdloOfj+bKDXXFta3aTBmDWxqU3V3YloOfjoRj+//uoW/ikyG6aNVo02kL/acvwODSeDbiZ3QJtLXzrNVPRLTcvDN0Rv4KvY6ruQHFleVEvMebS51braFEAJ/3UjFD8dv4ccTtyxGevpo1ejTNBiNgr1wNiENp2+m4eKdDIugVS/QE/UDPZCZa8Tu83eQa6U50czDVQV/Tw18PVzh566Gj1aNlGw9bqVk41ZKDjJ0eWHXU+OCeoEeqJ9/7AfCa6FtlC+b3WqgX07GY9IXR9Em0hffTqzYZ8aBi3ex8Ldz0iS2Xm4uGNQyDEFeGvh5uKKWuyv83F0R6e9e6U1fThd42rdvj9atW2PlypXStiZNmuDRRx/FggULyvx9RwWewlKycrHzXCK2nb6N3efvIKuc09Q/26Uu/jWwaSWXDjCZBGKv3MP3f93CLyfjkZJl+eHmqlIirJYbMnONSM/RI0dfcHFVKRXwcnOBpybv5u6qgtZVBa1aBY1aBZ3eiLT8b7XpOXrojab8D+u8D2pvNzWMJoFsvRHZeiNy9EbojQJatRJu6rzjuLmq4KNVw8/dNe+i7aGGt5taCofm4GgSAnqjgMEooDeZAAFo1HmhzFymojVXeqNAclYukjNzkZylR3JmLjJ0BuTklyc71wijScCjSMBQKhQwmEz5j2eCschbTYi8wJKclYt7mblIztQjXWeAxsWyPD7uagR5aRDk5YYgLw1UKgVi4+7h4OUknLiRCoOdUwmolApo1SooFUBaKbU2riolmoZ5o1t0AGIaB6FleK0Sa/X0RhP+uJSEX07GY8fZ2/DzcMXMAU3Qo3GQXWUzu5qUiZ9OxGP/xbs4di0F2YVGDnZpEID1z7Yv13GrkxACh+Lu4X/nEjGwRRhahPuU+1hGk8CfcXnnd+up2yV2dPZ2c0Fm/uuxqLoBHni4RQj6NA3BvUwdDl9JxuEryTh+I6XUMGSmVADWXmpqlQItw2uhQz1/RAd7IjkzF4npOiSm63A3QwcXpRLebgXvDa2rCnqjKe89aMx/f+S/T4ym/O35X+T0+fsYTQICZb/Ovd3y3yvebgj00sBHq4bOYEJOrlG6fgAo9iVSgdK/kJlEQZnyRtkJqFUK6fqjdVXBrdD1SOuqgpuLCjkGI5Iz9YXe47m4l2X+V4+UrFx4alykAFkv0BNhtbTI0Bny9snMRXJWLrJzjdLjG/JH+RkKnTeD0QS1Silde7zcXODu6oJcgxHZepN03VQp874Iebu54MjVZGw5fgtDWoXh3088WOa5LYsQAjvOJuKD387hXAmdmZ/pHIXZg5pV+LEKc6rAk5ubC3d3d3z99dcYOnSotP2ll17C8ePHsXv37mK/o9PpoNMVXDDS0tIQERHh0MBTWI7eiMQ0HfSmgouCodAFwJC/XUDARVnwga5Vq9A01NuiyaAq5BpM+DMuCUeuJuOv6yk4fj0FyVnFv91T9Qj31SLC1x2FK9GMJoEMXUGITM8xlBiM1CoFAj01CPR2Q11/d7SKqGW11s5R9EYTztxKw+GryYi7m4HnutZHHX/HTTToaMb8Lx+/nozH7TQdGod6oXmYD5rX9kGwtwZ6o8C1e5m4mJiJy3czYDIJ9GoSjMYhXlZrWnUGI24kZyMlKxf3MvX5wT4XtdzVCKulzbv5aKFSKqTjXrqTgQu30xF7JVlabZtqpsk96uPVfo0r7XhGk8C20wk4fSutINzlv6aeaFcH47rUrbTHAuwLPDW+HvLu3bswGo0IDrZcODA4OBgJCQlWf2fBggWYO3dudRSvXNzUqvv6gu7qokTX6EB0jQ4EkJfsr93LQnxqTv63h4ImlFyjCRn5H7ppOQapZiQnv2YkW2+Em1plUTPiqlJafFBn6AxQ5tdK5H17UkKlVBY7Tmq2XvrmlJyZi7QcvfTtx/ytSKVUQKVUQJ0fFBUKIEdvQnauUaqxKfrt2EWpyKuS9cirPfJ1zyunm4v5m50KLkoFMnUGi5oqkwBcXRRSKFUpFCj6eePu6iId18/dFR4aFXINed/IdHoTsnINuJelx530HCSm6XAnQ4dMnQEtI2qhYz1/dKjnb1MVsciv2coudM4MJhP8PDSopVVXeUiuCLVKiZYRtdAyf7FbZ6dSKtAh/29vjauLAg2CvNAgyLb5iTQuKtQP9LRp36LHNff1+uPyXfxxKQk3U7IR4KmRalkCPF1hNAHpOXopgJtrGsy1ri4qJdQqRaEvb3n/V6sUBZ3jVQooy2gWFyKvptxcu5SYrkN6jl56n+bVKCvzuwIUfJm0ZVkdhQIWXy5VSkVerXOhmqPC15AcvRFZuUZo1SrpvV3LXQ1fd1f4ebpKNdG18psOL93JwKXEDFy+m4mE1Bz4aNXw9cjb3zf/umB+/IJzpoS60PnTGUwW182sXCPc8muv3dR5NVDmv0V6jgHpOj1USiWGtancZVlUSgUGtAjFgBahlXrcylDjA49Z0W8uQogS+43MnDkT06ZNk3421/BQ+SgUCkT6e1gdZebqooSnxsXm2Z+paigUCri6KODqooSPtno6E5L8KRQK1PF3Rx3/OhjRruz+kkSOVOMDT0BAAFQqVbHanMTExGK1PmYajQYaTfEhr0RERCRPNX5SB1dXV7Rp0wbbt2+32L59+3Z06lR5o5WIiIio5qrxNTwAMG3aNIwePRpt27ZFx44d8fHHH+PatWt44YUXHF00IiIiug/IIvCMGDECSUlJeOuttxAfH4/mzZvjl19+QWRkpKOLRkRERPeBGj8svTLcD/PwEBERkX3s+fyu8X14iIiIiMrCwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREsieLpSUqyjzZdFpamoNLQkRERLYyf27bsmgEAw+A9PR0AEBERISDS0JERET2Sk9Ph4+PT6n7cC0tACaTCbdu3YKXlxcUCoWji+NwaWlpiIiIwPXr17m2WBXiea4ePM/Vg+e5evA8WxJCID09HWFhYVAqS++lwxoeAEqlEuHh4Y4uxn3H29ubb6hqwPNcPXieqwfPc/XgeS5QVs2OGTstExERkewx8BAREZHsMfBQMRqNBrNnz4ZGo3F0UWSN57l68DxXD57n6sHzXH7stExERESyxxoeIiIikj0GHiIiIpI9Bh4iIiKSPQYeIiIikj0GHie1YMECtGvXDl5eXggKCsKjjz6Kc+fOFdvv7NmzGDx4MHx8fODl5YUOHTrg2rVrDihxzWTLec7IyMCUKVMQHh4OrVaLJk2aYOXKlQ4qcc20cuVKPPDAA9JkbB07dsSvv/4q3S+EwJw5cxAWFgatVouYmBicPn3agSWumUo7z3q9Hv/85z/RokULeHh4ICwsDE8//TRu3brl4FLXTGW9pgt7/vnnoVAosHTp0uotZA3DwOOkdu/ejcmTJ+PgwYPYvn07DAYD+vbti8zMTGmfS5cuoUuXLmjcuDF27dqFv/76C7NmzYKbm5sDS16z2HKeX375ZWzduhXr16/H2bNn8fLLL+PFF1/E999/78CS1yzh4eF49913cfjwYRw+fBg9e/bEkCFDpFCzcOFCLF68GMuXL0dsbCxCQkLQp08faR09sk1p5zkrKwtHjx7FrFmzcPToUXz33Xc4f/48Bg8e7Ohi10hlvabNtmzZgj///BNhYWEOKmkNIoiEEImJiQKA2L17t7RtxIgR4qmnnnJgqeTH2nlu1qyZeOuttyz2a926tfjXv/5V3cWTFV9fX/HJJ58Ik8kkQkJCxLvvvivdl5OTI3x8fMRHH33kwBLKg/k8W3Po0CEBQFy9erWaSyVPRc/1jRs3RO3atcWpU6dEZGSkWLJkieMKVwOwhocAAKmpqQAAPz8/AHkLqv78889o2LAh+vXrh6CgILRv3x5btmxxYClrvqLnGQC6dOmCH374ATdv3oQQAjt37sT58+fRr18/RxWzRjMajdi4cSMyMzPRsWNHxMXFISEhAX379pX20Wg06N69Ow4cOODAktZsRc+zNampqVAoFKhVq1b1Fk5mrJ1rk8mE0aNH49VXX0WzZs0cXMIawtGJixzPZDKJQYMGiS5dukjb4uPjBQDh7u4uFi9eLI4dOyYWLFggFAqF2LVrlwNLW3NZO89CCKHT6cTTTz8tAAgXFxfh6uoq1q1b56BS1lwnTpwQHh4eQqVSCR8fH/Hzzz8LIYTYv3+/ACBu3rxpsf+ECRNE3759HVHUGq2k81xUdna2aNOmjXjyySeruYTyUdq5nj9/vujTp48wmUxCCMEaHhtwtXTClClTcOLECezbt0/aZjKZAABDhgzByy+/DABo1aoVDhw4gI8++gjdu3d3SFlrMmvnGQA+/PBDHDx4ED/88AMiIyOxZ88eTJo0CaGhoejdu7eDSlvzNGrUCMePH0dKSgq+/fZbjBkzBrt375buVygUFvsLIYpto7KVdJ6bNm0q7aPX6/HEE0/AZDJhxYoVDixtzVbSuc7Ozsa///1vHD16lK9hezg6cZFjTZkyRYSHh4vLly9bbNfpdMLFxUW8/fbbFttnzJghOnXqVJ1FlIWSznNWVpZQq9Xip59+stg+fvx40a9fv+osouz06tVLPPfcc+LSpUsCgDh69KjF/YMHDxZPP/20g0onH+bzbJabmyseffRR8cADD4i7d+86sGTyYz7XS5YsEQqFQqhUKukGQCiVShEZGenoYt632IfHSQkhMGXKFHz33Xf43//+h7p161rc7+rqinbt2hUbQn3+/HlERkZWZ1FrtLLOs16vh16vh1Jp+VZUqVRSLRuVjxACOp0OdevWRUhICLZv3y7dl5ubi927d6NTp04OLKE8mM8zkPd6Hj58OC5cuIAdO3bA39/fwaWTF/O5Hj16NE6cOIHjx49Lt7CwMLz66qv47bffHF3M+xabtJzU5MmTsWHDBnz//ffw8vJCQkICAMDHxwdarRYA8Oqrr2LEiBHo1q0bevToga1bt+LHH3/Erl27HFjymqWs8+zt7Y3u3bvj1VdfhVarRWRkJHbv3o1169Zh8eLFDi59zfH6669jwIABiIiIQHp6OjZu3Ihdu3Zh69atUCgUmDp1KubPn4/o6GhER0dj/vz5cHd3x6hRoxxd9BqltPNsMBgwbNgwHD16FD/99BOMRqP0evfz84Orq6uDS1+zlHau/f39i4VJtVqNkJAQNGrUyEElrgEcWr9EDgPA6m316tUW+3366aeiQYMGws3NTbRs2VJs2bLFMQWuoWw5z/Hx8WLs2LEiLCxMuLm5iUaNGolFixZJnRGpbOPGjRORkZHC1dVVBAYGil69eolt27ZJ95tMJjF79mwREhIiNBqN6Natmzh58qQDS1wzlXae4+LiSny979y507EFr4HKek0XxU7LZVMIIUR1hywiIiKi6sQ+PERERCR7DDxEREQkeww8REREJHsMPERERCR7DDxEREQkeww8REREJHsMPERERCR7DDxEROWUm5uLBg0aYP/+/QCAK1euQKFQ4Pjx41X6uCdPnkR4eDgyMzOr9HGI5ISBh4gAAGPHjoVCoSh2u3jxoqOLdt/6+OOPERkZic6dO9v8O1FRUVi6dGmx7XPmzEGrVq1sOkaLFi3w0EMPYcmSJTY/LpGzY+AhIkn//v0RHx9vcSu64CmQV7NBwLJly/Dss8865LGfeeYZrFy5Ekaj0SGPT1TTMPAQkUSj0SAkJMTiplKpEBMTgylTpmDatGkICAhAnz59AABnzpzBww8/DE9PTwQHB2P06NG4e/eudLzMzEw8/fTT8PT0RGhoKBYtWoSYmBhMnTpV2kehUGDLli0W5ahVqxbWrFkj/Xzz5k2MGDECvr6+8Pf3x5AhQ3DlyhXp/rFjx+LRRx/FBx98gNDQUPj7+2Py5MnQ6/XSPjqdDjNmzEBERAQ0Gg2io6Px6aefQgiBBg0a4IMPPrAow6lTp6BUKnHp0iWr5+ro0aO4ePEiHnnkkRLPp8lkwoQJE9CwYUNcvXq1xP2ssVbbFhUVJd3fr18/JCUlYffu3XYdl8hZMfAQkU3Wrl0LFxcX7N+/H6tWrUJ8fDy6d++OVq1a4fDhw9i6dStu376N4cOHS7/z6quvYufOndi8eTO2bduGXbt24ciRI3Y9blZWFnr06AFPT0/s2bMH+/btg6enJ/r3729R07Rz505cunQJO3fuxNq1a7FmzRqL0PT0009j48aN+PDDD3H27Fl89NFH8PT0hEKhwLhx47B69WqLx/3ss8/QtWtX1K9f32q59uzZg4YNG8Lb29vq/bm5uRg+fDgOHz6Mffv2ITIy0q7nXbiW7eLFi2jQoAG6desm3e/q6oqWLVti7969dh2XyGk5ePFSIrpPjBkzRqhUKuHh4SHdhg0bJoQQonv37qJVq1YW+8+aNUv07dvXYtv169cFAHHu3DmRnp4uXF1dxcaNG6X7k5KShFarFS+99JK0DYDYvHmzxXF8fHykFeU//fRT0ahRI4vV43U6ndBqteK3336Tyh4ZGSkMBoO0z+OPPy5GjBghhBDi3LlzAoDYvn271ed+69YtoVKpxJ9//imEECI3N1cEBgaKNWvWlHi+XnrpJdGzZ0+LbeYVw/fu3St69+4tOnfuLFJSUiz2Ma+AXfg8e3h4CLVaLVq2bFnscUwmkxg6dKho06aNyMrKsrhv6NChYuzYsSWWkYgKuDg2bhHR/aRHjx5YuXKl9LOHh4f0/7Zt21rse+TIEezcuROenp7FjnPp0iVkZ2cjNzcXHTt2lLb7+fmhUaNGdpXpyJEjuHjxIry8vCy25+TkWDQ3NWvWDCqVSvo5NDQUJ0+eBAAcP34cKpUK3bt3t/oYoaGheOSRR/DZZ5/hoYcewk8//YScnBw8/vjjJZYrOzsbbm5uVu8bOXIkwsPD8fvvv8Pd3b3Y/a+++irGjh1rse3DDz/Enj17iu37+uuv448//kBsbCy0Wq3FfVqtFllZWSWWkYgKMPAQkcTDwwMNGjQo8b7CTCYTBg0ahPfee6/YvqGhobhw4YJNj6lQKCCEsNhWuO+NyWRCmzZt8MUXXxT73cDAQOn/arW62HFNJhMAFAsK1jz77LMYPXo0lixZgtWrV2PEiBFWw4pZQECAFKiKevjhh7F+/XocPHgQPXv2tPq7Rc+zn59fsf3Wr1+PJUuWYNeuXQgPDy92/71790psciMiS+zDQ0Tl0rp1a5w+fRpRUVFo0KCBxc0cnNRqNQ4ePCj9TnJyMs6fP29xnMDAQMTHx0s/X7hwwaLWonXr1rhw4QKCgoKKPY6Pj49NZW3RogVMJlOpHXwffvhheHh4YOXKlfj1118xbty4Uo/54IMP4u+//y4W1gBg4sSJePfddzF48OBydyr+448/8Oyzz2LVqlXo0KGD1X1OnTqFBx98sFzHJ3I2DDxEVC6TJ0/GvXv3MHLkSBw6dAiXL1/Gtm3bMG7cOBiNRnh6emL8+PF49dVX8fvvv+PUqVMYO3YslErLy07Pnj2xfPlyHD16FIcPH8YLL7xgUVvz5JNPIiAgAEOGDMHevXsRFxeH3bt346WXXsKNGzdsKmtUVBTGjBmDcePGYcuWLYiLi8OuXbvw1VdfSfuoVCqMHTsWM2fORIMGDSya4qzp0aMHMjMzcfr0aav3v/jii5g3bx4GDhyIffv22VROs4SEBAwdOhRPPPEE+vXrh4SEBCQkJODOnTvSPleuXMHNmzfRu3dvu45N5KwYeIioXMLCwrB//34YjUb069cPzZs3x0svvQQfHx8p1Lz//vvo1q0bBg8ejN69e6NLly5o06aNxXEWLVqEiIgIdOvWDaNGjcL06dMtmpLc3d2xZ88e1KlTB4899hiaNGmCcePGITs7u8QRUtasXLkSw4YNw6RJk9C4cWNMmDCh2EzF48ePR25ubpm1OwDg7++Pxx57zGpTm9nUqVMxd+5cPPzwwzhw4IDNZf37779x+/ZtrF27FqGhodKtXbt20j5ffvkl+vbta/foLyJnpRDW6mOJiKpITEwMWrVqZXW2YUfbv38/YmJicOPGDQQHB5e5/8mTJ9G7d2+rnaqrkk6nQ3R0NL788ku7Znkmcmas4SEip6fT6XDx4kXMmjULw4cPtynsAHl9gxYuXGgxCWJ1uHr1Kt544w2GHSI7cJQWETm9L7/8EuPHj0erVq3w+eef2/W7Y8aMqaJSlaxhw4Zo2LBhtT8uUU3GJi0iIiKSPTZpERERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7P0/XfBLSCb5mokAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "do0d(lockin1.ch1_datatrace, do_plot=True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are not restricted to sample on an equally spaced grid. We can set the sweep_array directly." + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [], + "source": [ + "grid_sample = np.concatenate((np.linspace(25000, 29000, 10), np.linspace(29300, 35000, 91)))\n", + "lockin1.sweep_setpoints.sweep_array = grid_sample" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [], + "source": [ + "lockin1.buffer_reset()\n", + "for v in lockin1.sweep_setpoints.get():\n", + " lockin1.frequency(v)\n", + " sleep(0.05)\n", + " lockin1.send_trigger()" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting experimental run with id: 560. Using 'qcodes.dataset.do0d'\n" + ] + }, + { + "data": { + "text/plain": [ + "(results #560@C:\\Users\\Farzad\\experiments.db\n", + " -------------------------------------------\n", + " lockin_sweep_setpoints - array\n", + " lockin_ch1_datatrace - array,\n", + " (,),\n", + " (None,))" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHFCAYAAAD2eiPWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABna0lEQVR4nO3dd3hTZcMG8DtN0nSX7gGloGyKIEOGQMsqQ0BRREERBFFZr8h6RUWrMhRlKHygviIbAZWlaKUoG5GtLJkts6VQuneS5/uj5LRp0zYtLWnPuX/XlYvm5Eny5JCkd5+pEkIIEBEREcmYna0rQERERFTZGHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeEqxfPlyqFQq6aLRaBAQEIDnn38eFy5csHX1AABJSUmws7PDb7/9BgDYtGkTdDodsrOzzcrt2rXL7LUUvBw8eLDI4+bm5mLevHlo1qwZHB0dUaNGDXTo0AEHDhwoUnbhwoVo1KgRdDod6tatiw8++AC5ubnlfk116tQptq5hYWHlftwHJSwsrMrXMyMjAxEREdi1a5fV97l27RrGjBmDBg0awNHREZ6enmjWrBlGjRqFa9euSeUiIiLM/s+0Wi1q166NUaNGIS4ursjjZmdn49NPP0VISAicnZ3h5+eH3r17W3yvFbRjxw7pOe7cuVNi2RdffBEqlQp9+/a1+vVWlvKc+8JMn+cffvih4ipmJdP34pEjRx74cxc0YsQI9OrVy6Z1oOKZvgfKY/r06WjZsiWMRmOF1UdTYY8kc8uWLUOjRo2QlZWF/fv3Y+bMmdi5cyf+/fdfeHh42LRuR44cgRACbdq0AQAcPHgQzZs3h06ns1h+1qxZ6NKli9mxkJAQs+sGgwEDBgzAvn37MHXqVHTo0AHp6ek4evQo0tPTzcrOnDkT06dPx1tvvYXw8HAcPnwY7777Lm7cuIGvv/663K/r8ccfx2effVbkuJubW7kf80FZvHixratQqoyMDHzwwQcAYFU4u379Olq2bIkaNWpg0qRJaNiwIZKTk3HmzBls2LABly9fRlBQkNl9IiMj4e7ujrS0NGzfvh1z587FgQMHcOLECWi1WqncqFGjsGbNGkybNg1du3bF3bt38fHHHyM0NBT79+/HY489VqQ+aWlpGDVqFAIDA3Hz5s0S675t2zZs3ry5yrx3ynruqajjx49jxYoV+Ouvv2xdFaoEkydPxqJFi7BixQq8/PLLFfOggkq0bNkyAUAcPnzY7PgHH3wgAIhvv/3WRjXLN2vWLNGgQQPpeufOncXYsWOLlNu5c6cAIL7//vtSH3P+/PnCzs5O/PnnnyWWu3PnjnBwcBCvvvqq2fGZM2cKlUolTp8+beWrMBccHCyeeOKJct3XltLT021dBavdvn1bABDvv/++VeXfe+89AUBcvnzZ4u0Gg0H6+f333xcAxO3bt83KvPzyywKA+OOPP6RjWVlZQq1WixdffNGs7M2bNwUA8Z///Mfi840dO1Y8+uij4t1337X4XCZJSUmiZs2aYt68eVXmfVXWc29JWT7PFa2478UHadCgQaJdu3Y2e34qnel7oLzGjRsnGjRoIIxGY4XUh11a5dS6dWsAwK1bt6RjxXVjDB8+HHXq1JGux8TEQKVS4bPPPsO8efNQt25duLi4oH379ha7lkpz+PBh6S9gg8GAo0ePWvyLuCw+//xzdO7cGe3atSuxXGRkJLKysook8JdffhlCCGzevPm+6lGSrKwsPProo6hXrx6Sk5Ol43FxcfD390dYWBgMBgOAvP8DFxcXnD59Gt26dYOzszN8fHwwbtw4ZGRkmD2uEAKLFy9GixYt4OjoCA8PDwwcOBCXL182KxcWFoaQkBDs2bMHHTp0gJOTE0aMGCHdVvC9YPo///TTT/HJJ5+gTp06cHR0RFhYGM6fP4/c3Fy89dZbCAwMhLu7OwYMGID4+Pgir3n9+vVo3749nJ2d4eLigp49e+L48eNmZUyv9eLFi+jTpw9cXFwQFBSESZMmSd2cMTEx8PHxAQB88MEHUrfQ8OHDiz3fCQkJsLOzg6+vr8Xb7exK/zqx9Lmxs7ODnZ0d3N3dzcq6ubnBzs4ODg4ORR5n7969+Prrr/HNN99ArVaX+JyTJk1CQEAA/vOf/5Rav+KY/q8PHz6MTp06wcnJCQ899BA+/vjjIk3uV69exYsvvghfX1/odDo0btwYc+fOlcpZc+4vXLiAIUOGmD3G//3f/1msW1ZWFiZOnAh/f384OjoiNDS0yHsCALZu3Yr27dvDyckJrq6u6NGjB/78888i5fbt24du3brB1dUVTk5O6NChA7Zt21bqOYqNjUWrVq1Qv379Su/uv3XrFjZt2oShQ4eaHTcajZgxYwYaNmwodcM/8sgj+Pzzz83KWfMaTd12f/zxB0aNGgUvLy+4ubnhpZdeQnp6OuLi4jBo0CDUqFEDAQEBmDx5cpFu/JycHMyYMUPq7vfx8cHLL7+M27dvl+n13r59G6+++iqCgoKkx3n88cexY8cOqUxUVBSefPJJ1KpVCw4ODqhXrx5ee+21Il29pm6mf/75B88++yzc3d3h6emJiRMnQq/X49y5c+jVqxdcXV1Rp04dzJkzx+z+pq7U1atXW/W+s8Sa7zEAGDp0KM6fP4+dO3eW6XwVq0Jik4wV95fMokWLBADx448/SsdCQ0NFaGhokccYNmyYCA4Olq5HR0cLAKJOnTqiV69eYvPmzWLz5s2iWbNmwsPDQyQlJZVar9DQUAGg1EvB+pj+IvT19RVqtVq4urqK8PBwsXfvXrPHvnr1qgAgxo8fL6ZNmyaVb9KkiVi+fLlZ2bfeeksAEGlpaUXq6O3tLQYPHlzqa7EkODhY9OnTR+Tm5ha5FEz758+fF66uruLpp58WQuS1MnTt2lX4+vqKmzdvSuWGDRsm7O3tRe3atcXMmTPF9u3bRUREhNBoNKJv375mzz1q1Cih1WrFpEmTRGRkpFi7dq1o1KiR8PPzE3FxcVK50NBQ4enpKYKCgsTChQvFzp07xe7du6XbCp570/95cHCw6Nevn/j555/F6tWrhZ+fn2jQoIEYOnSoGDFihPj111/Fl19+KVxcXES/fv3M6mVqNRsxYoT4+eefxcaNG0X79u2Fs7OzWUua6bU2btxYfPbZZ2LHjh3ivffeEyqVSnzwwQdCiLxWlcjISAFAjBw5Uvz555/izz//FBcvXiz2/2T16tUCgAgPDxeRkZEiOTm52LLFtfBMnjxZABBHjx41O/7GG28IFxcXsWnTJpGcnCyio6PF4MGDhYeHh7hw4YJZ2YyMDFG/fn0xZcqUEp9LCCGioqKEVqsVJ06cEEKUv+UwNDRUeHl5ifr164svv/xSREVFiTFjxggAYsWKFVK5+Ph4UbNmTeHj4yO+/PJLERkZKcaNGycAiNGjRwshSj/3p0+fFu7u7qJZs2Zi5cqVYvv27WLSpEnCzs5ORERESM9l+jwHBQWJJ598Uvz0009i9erVol69esLNzU1cunRJKrtmzRrp/27z5s1i/fr1olWrVsLe3t7s879r1y6h1WpFq1atxPr168XmzZtFeHi4UKlUYt26dVK5wt+LJ0+eFEFBQaJ9+/bFtrRVpJUrVwoA4syZM2bHZ8+eLdRqtXj//ffF77//LiIjI8WCBQvMzltZX2PdunXFpEmTxPbt28Unn3wi1Gq1GDx4sGjZsqWYMWOGiIqKEv/9738FADF37lzp/gaDQfTq1Us4OzuLDz74QERFRYlvvvlG1KxZUzRp0kRkZGRY/Xp79uwpfHx8xNdffy127dolNm/eLN577z2z+i5ZskTMnj1bbN26VezevVusWLFCNG/eXDRs2FDk5ORI5Uyfl4YNG4qPPvpIREVFialTpwoAYty4caJRo0biiy++EFFRUVKLbMHfc2V531lq4bH2e0wIIfR6vXBxcRETJ060+lyVhIGnFKY3/cGDB0Vubq5ITU0VkZGRwt/fX3Tu3Fnk5uZKZcsaeJo1ayb0er10/NChQwKA+O6770qt14ULF8Tx48elX0K//vqrOH78uBgzZoyoW7euOH78uDh+/LjZL4tjx46JN954Q2zatEns2bNHfPvtt6Jx48ZCrVaLyMhIqdyff/4pAAg3NzfRpEkTsWHDBvHbb7+JgQMHCgDi66+/lsqOGjVK6HQ6i3Vs0KCBCA8PL/W1WBIcHFxsiPvoo4/Myq5fv14AEAsWLBDvvfeesLOzE9u3bzcrM2zYMAFAfP7552bHZ86cKQCIffv2mb32gl9cQghx7do14ejoKKZOnSodM4XO33//vUj9iws8zZs3N+v6WbBggQAg+vfvb3b/CRMmCABSqLh69arQaDRi/PjxZuVSU1OFv7+/GDRoUJHXumHDBrOyffr0EQ0bNpSul7VbxWg0itdee03Y2dkJAEKlUonGjRuLN998U0RHR5uVNX3RxcXFidzcXJGYmCg2bNggnJ2dLYZgo9Eo/d+Z/p9r164tjh8/XqTspEmTxEMPPST9wigu8KSmpoo6deqIadOmScfuJ/AAEH/99ZfZ8SZNmoiePXtK101/ABQuN3r0aKFSqcS5c+eEECWf+549e4patWoVCZTjxo0TDg4O4u7du0KI/F88LVu2NPsjICYmRmi1WvHKK68IIfJ+8QYGBopmzZqZvfdSU1OFr6+v6NChg3SsXbt2wtfXV6SmpkrH9Hq9CAkJEbVq1ZKep2DgiYqKEm5ubmLgwIEiMzOz9JNZAUaPHi0cHR2LdHX07dtXtGjRosT7lvU1Fv7MPfXUUwKAmDdvntnxFi1aiJYtW0rXv/vuuyJhQQghDh8+LACIxYsXW/16XVxcxIQJE6wubzQaRW5urrhy5YoAILZs2SLdZvq8FP6Oa9GihQAgNm7cKB3Lzc0VPj4+0h+UQlj/viv4XCZl+R4zefzxx0Xbtm2tfu0lYZeWldq1awetVgtXV1f06tULHh4e2LJlCzSa8o/7fuKJJ8ya4x955BEAwJUrV0q9b7169dCiRQvcuXMHNWvWRK9evdCiRQvExMQgNDQULVq0QIsWLVCvXj3pPo8++igWLFiAp556Cp06dcLLL7+MAwcOICAgAFOnTpXKmZres7Ky8Msvv+DZZ59FeHg4NmzYgJYtW+LDDz80q0tJo/DLO0IfADp27IjDhw8XuYwcOdKs3KBBgzB69GhMmTIFM2bMwNtvv40ePXpYfMwXXnjB7PqQIUMAQGoy/fnnn6FSqfDiiy9Cr9dLF39/fzRv3rzIrBoPDw907drV6tfUp08fs66fxo0bA8h7LxRkOn716lUAwG+//Qa9Xo+XXnrJrF4ODg4IDQ0tUi+VSoV+/fqZHXvkkUesem8VR6VS4csvv8Tly5exePFivPzyy8jNzcX8+fPRtGlT7N69u8h9/P39odVq4eHhgUGDBqFVq1ZYsWJFkXIzZ87EZ599hoiICOzcuRNbtmxBw4YN0aNHD7Om7kOHDmHBggX46quv4OjoWGJ933rrLWi1Wrz33nvlfs2FX0vhruLC5/SPP/5AkyZNipQbPnw4hBD4448/SnyOrKws/P777xgwYACcnJzM/q/79OmDrKysIt3eQ4YMMfucBQcHo0OHDtJ7+ty5c7h58yaGDh1q9t5zcXHBM888g4MHDyIjIwPp6en466+/MHDgQLi4uEjl1Go1hg4diuvXr+PcuXNmz71ixQr06dMHr7zyCjZs2GCx+7Ey3Lx5Ez4+PkW+Xx577DH8/fffGDNmDH777TekpKSY3V6e11h4Vl9Jn9mC74Wff/4ZNWrUQL9+/cz+H1u0aAF/f/8yzdB77LHHsHz5csyYMQMHDx60OAM2Pj4er7/+OoKCgqDRaKDVahEcHAwAOHv2bJHyll6XSqVC7969pWMajQb16tWz+L1R2vvOkrJ+jwGAr68vbty4UexjlgVnaVlp5cqVaNy4MVJTU7F+/Xp89dVXGDx4MH799ddyP6aXl5fZddOsqszMzBLvZzQapVCye/dudOrUCXq9HkajEfv378dnn30GvV4PlUpV6viGGjVqoG/fvvjyyy+RmZkJR0dHqV6NGjWSPjBA3i+8nj17Yvbs2YiPj4evry+8vLyQlZWFjIwMODk5mT323bt30apVK+tOhgXu7u7SmI/SjBgxAkuWLIG9vX2xYzU0Gk2Rc+7v7w8gb3wKkDc2QAgBPz8/i4/x0EMPmV0PCAiwqn4mnp6eZtft7e1LPJ6VlSXVC4A0E6+wwuNnnJycivzy0el00uPdj+DgYIwePVq6vmHDBgwePBhTpkzBoUOHzMru2LED7u7uuHv3Lr7++mv8+OOPGD9+PL788kupzNmzZ/Hee+9hzpw5mDx5snS8d+/eaNKkCSZOnCh9iY4YMQJPP/00WrdujaSkJAD55yglJQU6nQ6urq44dOgQFi9ejI0bNyIrK0sqYzQaodfrkZSUBEdHx2JnMlpS+L0D5J3Tgp/XhIQEs/F6JoGBgdLtJUlISIBer8fChQuxcOFCi2UKj8kwvYcLH/v777/NntPSezUwMBBGoxGJiYkQeS3+xZazVP9169bB0dERr7zyyn39cVNWmZmZFsPVtGnT4OzsjNWrV+PLL7+EWq1G586d8cknn6B169bS6yzLayzLZ7bg5+vWrVtISkqSyhdW2jIKBa1fvx4zZszAN998g+nTp8PFxQUDBgzAnDlz4O/vD6PRiPDwcNy8eRPTp09Hs2bN4OzsDKPRiHbt2ln8nWKp/pa+N+zt7YsER6D0950lZf0eAwAHB4dSfydai4HHSo0bN5Z++Xbp0gUGgwHffPMNfvjhBwwcOBBA3n9MwcGzJmV5Y1tjxIgRRf5KXrdunfTzqFGjMGrUKAQHByMmJqbUxxNCAMhvjXn44YeLhJfCZU1vzGbNmgEATp48ibZt20rl4uLicOfOnSLT3StDeno6hg4digYNGuDWrVt45ZVXsGXLliLl9Ho9EhISzH5xmdaEMR3z9vaGSqXC3r17Lf4yLHzsQX3Je3t7AwB++OEHsxBaFQwaNAizZ8/GqVOnitzWvHlzqe49evRAz5498fXXX2PkyJHSl97ff/9ttqyCiVarRfPmzc1ajk6fPo3Tp0/j+++/L/JcDz/8MJo3b44TJ07gzJkzEEJgwIABRcpdu3YNHh4emD9/PiZMmHA/L70ILy8vxMbGFjlumjZvOhfF8fDwkFobxo4da7FM3bp1za5bWtcoLi5Oek+b/i2uXnZ2dvDw8IAQAnZ2dmWq/5o1azB9+nSEhoZi+/btaNGiRYmvr6J4e3vj2LFjRY5rNBpMnDgREydORFJSEnbs2IG3334bPXv2lP7fy/oa76eOXl5eiIyMtHi7q6trmR5rwYIFWLBgAa5evYqtW7firbfeQnx8PCIjI3Hq1Cn8/fffWL58OYYNGybd7+LFi/f9OopT2vvOkvJ8j929e7fC/k/YpVVOc+bMgYeHB9577z2ptaVOnTo4f/682YJ/CQkJpS6eVlYRERE4fPgwli1bBgD49ddfcfjwYbz66quoX7++1PXz008/lfpYiYmJ+Pnnn9GiRQsp2Ws0Gjz55JM4e/asWWASQiAyMhIPP/yw9Abs1asXHBwcsHz5crPHNc1weOqppyrkNZfk9ddfx9WrV7Fx40YsXboUW7duxfz58y2WXbNmjdn1tWvXAshfC6Vv374QQuDGjRto3bp1kYsp4D1oPXv2hEajwaVLlyzWy9qWsIKsbVE0sfRLAshbD+fatWvSX8jFUalU+L//+z+o1Wq8++670nHT/Qp31WRnZ+PYsWOoVauWdGznzp1FLqYv+M2bN+Obb74BkPe+tFTWz88P7dq1w86dO6U/VCpSt27dcObMmSK/jFeuXAmVSiWtf1XcuXdyckKXLl1w/PhxPPLIIxb/nwv/Qvnuu++kP0SAvC7xAwcOSO/phg0bombNmli7dq1ZufT0dPz444/SzC1nZ2e0bdsWGzduNKuX0WjE6tWrUatWLTRo0MDsuT09PbFjxw40btwYXbp0Kdcs0/Jo1KgREhISLP6BaVKjRg0MHDgQY8eOxd27dxETE1Ou11heffv2RUJCAgwGg8X/x4YNG5brcWvXro1x48ahR48e0vvM9IdX4T/Ivvrqq/t7ESUo7X1nSXm+xy5fvowmTZpUSJ3ZwlNOHh4emDZtGqZOnYq1a9fixRdfxNChQ/HVV1/hxRdfxKhRo5CQkIA5c+ZU+GJnderUQZ06dfDLL78gJCREWml0woQJePLJJ4v95TdkyBDUrl0brVu3hre3Ny5cuIC5c+fi1q1bRQLLRx99hF9//RW9evVCREQE3Nzc8M033+Dvv//Ghg0bpHKenp549913MX36dHh6ekoLD0ZEROCVV14xe6PGxMSgbt26GDZsWJHnsyQpKcniF6hOp8Ojjz4KAPjmm2+wevVqLFu2DE2bNkXTpk0xbtw4/Pe//8Xjjz9uNpbC3t4ec+fORVpaGtq0aYMDBw5gxowZ6N27Nzp27Aggb7HDV199FS+//DKOHDmCzp07w9nZGbGxsdi3bx+aNWtm1p3zoNSpUwcffvgh3nnnHVy+fFkaR3br1i0cOnQIzs7O0kJ21nJ1dUVwcDC2bNmCbt26wdPTE97e3ha7ZIC8cTb79+/Hc889J03Zj46OxqJFi5CQkIBPP/201OesX78+Xn31VSxevBj79u1Dx44d0bFjR7Rp0wYRERHIyMhA586dkZycjIULFyI6OhqrVq2S7m/py9TU7//4449LQdzf399ik7uDgwO8vLwqbbG/N998EytXrsQTTzyBDz/8EMHBwdi2bRsWL16M0aNHS79MSzr3n3/+OTp27IhOnTph9OjRqFOnDlJTU3Hx4kX89NNPRcYBxcfHY8CAARg1ahSSk5Px/vvvw8HBAdOmTQOQ1xo7Z84cvPDCC+jbty9ee+01aWXrpKQkfPzxx9JjzZ49Gz169ECXLl0wefJk2NvbY/HixTh16hS+++47iy2arq6uiIyMxNNPP40ePXpg69atRRY2rWhhYWEQQuCvv/5CeHi4dLxfv34ICQlB69at4ePjgytXrmDBggUIDg5G/fr1y/0ay+P555/HmjVr0KdPH7zxxht47LHHoNVqcf36dezcuRNPPvmkxRbIwpKTk9GlSxcMGTIEjRo1gqurKw4fPiydcyAvAD788MN46623IISAp6cnfvrpJ0RFRVXIa7GktPedJWX9HktISMCFCxcwfvz4iql0hQx9lrGSFtjKzMwUtWvXFvXr15dmW61YsUI0btxYODg4iCZNmoj169cXO0vr008/LfKYKMOsmZYtW0ozUG7fvi3s7OykadGWzJ49W7Ro0UK4u7sLtVotfHx8xIABA8ShQ4cslj958qR44oknhKurq3BwcBDt2rUTP/30k8Wyn3/+uWjQoIE09fv99983mwppejwA4q233ir1tZU0S6tmzZpCCCH++ecf4ejoKIYNG2Z236ysLNGqVStRp04dkZiYKITIm7nk7Ows/vnnHxEWFiYcHR2Fp6enGD16tMUp9d9++61o27atcHZ2Fo6OjuLhhx8WL730kjhy5IhUJjQ0VDRt2tRi/YubpVX4/7y4xeOKe99t3rxZdOnSRbi5uQmdTieCg4PFwIEDxY4dO6QyptdamKUpojt27BCPPvqo0Ol0AkCRc1nQwYMHxdixY0Xz5s2Fp6en9B7q1auX+OWXXyw+l6Upyrdu3RIuLi6iS5cu0rGkpCTxzjvviMaNGwsnJyfh6+srwsLCijyuJSU9V2H3M0vL0v914c+2EEJcuXJFDBkyRHh5eQmtVisaNmwoPv30U7MZUkKUfO6jo6PFiBEjRM2aNYVWqxU+Pj6iQ4cOYsaMGVIZ03tn1apV4j//+Y/w8fEROp1OdOrUyex9arJ582bRtm1b4eDgIJydnUW3bt3E/v37i5Tbu3ev6Nq1q/Tet/S5t/T+zM7OFs8884xwcHAQ27ZtK/F83i+DwSDq1KkjxowZY3Z87ty5okOHDsLb21v6Lho5cqSIiYkxK1fe1yhE8e83S5+73Nxc8dlnn4nmzZsLBwcH4eLiIho1aiRee+21IsstFCcrK0u8/vrr4pFHHhFubm7C0dFRNGzYULz//vtmC52eOXNG9OjRQ7i6ugoPDw/x7LPPSkuMFPydUpb6C1H0vV+W911xCw9a8z0mhBBLly4VWq3WbDmQ+6ESokCbFFElWrx4MaZOnYpLly4VOyi4sgwfPhw//PAD0tLSHujzElHlmDt3LmbOnIkbN26UOmOPKs6uXbvQpUsXfP/995XSLVxQp06dULt27SJDEcqLY3jogdm5cyf+85//PPCwQ0TyM3bsWLi7uxe7AjVVb3v27MHhw4fx0UcfVdhjcgwPPTCWZtYQ2ZLBYEBJjdzWLO1ARQkhpG1diqNSqe7r3Ds4OGDVqlVWb2dQFRVcYqQ497PWW3WWkJCAlStXFlkK5H6wS4uIFCssLMzigokm1i7tQOZM3R4lCQ4OLnEhzOIWopOTiIiIUicbREdHFzuRgMqGgYeIFOvcuXNITU0t9nadTmezpQiqs9TU1CIrFheWnp4OZ2fnYm93dXUt99Tt6uLmzZvS+j/FeeSRR4pdvJDKhoGHiIiIZI+DlomIiEj2lDkaqhCj0YibN2/C1dX1ge4HQ0REROUnhEBqaioCAwMt7sVVEAMP8vpRg4KCbF0NIiIiKodr166ZbUNjCQMP8jdxu3btWoVvA0FERESVIyUlBUFBQVZtxsrAg/yN19zc3Bh4iIiIqhlrhqNw0DIRERHJHgMPERERyR4DDxEREckeAw8RERHJHgMPERERyR4DDxEREckeAw8RERHJHgMPERERyR4DDxEREckeAw8RERHJHgMPERERyR4DDxEREckeAw8RKUZWrgFCCFtXg4hsgIGHiBThSkI6mn+wHdO3nLJ1VYjIBhh4iEgRDsckIltvxN/Xkm1dFSKyAQYeIlKEG4mZAAC9kV1aRErEwENEinAjKQMAYDAabVwTIrIFmwae2bNno02bNnB1dYWvry+eeuopnDt3zqzM8OHDoVKpzC7t2rUzK5OdnY3x48fD29sbzs7O6N+/P65fv/4gXwoRVXE3ktjCQ6RkNg08u3fvxtixY3Hw4EFERUVBr9cjPDwc6enpZuV69eqF2NhY6fLLL7+Y3T5hwgRs2rQJ69atw759+5CWloa+ffvCYDA8yJdDRFXYzaQsAICBgYdIkTS2fPLIyEiz68uWLYOvry+OHj2Kzp07S8d1Oh38/f0tPkZycjKWLl2KVatWoXv37gCA1atXIygoCDt27EDPnj0r7wUQUbVgNIr8Fh4DAw+RElWpMTzJyXmzJzw9Pc2O79q1C76+vmjQoAFGjRqF+Ph46bajR48iNzcX4eHh0rHAwECEhITgwIEDFp8nOzsbKSkpZhcikq876dnI0eeN3TFyHR4iRaoygUcIgYkTJ6Jjx44ICQmRjvfu3Rtr1qzBH3/8gblz5+Lw4cPo2rUrsrOzAQBxcXGwt7eHh4eH2eP5+fkhLi7O4nPNnj0b7u7u0iUoKKjyXhgR2ZypOwvgGB4ipbJpl1ZB48aNwz///IN9+/aZHX/uueekn0NCQtC6dWsEBwdj27ZtePrpp4t9PCEEVCqVxdumTZuGiRMnStdTUlIYeohkzDQlHeAYHiKlqhItPOPHj8fWrVuxc+dO1KpVq8SyAQEBCA4OxoULFwAA/v7+yMnJQWJiolm5+Ph4+Pn5WXwMnU4HNzc3swsRyZdpSjoA6A2clk6kRDYNPEIIjBs3Dhs3bsQff/yBunXrlnqfhIQEXLt2DQEBAQCAVq1aQavVIioqSioTGxuLU6dOoUOHDpVWdyKqPgp2abGFh0iZbNqlNXbsWKxduxZbtmyBq6urNObG3d0djo6OSEtLQ0REBJ555hkEBAQgJiYGb7/9Nry9vTFgwACp7MiRIzFp0iR4eXnB09MTkydPRrNmzaRZW0SkbNcLdGlxDA+RMtk08CxZsgQAEBYWZnZ82bJlGD58ONRqNU6ePImVK1ciKSkJAQEB6NKlC9avXw9XV1ep/Pz586HRaDBo0CBkZmaiW7duWL58OdRq9YN8OURURZmmpANs4SFSKpUQnKOZkpICd3d3JCcnczwPkQw9EvEbUrL00vXo2X2KndRARNVHWX5/V4lBy0RElSU1K9cs7AAAG3mIlIeBh4hkzTRgWavOb9HRcwNRIsVh4CEiWTNNSQ/ycJKOcRwPkfIw8BCRrN2418IT5JkfeDhTi0h5GHiISNZMqywHexVo4eEGokSKw8BDRLJmmpIe5OEE08QstvAQKQ8DDxHJ2s17gaemhyM0dnmJh2N4iJSHgYeIZM3UpRVYwxHqe4GHs7SIlIeBh4hkK0dvxK3UvEHLNWs4Qn2vT4t5h0h5GHiISLZupWRBCMBeYwdvF3u28BApGAMPEclWtt4AAHCyV0OlUkGjzvvK4xgeIuVh4CEi2TLlGrt7XVn5LTwMPERKw8BDRLJlaskxBR7O0iJSLgYeIpItozAFnrzrbOEhUi4GHiKSrXt5Rwo6+S08HLRMpDQMPEQkW4W7tKQWHm4tQaQ4DDxEJFtSl9a9bzqNHWdpESkVAw8RyVb+GB7O0iJSOgYeIpItU64xrbCsUXOWFpFSMfAQkWyZgo2Ks7SIFI+Bh4hkq3CXFmdpESkXAw8RyZYp15hadtjCQ6RcDDxEJFumFh6V1MLDWVpESsXAQ0SyZQo89/YMhR23liBSLAYeIpKt4sbwsEuLSHkYeIhItkxjeAqvw8MWHiLlYeAhItkyFNo8lC08RMrFwENEsiWkMTyFWngMnJZOpDQMPEQkW6Zco+IYHiLFY+AhItmSZmlJY3g4LZ1IqRh4iEi2iu6WzhYeIqVi4CEi2SqyWzo3DyVSLAYeIpItQ6Fp6WzhIVIuBh4iki1joWnpam4eSqRYDDxEJFuFp6WzhYdIuRh4iEi2Ck9Ll2ZpGRh4iJSGgYeIZKvwtHS28BApFwMPEclW4Wnp3EuLSLkYeIhItozGQtPSTYFHMPAQKQ0DDxHJlmmoTpHAwzE8RIrDwENEsiW4WzoR3cPAQ0SyZRqrY1d4t3Suw0OkOAw8RCRbxkJdWmzhIVIuBh4ikq0iu6WruVs6kVIx8BCRbEmztLhbOpHiMfAQkWwV7tLiOjxEysXAQ0SyZRDm6/CwhYdIuRh4iEi2Cm8eyllaRMrFwENEsmXqulJJ6/DkfeXpufAgkeIw8BCRbJl6rtQcw0OkeAw8RCRb+ZuHcgwPkdIx8BCRbBkLdWmp1WzhIVIqBh4iki1DoYUH2cJDpFwMPEQkW6LwOjwqztIiUioGHiKSrcJjeDhomUi5bBp4Zs+ejTZt2sDV1RW+vr546qmncO7cObMyQghEREQgMDAQjo6OCAsLw+nTp83KZGdnY/z48fD29oazszP69++P69evP8iXQkRVkLRbumlaOsfwECmWTQPP7t27MXbsWBw8eBBRUVHQ6/UIDw9Henq6VGbOnDmYN28eFi1ahMOHD8Pf3x89evRAamqqVGbChAnYtGkT1q1bh3379iEtLQ19+/aFwWCwxcsioiqi6LT0e+vwMPAQKY7Glk8eGRlpdn3ZsmXw9fXF0aNH0blzZwghsGDBArzzzjt4+umnAQArVqyAn58f1q5di9deew3JyclYunQpVq1ahe7duwMAVq9ejaCgIOzYsQM9e/Z84K+LiKqG/M1DzQcts4WHSHmq1Bie5ORkAICnpycAIDo6GnFxcQgPD5fK6HQ6hIaG4sCBAwCAo0ePIjc316xMYGAgQkJCpDKFZWdnIyUlxexCRPJjLLSXlpqztIgUq8oEHiEEJk6ciI4dOyIkJAQAEBcXBwDw8/MzK+vn5yfdFhcXB3t7e3h4eBRbprDZs2fD3d1dugQFBVX0yyGiKiB/89C862zhIVKuKhN4xo0bh3/++QffffddkdtUplXD7hFCFDlWWEllpk2bhuTkZOly7dq18leciKqsItPSTS08Bk5LJ1KaKhF4xo8fj61bt2Lnzp2oVauWdNzf3x8AirTUxMfHS60+/v7+yMnJQWJiYrFlCtPpdHBzczO7EJH8GIqM4bEzO05EymHTwCOEwLhx47Bx40b88ccfqFu3rtntdevWhb+/P6KioqRjOTk52L17Nzp06AAAaNWqFbRarVmZ2NhYnDp1SipDRMpkLNSlZdpagmN4iJTHprO0xo4di7Vr12LLli1wdXWVWnLc3d3h6OgIlUqFCRMmYNasWahfvz7q16+PWbNmwcnJCUOGDJHKjhw5EpMmTYKXlxc8PT0xefJkNGvWTJq1RUTKZOrSUnOWFpHi2TTwLFmyBAAQFhZmdnzZsmUYPnw4AGDq1KnIzMzEmDFjkJiYiLZt22L79u1wdXWVys+fPx8ajQaDBg1CZmYmunXrhuXLl0OtVj+ol0JEVZBB2jy06Cwta8YCEpF82DTwCFH6X1kqlQoRERGIiIgotoyDgwMWLlyIhQsXVmDtiKi6MxazeWjebYCaeYdIMarEoGUiospQZAxPgcCj5waiRIrCwENEsmUaqlN4lhbAcTxESsPAQ0Sylb95aF7gKZB3OFOLSGEYeIhItqQxPPe+6Qq28BgZeIgUhYGHiGSr8F5aBYbwsIWHSGEYeIhItkzjkk3Tz1UqFdfiIVIoBh4iki1DoWnpAHdMJ1IqBh4iki1RaFo6UGC1ZQMDD5GSMPAQkWwVnpYOFGzh4To8RErCwENEslV4WjoAaNTcMZ1IiRh4iEi2RKFp6Xk/cwwPkRIx8BCRbJkGLRfcJJSztIiUiYGHiGTLNEyHs7SIiIGHiGSr8MKDQMEWHg5aJlISBh4ikq3Cu6UDBVp4OC2dSFEYeIhItqRZWnYFW3g4S4tIiRh4iEi2hGkdHo7hIVI8Bh4ikq3Cu6Xn/cxZWkRKxMBDRLJlaVo6Aw+RMjHwEJFsWZqWrmGXFpEiMfAQkWxZmpbOFh4iZWLgISLZkgJPgW86jZqbhxIpEQMPEcmW4V6mMW/h4bR0IiVi4CEi2crfPJRjeIiUjoGHiGTLUMJKy2zhIVIWBh4iki2jsfjd0tnCQ6QsDDxEJFumTGNpt3SDgYOWiZSEgYeIZKuk3dLZwkOkLAw8RCRblqalc5YWkTIx8BCRbBktTEtnCw+RMjHwEJFsGS1MS1erOUuLSIkYeIhItvI3D80/xhYeImVi4CEiWRJCQFiYpWXq3jJwawkiRWHgISJZKtiAwzE8RMTAQ0SyZBq/AxTaS+veGB4jAw+RojDwEJEsFRyUbLZbOlt4iBSJgYeIZEkU06XFdXiIlImBh4hkqWCXFndLJyIGHiKSJUOBwKOytFu6gYGHSEkYeIhIlkSBWedqztIiUjwGHiKSJUNxs7TsuA4PkRIx8BCRLJlNS+cYHiLFY+AhIlkyrbNTIOsAANRqztIiUiIGHiKSJVOeKdidBbCFh0ipGHiISJZMY3jsCjXx5I/hYeAhUhIGHiKSpeK6tNjCQ6RMDDxEJEumQctqVXEtPJylRaQkDDxEJEvFjeExBR49Fx4kUhQGHiKSJWMxY3g0HMNDpEgMPEQkS8VOSzdtHioYeIiUhIGHiGTJ1ICjZgsPEYGBh4hkyhRoVBzDQ0Rg4CEimSpulhZbeIiUiYGHiGRJGrRcZAyPaR0eTksnUhIGHiKSJVMDTuEuLY2aLTxESmTTwLNnzx7069cPgYGBUKlU2Lx5s9ntw4cPh0qlMru0a9fOrEx2djbGjx8Pb29vODs7o3///rh+/foDfBVEVBWZAk3hQcumWVpcaZlIWWwaeNLT09G8eXMsWrSo2DK9evVCbGysdPnll1/Mbp8wYQI2bdqEdevWYd++fUhLS0Pfvn1hMBgqu/pEVIWJYrq0OIaHSJk0tnzy3r17o3fv3iWW0el08Pf3t3hbcnIyli5dilWrVqF79+4AgNWrVyMoKAg7duxAz549K7zORFQ9SCstF7N5KFt4iJSlyo/h2bVrF3x9fdGgQQOMGjUK8fHx0m1Hjx5Fbm4uwsPDpWOBgYEICQnBgQMHin3M7OxspKSkmF2ISF4M0sKDnKVFRFU88PTu3Rtr1qzBH3/8gblz5+Lw4cPo2rUrsrOzAQBxcXGwt7eHh4eH2f38/PwQFxdX7OPOnj0b7u7u0iUoKKhSXwcRPXiilM1D9QbO0iJSkjJ3acXExGDv3r2IiYlBRkYGfHx88Oijj6J9+/ZwcHCo0Mo999xz0s8hISFo3bo1goODsW3bNjz99NPF3k8IUWRmRkHTpk3DxIkTpespKSkMPUQyY9o6ovBXgca0tQRbeIgUxerAs3btWnzxxRc4dOgQfH19UbNmTTg6OuLu3bu4dOkSHBwc8MILL+C///0vgoODK6WyAQEBCA4OxoULFwAA/v7+yMnJQWJiolkrT3x8PDp06FDs4+h0Ouh0ukqpIxFVDcVtLaFWcwwPkRJZ1aXVsmVLzJs3Dy+++CJiYmIQFxeHo0ePYt++fThz5gxSUlKwZcsWGI1GtG7dGt9//32lVDYhIQHXrl1DQEAAAKBVq1bQarWIioqSysTGxuLUqVMlBh4ikj9jMWN4TF1cbOEhUharWng++ugjPPHEE8XertPpEBYWhrCwMMyYMQPR0dFWPXlaWhouXrwoXY+OjsaJEyfg6ekJT09PRERE4JlnnkFAQABiYmLw9ttvw9vbGwMGDAAAuLu7Y+TIkZg0aRK8vLzg6emJyZMno1mzZtKsLSJSptJXWmbgIVISqwLPE088gdu3b8PHx6fUst7e3vD29rbqyY8cOYIuXbpI103jaoYNG4YlS5bg5MmTWLlyJZKSkhAQEIAuXbpg/fr1cHV1le4zf/58aDQaDBo0CJmZmejWrRuWL18OtVptVR2ISJ6kWVrF7JYO5LUCFb6diOTJ6jE8NWvWRP/+/TFy5Ej06tWrxEHB1goLC5NmUljy22+/lfoYDg4OWLhwIRYuXHjf9SEi+ZDW4SncpaXOv643Ctgz8BApgtXT0lesWIGUlBT069cPQUFBmD59Oi5dulSZdSMiKrfSdksHOI6HSEmsDjyDBw/G9u3bER0djVGjRmHNmjVo0KABunTpgjVr1iArK6sy60lEVCbGYqalF5y1xR3TiZSjzAsPBgUF4f3338fly5exfft21KxZE6+++ioCAgIwZsyYyqgjEVGZFTct3bQOD8AWHiIlua+Vlrt164bVq1dj5cqVsLOzw1dffVVR9SIiui/FTUsvmH84U4tIOcq9eWhMTAyWLVuGFStW4Pr16+jSpQtGjhxZkXUjIio3aVp6oRYelUoFjZ0KeqNgCw+RgpQp8GRlZeH777/HsmXLsGfPHtSsWRPDhw/Hyy+/jDp16lRSFYmIyi5/89Cit6nvBR628BAph9WB59VXX8WGDRuQlZWFJ598Etu2bUN4eHiFTE8nIqpophUvCs/SAvJmamUDMBgYeIiUwurAc/DgQXzwwQcYOnQoPD09K7NORET3LX/z0KKBJ3+1Zc7SIlIKqwPPP//8U+LtsbGxWLVqFaZOnXrflSIiul/FbS0BABo1d0wnUpoyD1oeMWKExeNXrlzBoUOHGHiIqEowzdIqPC294DGO4SFSjjIHnsTERLPrBoMBly9fxtmzZ7F48eIKqxgR0f0obmsJIH+1ZbbwEClHmQPPpk2bLB6fOXMmNm/ejNdee+2+K0VEdL+Km5YO5IcgtvAQKcd9LTxY0ODBg7Fr166KejgiovtS0rR0jdrUwsNBy0RKUWGB5++//8ajjz5aUQ9HRHRfSpqWLo3h4bR0IsUoc5fWxIkTixyLi4vD1q1b8cQTT5jdPm/evPurHRFROZU0LV0awyMYeIiUosyB5/jx4xaPt2nTBvHx8YiPjwdg+UuGiOhBMY3hUVtox1bbcVo6kdKUOfDs3LmzMupBRFShits8FMhv4eGgZSLlqLAxPEREVYkpy5S00jK3liBSDqsCT69evXDgwIFSy6WmpuKTTz7B//3f/913xYiI7ofBWHyXFlt4iJTHqi6tZ599FoMGDYKrqyv69++P1q1bIzAwEA4ODkhMTMSZM2ewb98+/PLLL+jbty8+/fTTyq43EVGJhCi+S0vNhQeJFMeqwDNy5EgMHToUP/zwA9avX4///e9/SEpKApDXXNykSRP07NkTR48eRcOGDSuzvkREVjGUEHhM6/Bw81Ai5bB60LK9vT2GDBmCIUOGAACSk5ORmZkJLy8vaLXaSqsgEVF5lLS1BGdpESlPmWdpmbi7u8Pd3b0i60JEVGFKmpbOMTxEysNZWkQkSyVNS+cYHiLlYeAhIlmSurQsbKbFFh4i5WHgISJZKmnz0Px1eDhomUgprA48er2+MutBRFShTNPSS9w8lC08RIphdeAJCAjA5MmTcfbs2cqsDxFRhShp81CO4SFSHqsDz8SJE/HTTz8hJCQE7du3x9KlS5GWllaZdSMiKreSpqVzDA+R8lgdeKZNm4Zz585h165daNSoESZMmICAgAC8/PLL2L9/f2XWkYiozIwlbC1hWofHyMBDpBhlHrTcqVMnLFu2DHFxcViwYAEuXryITp06oWHDhpgzZ05l1JGIqMyMJXRpsYWHSHnKPUvL2dkZI0eOxN69e/HTTz/hzp07mDZtWkXWjYio3ExZRm1hmhbH8BApT7kDT0ZGBpYtW4bOnTujf//+8PLywsyZMyuybkRE5WYsYVo6W3iIlKfMW0vs3bsXy5Ytww8//ACDwYCBAwdixowZ6Ny5c2XUj4ioXIwl7ZauNrXwcB0eIqWwOvDMmjULy5cvx6VLl9C6dWt8+umnGDx4MNzc3CqzfkRE5WLgLC0iKsDqwDN//ny8+OKLGDlyJEJCQiqzTkRE9y1/81Dulk5EZQg8N2/ehFartfqBmzVrhl9++QVBQUHlqhgR0f3gGB4iKsjqQctlCTsAEBMTg9zc3DJXiIioIpQ0LT1/Ly0GHiKl4OahRCRLpn1BLXVpsYWHSHkYeIhIloQofbd0PWdpESkGAw8RyZKhhGnp9pq8r75cAwMPkVIw8BCRLJW0eaj9vQ22cvQMPERKwcBDRLIkSpiWrtPmffVlM/AQKUaFBp4bN25IP3/11Vfw8/OryIcnIrKaaY0dCw08sFerATDwEClJhQSeuLg4jB8/HvXq1ZOODRkyBM7OzhXx8EREZVbSwoOmMTzs0iJSDqsDT1JSEl544QX4+PggMDAQX3zxBYxGI9577z089NBDOHjwIL799tvKrCsRkdVME7AsjeHRadilRaQ0Vq+0/Pbbb2PPnj0YNmwYIiMj8eabbyIyMhJZWVn49ddfERoaWpn1JCIqk5I2D81v4TE80DoRke1YHXi2bduGZcuWoXv37hgzZgzq1auHBg0aYMGCBZVYPSKi8jGUsA4PW3iIlMfqLq2bN2+iSZMmAICHHnoIDg4OeOWVVyqtYkRE96PEaekcw0OkOFYHHqPRaLafllqt5qBkIqqyTJuHWpyWbgo8XHiQSDGs7tISQmD48OHQ6XQAgKysLLz++utFQs/GjRsrtoZEROWQv3lo0dt0mnvT0nMZeIiUwurAM2zYMLPrL774YoVXhoioopi6tEqcls4WHiLFsDrwLFu2rDLrQURUoUxdWiVNSzcYBfQGIzRqLjpPJHf8lBORLFkzLR1gKw+RUtg08OzZswf9+vVDYGAgVCoVNm/ebHa7EAIREREIDAyEo6MjwsLCcPr0abMy2dnZGD9+PLy9veHs7Iz+/fvj+vXrD/BVEFFVVNK0dPsCLTqcqUWkDDYNPOnp6WjevDkWLVpk8fY5c+Zg3rx5WLRoEQ4fPgx/f3/06NEDqampUpkJEyZg06ZNWLduHfbt24e0tDT07dsXBgMXFCNSMlHCGB6N2k46zrV4iJTB6jE8laF3797o3bu3xduEEFiwYAHeeecdPP300wCAFStWwM/PD2vXrsVrr72G5ORkLF26FKtWrUL37t0BAKtXr0ZQUBB27NiBnj17PrDXQkRVS/7moRaaeJDXypNpNLCFh0ghquwYnujoaMTFxSE8PFw6ptPpEBoaigMHDgAAjh49itzcXLMygYGBCAkJkcoQkTIZS+jSAgCd1rTaMluDiZTApi08JYmLiwMA+Pn5mR338/PDlStXpDL29vbw8PAoUsZ0f0uys7ORnZ0tXU9JSamoahNRFVHSwoNA/jgedmkRKUOVbeExKdwcLYQotona2jKzZ8+Gu7u7dAkKCqqQuhJR1VHS1hIAt5cgUpoqG3j8/f0BoEhLTXx8vNTq4+/vj5ycHCQmJhZbxpJp06YhOTlZuly7dq2Ca09EtmYoYVo6wA1EiZSmygaeunXrwt/fH1FRUdKxnJwc7N69Gx06dAAAtGrVClqt1qxMbGwsTp06JZWxRKfTwc3NzexCRPIiTIGnmG85+3vbS7CFh0gZbDqGJy0tDRcvXpSuR0dH48SJE/D09ETt2rUxYcIEzJo1C/Xr10f9+vUxa9YsODk5YciQIQAAd3d3jBw5EpMmTYKXlxc8PT0xefJkNGvWTJq1RUTKJG0tUUqXFlt4iJTBpoHnyJEj6NKli3R94sSJAPL27Vq+fDmmTp2KzMxMjBkzBomJiWjbti22b98OV1dX6T7z58+HRqPBoEGDkJmZiW7dumH58uVQq9UP/PUQUdVR2rR0HcfwECmKTQNPWFiY1OxsiUqlQkREBCIiIoot4+DggIULF2LhwoWVUEMiqq5M09KLm6UlBR4uUkqkCFV2DA8R0f3I3zzU8u3SoOVctvAQKQEDDxHJktXT0rl5KJEiMPAQkSxJ09JLW3iQLTxEisDAQ0SyJErbWsI0LZ0tPESKwMBDRLJkmqXFaelEBDDwEJFMmcbwlDYtnZuHEikDAw8RyU7B5S6K3TyU6/AQKQoDDxHJjqk7Cyh+DA8DD5GyMPAQkewUyDvFztIyDVrmGB4iZWDgISLZMYqCLTzs0iIiBh4ikqGCgae4WVoctEykLAw8RCQ7BcfwFJN32MJDpDAMPEQkO2ZjeErbLZ0LDxIpAgMPEcmO0Vj6tHRuHkqkLAw8RCQ75oOWLZfh5qFEysLAQ0SyY9o4VKUqaaXle9PS2cJDpAgMPEQkO6YGnuLG7wBs4SFSGgYeIpIdU5dWcVPSAcBezVlaRErCwENEsmOall5C3oFOy3V4iJSEgYeIZMfUpVXcDC0gv4WHW0sQKQMDDxHJjqmFx5oxPAw8RMrAwENEsmMUVnRp3ZullaM3QhSYxk5E8sTAQ0SyIw1aLqlLS5P/9ZdrYOAhkjsGHiKSHaMV09J1BQIPBy4TyR8DDxHJjlVjeNT5X3+cmk4kfww8RCQ7pi6tEnq0YGengladV4ADl4nkj4GHiGTHmmnpgPnAZSKSNwYeIpIda7q0AG4vQaQkDDxEJDtSl1Yp33CmgcvcQJRI/hh4iEh28sfwWNvCw1laRHLHwENEsmOall7S5qFAge0l2MJDJHsMPEQkO9ZsHgoU2ECUY3iIZI+Bh4hkx+ourXstPJylRSR/DDxEJDvGe/nF2mnpXIeHSP4YeIhIdvI3D7Vy0DIDD5HsMfAQkewYpM1DSy5nCjzcS4tI/hh4iEh2hJVjeHRs4SFSDAYeIpId0xgeq9fhYeAhkj0GHiKSHYMVm4cCBVZaZuAhkj0GHiKSHSGN4eHmoUSUh4GHiGTHtI6g1bO0uPAgkewx8BCR7BjL2qWVy1laRHLHwENEsmO0sktLWmmZLTxEssfAQ0SyU9bd0rl5KJH8MfAQkewYrJyWLnVpsYWHSPYYeIhIdqwdw2PPWVpEisHAQ0SyY/20dK7DQ6QUDDxEJDtlnpbOvbSIZI+Bh4hkR5qlZe2gZbbwEMkeAw8RyY40hqeUbzhuHkqkHAw8RCQ7RmPZpqUz8BDJHwMPEcmOIS/vWDEtPW+WFru0iOSPgYeIZEeUcWsJtvAQyR8DDxHJjsHUpVXa1hLSoGXO0iKSOwYeIpIdo9VdWmzhIVKKKh94IiIioFKpzC7+/v7S7UIIREREIDAwEI6OjggLC8Pp06dtWGMisrWyTkvn5qFE8lflAw8ANG3aFLGxsdLl5MmT0m1z5szBvHnzsGjRIhw+fBj+/v7o0aMHUlNTbVhjIrIlaZZWKd9wpt3Scw1Cug8RyVO1CDwajQb+/v7SxcfHB0Be686CBQvwzjvv4Omnn0ZISAhWrFiBjIwMrF271sa1JiJbsbpLS6uWfmYrD5G8VYvAc+HCBQQGBqJu3bp4/vnncfnyZQBAdHQ04uLiEB4eLpXV6XQIDQ3FgQMHin287OxspKSkmF2ISD4Mwsp1eNT5X4HZuQw8RHJW5QNP27ZtsXLlSvz222/43//+h7i4OHTo0AEJCQmIi4sDAPj5+Zndx8/PT7rNktmzZ8Pd3V26BAUFVeprIKIHy9rNQ7VqFUyZKNvAmVpEclblA0/v3r3xzDPPoFmzZujevTu2bdsGAFixYoVUpvAGgUKIEjcNnDZtGpKTk6XLtWvXKqfyRGQTpmnppTTwQKVSSa08nKlFJG9VPvAU5uzsjGbNmuHChQvSbK3CrTnx8fFFWn0K0ul0cHNzM7sQkXxYO4YH4AaiREpR7QJPdnY2zp49i4CAANStWxf+/v6IioqSbs/JycHu3bvRoUMHG9aSiGzJaGWXFpC/vQRbeIjkTWPrCpRm8uTJ6NevH2rXro34+HjMmDEDKSkpGDZsGFQqFSZMmIBZs2ahfv36qF+/PmbNmgUnJycMGTLE1lUnIhsxWtmlBeQvPsgWHiJ5q/KB5/r16xg8eDDu3LkDHx8ftGvXDgcPHkRwcDAAYOrUqcjMzMSYMWOQmJiItm3bYvv27XB1dbVxzYnIVgxWLjwIcLVlIqWo8oFn3bp1Jd6uUqkQERGBiIiIB1MhIqryRDnG8DDwEMlbtRvDQ0RUGtMYntI2DwW4gSiRUjDwEJHsSLull2EMD1t4iOSNgYeIZMc0Ld2aMTyclk6kDAw8RCQ7+ZuHclo6EeVh4CEi2TFauZcWkL+fVjY3DyWSNQYeIpKd/M1DSy8rdWnlctAykZwx8BCR7JRlWro0aJktPESyxsBDRLJjKMsYHm3e12BWDlt4iOSMgYeIZMdYhi4tP1cHAEBsclZlVomIbIyBh4hkpyybh9b0cAQA3EjKrNQ6EZFtMfAQkewY7w3HUVkxhqeWhxMA4HoiAw+RnDHwEJHsGMuweaiphSc2OVMa+0NE8sPAQ0SyU7YxPDpo7FTINQjEp3IcD5FcMfAQkeyYGmqsmaWlUdvB3z1v4PINdmsRyRYDDxHJTv7moVY08QCoxYHLRLLHwENEslOWLi0AqFmDA5eJ5I6Bh4hkpyzT0oH8gcsMPETyxcBDRLJTlmnpQH6X1vXEjMqqEhHZGAMPEcmOoQzT0gGgVg2O4SGSOwYeIpIdUcYxPKbFB28kZkr3JSJ5YeAhItkpy7R0APB3d4BKBWTrjbiTllOJNSMiW2HgISLZKeu0dHuNHfzd7q3Fw24tIlli4CEi2RHSLC3r71OzBgcuE8kZAw8RyY5p0LK1s7SAAosPcmo6kSwx8BCR7JimpVs7SwvgWjxEcsfAQ0Syk7/ScllaeO7N1OIYHiJZYuAhItkp69YSQP4YHnZpEckTAw8RyY40S6sMiadmgdWWuRYPkfww8BCR7JjySlm6tEwtPOk5BiRn5lZGtYjIhhh4iEh2DOWYlu6gVcPbRQeAA5eJ5IiBh4hkx1iOaekANxEl5RJC4OT1ZGTmGGxdlUrDwENEslOeaekAUM/XBQBw5mZKRVeJqErbeS4e/Rbtw4c/n7Z1VSoNAw8RyU55pqUDQPOgGgCAE9eTK7pKRFXa2dhUAMDhmEQb16TyMPAQkexIgaeM33AtatUAAPx9LYkztUhR4pKzAAAxd9KRozfauDaVg4GHiGTHcO/7uqwtPA39XWGvsUNyZi6uJHAcDylHXEpe4NEbBaLvpNu4NpWDgYeIZEeUs0vLXmOHpoFuAIC/rydVdLWIqixTCw8AnL+VasOaVB4GHiKSnfJMSzdpfq9b68S1pIqrEFEVZ2rhAYALDDxERNWD0Vi+aekA0OLewOW/GXhIIXINRtxJy5aun7+VZsPaVB4GHiKSnXt5p8zT0oH8mVqnbqYg1yDPwZtEBd1OzUbBMfrn49nCQ0RULZR3WjoA1PFygpuDBjl6I87FyfOLn6ggU3eWo1YNALiSkIFsvfwWIGTgISLZKe+0dCCvG0xaj4fdWqQAt+4NWG4c4ApXBw0MRoHLt+U3U4uBh4hkYfXBKxi79hgS0rKllZbL08IDcBwPKYuphcff3QEN/FwByHOmlsbWFSAiul9CCHz62zkkZ+Yi+nY69PcSj9qufIHHNFOLU9NJCUyBx8/NAe6OWhy9kogLMhy4zMBDRNXe9cRMJGfmAgDOxObvg1XOBh48EuQOALgQn4a0bD1cdPyqJPkydWn5uzlAe28tBzm28LBLi4iqvdP3NvsMdHdADSetdLy8XVq+rg6o5eEIIYDNx29USB2JqipLXVoX4uXXwsPAQ0TV3pmbeZt9Pl7PG6tGtIWrgwY1nLRwdSh/y8wrHesCAOZHnUdqVm6F1JOoKrqVkrcGj5+bAxr4uQAAriSkIytXXjO1GHiIqNoztfCE1HRHs1ru2DOlC6LeDIVOoy73Y77QLhgPeTsjIT0Hi3ddqqiqElUpQghpWwl/Nwf4uOrg7qiFUQCXbsurlYeBpxL9dTkBzyw5gCW7LuFifCp3XyaqJKbAY9oHy8PZHj6uuvt6TK3aDtP6NAYALN0XjeuJ3EyU5CclU4/Mey05/u4OUKlUUiuP3AYuM/BUoqgzt3D0SiI+ifwX3eftQZfPdmHGz2dw8HIC9FzBlahCJKRlIy4lCyoV0DjArUIfu3tjX7R7yBM5eiPmRJ6r0McmqgpM43fcHbVwuLfwYP1743iOX020Wb0qAwNPJRrZqS4+eioEoQ18YK+2Q0xCBr7ZF43nvz6IVjN24M31J7Dtn1iODyC6D6bWnbpeznCu4NlUKpUK7z7RBCoVsPXvm7gssyZ+ImnAspuDdKxHYz8AwI/HbkizH+WAcy0rUYC7I4a2C8bQdsFIy9Zj7/nbiDp7C3/8G4+kjFxsOn4Dm47fgFatQruHvNCjiR+6NfZDzRqOtq460QN1Nz0HeoMRvgW+dK116t6A5SaBFdu6YxJS0x1dGvrij3/jse7wNbx9r5uLSA5MU9L93PM/e2ENfdDQzxXnbqVi7V9XMTrsYVtVr0KxhecBcdFp0LtZAOYNaoEj73THhtfa49XOD6GutzNyDQJ7L9zBe1tO4/GP/0Cfz/diXtR5nLyeXGnjfoxGgeSMXFxNyJDdSHyqXq4mZKD7vN3oNm834lOzynz//PE77hVdNcmQx2oDAL4/co2fF5IVUwtPQIE/NlQqFV7t/BAA4Nv90bJ5z7OFxwY0ajs8VtcTj9X1xNt9GuPS7TTsOHMLO87mjfk5E5uCM7Ep+OL3C/B3c0C3xr7o3sQP7R/ykvpYCxJCID3HgMT0HNxNz8HdjBzp58SMHNxNz827fu94YkYOEjNyYbi3pbTaToV6Pi5oGuiGJoFuaBrojiaBbnB31BZ5LqKKlJ6tx6iVR3A3PQcAsGx/DP7bq1GRctcTM7DlxE0IIeCi08Df3QHdGvtBq7bDmUIDlitDl0a+CHR3wM3kLESeisNTj9a06n7X7mZg74U7CPZyQn1fF/i46qAq72qIRJVAWmXZ3bx1tV/zQHy2/Rxik7Ow+fgNPH8v9FdnDDxVwMM+Lng41AWvhT6MhLRs7Dx3GzvO3MKeC7cRl5KFNX9dxZq/rsLJXo3H63nDXmNnFmgS03ORU85B0PZqO+QYjDh3KxXnbqViY4FF1oI8HRES6I6m90JQ00C3cnU5EJnEJWfhUMxdNPBzQX1fV0zccALnbqXCQWuHrFwjVv95BaPDHoabQ17YvnY3A/+38yJ+OHodeqN5a2evpv749NlHEH0nb5PDygw8ajsVnn+sNuZFnceav65YDDxCCLMwcyMpEwO/PCCtcQIAdb2d8b+XWqGer2ul1ZWoLAquslyQvcYOIzvWxYxtZ/H1nssY1DoIduXcqqWqYOCpYrxcdBjYqhYGtqqFrFwD/rycILX+3ErJRtSZW8Xe115jBy9ne3g42cPT2R4ezvbwdNLm/Vvw+L1/azhpodPYITY5C6dvpuD0zWScvpmCMzdTcCMpE9fu5l1+PRUnPYe3i+5eAMoPQbU9nar9B4Eq3y8nY/HfH/9BapYeAOBsr0Z6jgH2ajusHtkWb208iYvxaVj711W8Hvowfj97C6NXH5PCfLuHPBHs6YzU7FxEnbmFyNNxyNbnNbUHuDvAy+X+pqGX5rk2Qfj89ws4HJMoLbu/9cRNnL6ZjPO30nA7NRs9Q/wxvW9j6NRqDP/2EG6lZMPfzQFO9mrEJKQj+k46Bv/vL6x7tR0e9nGp1PoSWSN/leWin5/nH6uNL36/gMt30vHJb/9ias9G5d6fripQCZksDrN48WJ8+umniI2NRdOmTbFgwQJ06tTJqvumpKTA3d0dycnJcHOrvL8S74cQAqdupODApTvQqu0KBBp7eDhr4elsD0etusKayxPTc3AmNj8Enb6Zgsu302C08G5x0WnQJMDUHeYGbxcddFo7OGjVcNCo4WD6WXvvZ42aAamayNEbkZyZK11SMsvXmrj7/G2s/esqgLyWwzupOdLaH5880wzPtamNH45ex+Tv/4aPqw4fP91MCjtt63piSs+GaF3HU3q8749cw5Qf/pGud2/si2+GtbnPV1u611YdwW+nb8HDSYvEDMuzV9wcNKjp4YSzsSnwc9Nh05jHEVjDEXfTczDkfwfxb1wqfF11WP9ae9T1di5yf6NRYMfZW9h2MhYeTvao5+uC+r4uaBzoBjcHLbL1Bvxw9DqW7LqEu+k5GPxYbbzW+SG2vlK5tJ4RhTtpOdj2n44Wx8Et3ReNj34+AwB4vJ4XPn/+UXhX8h8XZVGW39+yCDzr16/H0KFDsXjxYjz++OP46quv8M033+DMmTOoXbv0fsfqEHiqgswcA87GpdxrBcoLQv/GpSJHX/ZfgPZqu/xQdC8EST9r1dCZBSULt2vVcNAUClKFAlbB0KVVqxQ7diJbb5DCSsHwkpyRi+RMfZFAU/B6ZgUPVhwd9jAm9mgAAPjnejIMRoHH6uYFmRy9EaGf7kRscv7A5V5N/bFoyKPQqIvOr5i57Qz+tzcaAPCfbvWlx61Me87fxkvfHgIAaOxU6NrIF50a+KCBrwvs7FT48KczOHkjb9aYq06DDa+3N1sbKCEtG0P+9xfO3UrNm8gQ4o8Bj9ZETQ9HxCZn4UJ8GlYciMHFYvYxqu3phGy9waybDAB0Gjv0DvFH4wA31PdzQS0Pp7xWXEetxXOXrTcg5k4Gzt9KRWauAT0a+8HD2b6iThNVEzl6Ixq8+ysA4Oi73YttJd1y4gambTyJjBwDfFx1GB36MJ5/LAhO9tZ1El1JSMfav65iQMuaaORfsb9jFRd42rZti5YtW2LJkiXSscaNG+Opp57C7NmzS70/A0/55RqMuHQ7DadvpNwLQClIzdIjK9eAzFwDsnKNyM41IEtvQK7Bdm81OxXyw5GmQGiSwpR5eNJpCgepQrcXCFcaOztpV26VClBBlfdvwZ9h2rm74HWVdNxUDgByDEZk5hiQkWNARo4+/+dcAzJz9MjIMRS43YDMXH3+zwXvk5t3rDyBtCCVKu+Xt7uTFu6O2nJt1+Bkr8YrnR5CaAOfEssV/GsyrKEPvh7aGvYay5NJDUaB0auPYvuZW9g0pgMere1R5nqVlRACK/+8glyDEU+2qFlkNWe9wYgVf17Bb6fiMCm8Ado+5FXkMe6kZWPYt4ek2WWWuOo0eK5N3piJC7dScf5WGm4kZUq3+7np8Hrowwj2csLCPy7i+NUki4+jUuUtKGcKP2nZ+ryJDek5Zq219ho79H0kAH0fCYCzvQb2GjvcSsnGmZvJOBuXCp3GDvV9XfGQjzNSs/S4cjcdsUlZsNfYwUWngZujFkEejgj2coaTvRpnY/O+D9Ky9QjycEKwlxNqOGkt/tGhtVPBXpP3GYq5k4EL8Xmv1VFrBxdd3nsuwN0B/u4OcHPUIkdvRLbeABXy7mevsYP63uMahEBsUiau3s1AbHIWdPfq56BVIz1Hj7QsvVmIt1PlP4a9Ou9fncYObg5558zTJa/l3PQct9OyEZuchbtp2dDcK69C3uD7tGw9VCoV/N0cEODuAEd7NbL1RuQajNK5NhoF7qRlIy45C3fSsuGgVcNFp4GjvdriRrd2KsBek/f8BqMRqVl6pGbpYSzwa9tUVzdHLVIyc3E3PQcpBdZ2s1Op4OqggYtOA43aDjl6I3L0BmjUdjAYBd7fehr2ajucm9GrxD8KL9xKxeg1x6QwXsNJiz7NAuDpZA9nnQbxqXlDI87FpcLbxR5tH/JC4wA3RJ25hT3nbwMAXmhbGzMHNCv2OcpDUYEnJycHTk5O+P777zFgwADp+BtvvIETJ05g9+7dRe6TnZ2N7Oz8v5BSUlIQFBTEwFPJDEaBrFxD3kVvzP+5QCjKyjVKx7IKHMsuUDbvWMEyxd9OeQqHloIXN8eix2o42ks/uzhoHli/fUaOHsO+PQQvZx0WPN/C4qzEgoQQSM7MRQ2n6tU6YTQKHI65i80nbuKXk7HI1hsQ4O6IAHcHhDbwwZC2teHqYD5L0tTNnJatR2gDH+ncCCHwV/RdHIq+iwvxabhwKxW3UrKQlJmLkr7dXR00qO/rgowcA/6NS63Ml0tVXJCnI/ZO7VpquaxcA348dh1f77mMKwnWb7WiUgGd6/vg5cfrIKyh7/1UtQhFBZ6bN2+iZs2a2L9/Pzp06CAdnzVrFlasWIFz54ouBx8REYEPPvigyHEGHnkRQiBbb0S2pZBUKHRZLpN/LLtQACsY1gxGAQEBIQAB3PslU/C6kI6bfoal2+7dx15jByd7NZzsNXDUquFkr4ajvTr/mL0aTtJxTaHb1XDUavJ/tlfDVZe3azjHTVVNpq/giu5y1RuMSMzIRWJGDhLScpCcmQtXBw08ne3h7aKDt4s9VCoVhBA4fi0Jaw5exembyfdaUIxwd9RKS1Xk6I24EJ+G6DvpcHPQINjLGTVrOCLXaERalh6JGTm4djcTV+6mIy1Lj4b+rmga6A4PJy2u3s3AlYQMabC62Wu/V88cQ97nKMjDCfX9XBDk4YQcQ16LRlJGDuJSshCXnIXULD1091pkhMhrDc3RG6UWDxUAXzcHBHs5oWYNR+iNAqlZucjKNcLJXg0Xh7zPVF7bal6LUF6LhxE5BoP02k0tJXczcpCZk9eiZDAKeLvo4O/uAG8Xe+gNAjkGI4QAXBw0cNVpkGsQuJWShdjkTGTrjVLLkan1RqXKm5gS4OYAb1d75OiNSMvWIz3bAEu/iI3GvO+wHIMRWjsVXBw0cNZpoL33WTYKICUrr67JmblSa4+7oxamj3uuUeS1QGXpkWsUecMJNHbINRiRfq/FeHCb2hjUJsjq95bBKBB1Jg4nbyQjPduAlKxc1HC0R9NANzQKcMWNxEz8FX0Xp28mo3mtGhjStjaCvYqOV6sIigw8Bw4cQPv27aXjM2fOxKpVq/Dvv/8WuQ9beIiIiKq/sgSeaj8t3dvbG2q1GnFxcWbH4+Pj4efnZ/E+Op0OOl3VGWVORERElavaby1hb2+PVq1aISoqyux4VFSUWRcXERERKVe1b+EBgIkTJ2Lo0KFo3bo12rdvj6+//hpXr17F66+/buuqERERURUgi8Dz3HPPISEhAR9++CFiY2MREhKCX375BcHBwbauGhEREVUB1X7QckXgOjxERETVT1l+f1f7MTxEREREpWHgISIiItlj4CEiIiLZY+AhIiIi2WPgISIiItlj4CEiIiLZY+AhIiIi2WPgISIiItlj4CEiIiLZk8XWEvfLtNh0SkqKjWtCRERE1jL93rZm0wgGHgCpqakAgKCgIBvXhIiIiMoqNTUV7u7uJZbhXloAjEYjbt68CVdXV6hUKltXx+ZSUlIQFBSEa9eucW+xSsTz/GDwPD8YPM8PBs+zOSEEUlNTERgYCDu7kkfpsIUHgJ2dHWrVqmXralQ5bm5u/EA9ADzPDwbP84PB8/xg8DznK61lx4SDlomIiEj2GHiIiIhI9hh4qAidTof3338fOp3O1lWRNZ7nB4Pn+cHgeX4weJ7Lj4OWiYiISPbYwkNERESyx8BDREREssfAQ0RERLLHwENERESyx8CjULNnz0abNm3g6uoKX19fPPXUUzh37lyRcmfPnkX//v3h7u4OV1dXtGvXDlevXrVBjasna85zWloaxo0bh1q1asHR0RGNGzfGkiVLbFTj6mnJkiV45JFHpMXY2rdvj19//VW6XQiBiIgIBAYGwtHREWFhYTh9+rQNa1w9lXSec3Nz8d///hfNmjWDs7MzAgMD8dJLL+HmzZs2rnX1VNp7uqDXXnsNKpUKCxYseLCVrGYYeBRq9+7dGDt2LA4ePIioqCjo9XqEh4cjPT1dKnPp0iV07NgRjRo1wq5du/D3339j+vTpcHBwsGHNqxdrzvObb76JyMhIrF69GmfPnsWbb76J8ePHY8uWLTasefVSq1YtfPzxxzhy5AiOHDmCrl274sknn5RCzZw5czBv3jwsWrQIhw8fhr+/P3r06CHto0fWKek8Z2Rk4NixY5g+fTqOHTuGjRs34vz58+jfv7+tq10tlfaeNtm8eTP++usvBAYG2qim1YggEkLEx8cLAGL37t3Sseeee068+OKLNqyV/Fg6z02bNhUffvihWbmWLVuKd99990FXT1Y8PDzEN998I4xGo/D39xcff/yxdFtWVpZwd3cXX375pQ1rKA+m82zJoUOHBABx5cqVB1wreSp8rq9fvy5q1qwpTp06JYKDg8X8+fNtV7lqgC08BABITk4GAHh6egLI21B127ZtaNCgAXr27AlfX1+0bdsWmzdvtmEtq7/C5xkAOnbsiK1bt+LGjRsQQmDnzp04f/48evbsaatqVmsGgwHr1q1Deno62rdvj+joaMTFxSE8PFwqo9PpEBoaigMHDtiwptVb4fNsSXJyMlQqFWrUqPFgKyczls610WjE0KFDMWXKFDRt2tTGNawmbJ24yPaMRqPo16+f6Nixo3QsNjZWABBOTk5i3rx54vjx42L27NlCpVKJXbt22bC21Zel8yyEENnZ2eKll14SAIRGoxH29vZi5cqVNqpl9fXPP/8IZ2dnoVarhbu7u9i2bZsQQoj9+/cLAOLGjRtm5UeNGiXCw8NtUdVqrbjzXFhmZqZo1aqVeOGFFx5wDeWjpHM9a9Ys0aNHD2E0GoUQgi08VuBu6YRx48bhn3/+wb59+6RjRqMRAPDkk0/izTffBAC0aNECBw4cwJdffonQ0FCb1LU6s3SeAeCLL77AwYMHsXXrVgQHB2PPnj0YM2YMAgIC0L17dxvVtvpp2LAhTpw4gaSkJPz4448YNmwYdu/eLd2uUqnMygshihyj0hV3nps0aSKVyc3NxfPPPw+j0YjFixfbsLbVW3HnOjMzE59//jmOHTvG93BZ2DpxkW2NGzdO1KpVS1y+fNnseHZ2ttBoNOKjjz4yOz516lTRoUOHB1lFWSjuPGdkZAitVit+/vlns+MjR44UPXv2fJBVlJ1u3bqJV199VVy6dEkAEMeOHTO7vX///uKll16yUe3kw3SeTXJycsRTTz0lHnnkEXHnzh0b1kx+TOd6/vz5QqVSCbVaLV0ACDs7OxEcHGzralZZHMOjUEIIjBs3Dhs3bsQff/yBunXrmt1ub2+PNm3aFJlCff78eQQHBz/IqlZrpZ3n3Nxc5Obmws7O/KOoVqulVjYqHyEEsrOzUbduXfj7+yMqKkq6LScnB7t370aHDh1sWEN5MJ1nIO/9PGjQIFy4cAE7duyAl5eXjWsnL6ZzPXToUPzzzz84ceKEdAkMDMSUKVPw22+/2bqaVRa7tBRq7NixWLt2LbZs2QJXV1fExcUBANzd3eHo6AgAmDJlCp577jl07twZXbp0QWRkJH766Sfs2rXLhjWvXko7z25ubggNDcWUKVPg6OiI4OBg7N69GytXrsS8efNsXPvq4+2330bv3r0RFBSE1NRUrFu3Drt27UJkZCRUKhUmTJiAWbNmoX79+qhfvz5mzZoFJycnDBkyxNZVr1ZKOs96vR4DBw7EsWPH8PPPP8NgMEjvd09PT9jb29u49tVLSefay8urSJjUarXw9/dHw4YNbVTjasCm7UtkMwAsXpYtW2ZWbunSpaJevXrCwcFBNG/eXGzevNk2Fa6mrDnPsbGxYvjw4SIwMFA4ODiIhg0birlz50qDEal0I0aMEMHBwcLe3l74+PiIbt26ie3bt0u3G41G8f777wt/f3+h0+lE586dxcmTJ21Y4+qppPMcHR1d7Pt9586dtq14NVTae7owDlounUoIIR50yCIiIiJ6kDiGh4iIiGSPgYeIiIhkj4GHiIiIZI+Bh4iIiGSPgYeIiIhkj4GHiIiIZI+Bh4iIiGSPgYeIJEIIvPrqq/D09IRKpcKJEydsXaUqKycnB/Xq1cP+/fsBADExMQ/knJ08eRK1atVCenp6pT4Pkdww8BCRJDIyEsuXL8fPP/+M2NhYhISE2LpKVdbXX3+N4OBgPP7441bfp06dOliwYEGR4xEREWjRooVVj9GsWTM89thjmD9/vtXPS0QMPERUwKVLlxAQEIAOHTrA398fGk3R7fZycnJsULOqZ+HChXjllVds8twvv/wylixZAoPBYJPnJ6qOGHiICAAwfPhwjB8/HlevXoVKpUKdOnUAAGFhYRg3bhwmTpwIb29v9OjRAwBw5swZ9OnTBy4uLvDz88PQoUNx584d6fHS09Px0ksvwcXFBQEBAZg7dy7CwsIwYcIEqYxKpcLmzZvN6lGjRg0sX75cun7jxg0899xz8PDwgJeXF5588knExMSY1fupp57CZ599hoCAAHh5eWHs2LHIzc2VymRnZ2Pq1KkICgqCTqdD/fr1sXTpUgghUK9ePXz22WdmdTh16hTs7Oxw6dIli+fq2LFjuHjxIp544oliz6fRaMSoUaPQoEEDXLlypdhylqhUqiIX0/8HAPTs2RMJCQnYvXt3mR6XSMkYeIgIAPD555/jww8/RK1atRAbG4vDhw9Lt61YsQIajQb79+/HV199hdjYWISGhqJFixY4cuQIIiMjcevWLQwaNEi6z5QpU7Bz505s2rQJ27dvx65du3D06NEy1SkjIwNdunSBi4sL9uzZg3379sHFxQW9evUya2nauXMnLl26hJ07d2LFihVYvny5WWh66aWXsG7dOnzxxRc4e/YsvvzyS7i4uEClUmHEiBFYtmyZ2fN+++236NSpEx5++GGL9dqzZw8aNGgANzc3i7fn5ORg0KBBOHLkCPbt24fg4OAyve7Y2FjpcvHiRdSrVw+dO3eWbre3t0fz5s2xd+/eMj0ukaLZdu9SIqpK5s+fL4KDg82OhYaGihYtWpgdmz59uggPDzc7du3aNQFAnDt3TqSmpgp7e3uxbt066faEhATh6Ogo3njjDekYALFp0yazx3F3d5d2k1+6dKlo2LCh2c7x2dnZwtHRUfz2229CCCGGDRsmgoODhV6vl8o8++yz4rnnnhNCCHHu3DkBQERFRVl8zTdv3hRqtVr89ddfQgghcnJyhI+Pj1i+fHkxZ0mIN954Q3Tt2tXsmGm38L1794ru3buLxx9/XCQlJZmVMe1+7ezsbHbRarWiefPmRZ7HaDSKAQMGiFatWomMjAyz2wYMGCCGDx9ebB2JyFzRDnoiokJat25tdv3o0aPYuXMnXFxcipS9dOkSMjMzkZOTg/bt20vHPT090bBhwzI979GjR3Hx4kW4urqaHc/KyjLrbmratCnUarV0PSAgACdPngQAnDhxAmq1GqGhoRafIyAgAE888QS+/fZbPPbYY/j555+RlZWFZ599tth6ZWZmwsHBweJtgwcPRq1atfD777/DycmpyO1TpkzB8OHDzY598cUX2LNnT5Gyb7/9Nv78808cPnwYjo6OZrc5OjoiIyOj2DoSkTkGHiIqlbOzs9l1o9GIfv364ZNPPilSNiAgABcuXLDqcVUqFYQQZscKjr0xGo1o1aoV1qxZU+S+Pj4+0s9arbbI4xqNRgAoEhQseeWVVzB06FDMnz8fy5Ytw3PPPWcxrJh4e3tLgaqwPn36YPXq1Th48CC6du1q8b716tUzO+bp6Vmk3OrVqzF//nzs2rULtWrVKnL73bt3i+1yI6KiOIaHiMqsZcuWOH36NOrUqYN69eqZXZydnVGvXj1otVocPHhQuk9iYiLOnz9v9jg+Pj6IjY2Vrl+4cMGs1aJly5a4cOECfH19izyPu7u7VXVt1qwZjEZjiQN8+/TpA2dnZyxZsgS//vorRowYUeJjPvroo/j333+LhDUAGD16ND7++GP079+/3IOK//zzT7zyyiv46quv0K5dO4tlTp06hUcffbRcj0+kRAw8RFRmY8eOxd27dzF48GAcOnQIly9fxvbt2zFixAgYDAa4uLhg5MiRmDJlCn7//XecOnUKw4cPh52d+VdO165dsWjRIhw7dgxHjhzB66+/btZa88ILL8Db2xtPPvkk9u7di+joaOzevRtvvPEGrl+/blVd69Spg2HDhmHEiBHYvHkzoqOjsWvXLmzYsEEqo1arMXz4cEybNg316tUz64qzpEuXLkhPT8fp06ct3j5+/HjMmDEDffv2xb59+6yqp0lcXBwGDBiA559/Hj179kRcXBzi4uJw+/ZtqUxMTAxu3LiB7t27l+mxiZSMgYeIyiwwMBD79++HwWBAz549ERISgjfeeAPu7u5SqPn000/RuXNn9O/fH927d0fHjh3RqlUrs8eZO3cugoKC0LlzZwwZMgSTJ08260pycnLCnj17ULt2bTz99NNo3LgxRowYgczMzGJnSFmyZMkSDBw4EGPGjEGjRo0watSoIisVjxw5Ejk5OaW27gCAl5cXnn76aYtdbSYTJkzABx98gD59+uDAgQNW1/Xff//FrVu3sGLFCgQEBEiXNm3aSGW+++47hIeHl3n2F5GSqYSlNlkiokoQFhaGFi1aWFxt2Nb279+PsLAwXL9+HX5+fqWWP3nyJLp3725xUHVlys7ORv369fHdd9+VaZVnIqVjCw8RKVp2djYuXryI6dOnY9CgQVaFHSBvbNCcOXPMFkF8EK5cuYJ33nmHYYeojDhLi4gU7bvvvsPIkSPRokULrFq1qkz3HTZsWCXVqngNGjRAgwYNHvjzElV37NIiIiIi2WOXFhEREckeAw8RERHJHgMPERERyR4DDxEREckeAw8RERHJHgMPERERyR4DDxEREckeAw8RERHJHgMPERERyd7/A0nNK/sUnUwpAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "do0d(lockin1.ch1_datatrace, do_plot=True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also construct `2d`-maps using buffer readout. Let's make an object which runs the measurement on the fast axis and returns the channel 1 buffer" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": {}, + "outputs": [], + "source": [ + "class Fast_Axis(ParameterWithSetpoints):\n", + " \n", + " def __init__(self, name, measurement_instrument, sweeper, wait_fast):\n", + " self.measurement_instrument = measurement_instrument\n", + " self.measurment_label = measurement_instrument.ch1_display()\n", + " self.measurement_var = getattr(self.measurement_instrument, measurement_instrument.ch1_display())\n", + " self.sweeper = sweeper\n", + " self.wait_fast = wait_fast\n", + "\n", + " super().__init__(name, label=self.measurment_label, unit=self.measurement_var.unit,\n", + " vals=validators.Arrays(shape=(self.measurement_instrument.buffer_npts.get,)),\n", + " setpoints=(self.measurement_instrument.sweep_setpoints,),\n", + " docstring='Constructs a buffer measurement over the aux out 1 axis')\n", + " \n", + " def meas(self):\n", + " self.measurement_instrument.buffer_reset()\n", + " for y in self.measurement_instrument.sweep_setpoints.get():\n", + " self.sweeper(y)\n", + " sleep(self.wait_fast)\n", + " self.measurement_instrument.send_trigger()\n", + "\n", + " def get_raw(self):\n", + " self.meas()\n", + " sleep(0.005) # crucial to avoid buffer readout error\n", + " return self.measurement_instrument.ch1_datatrace()\n", + " " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The instrument should be loaded with the setpoints on the fast axis before creating the Spectrum object" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [], + "source": [ + "lockin1.ch1_display('R_V')\n", + "lockin1.ratio_mode('none')\n", + "lockin1.buffer_SR(\"Trigger\")\n", + "lockin1.buffer_trig_mode.set('ON')" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [], + "source": [ + "lockin1.set_sweep_parameters(lockin1.frequency, 25000, 35000, 101)" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [], + "source": [ + "Frequency_Buffer = Fast_Axis('freq_meas', measurement_instrument=lockin1, sweeper=lockin1.frequency, wait_fast=0.03)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready for the `2d`-measurement using buffer readout" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting experimental run with id: 598. Using 'qcodes.dataset.do1d'\n" + ] + }, + { + "data": { + "text/plain": [ + "(results #598@C:\\Users\\Farzad\\experiments.db\n", + " -------------------------------------------\n", + " lockin_aux_out1 - numeric\n", + " lockin_sweep_setpoints - array\n", + " freq_meas - array,\n", + " (,),\n", + " (,))" + ] + }, + "execution_count": 143, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3WUlEQVR4nO3deXxMV/8H8M/NvkcWEiEiKrbapVWKRDWotTwtpbZStbeKanVDi6jW0tZjazUoiraoLlS0dlV7a+kPba2VSEskQfb5/v7w5NZIwkzmJDPJfN6v17yYO2fOnHvmzsw3Z9VEREBERERUSjlYuwBERERElmAwQ0RERKUagxkiIiIq1RjMEBERUanGYIaIiIhKNQYzREREVKoxmCEiIqJSjcEMERERlWoMZoiIiKhUK3Iws2TJEmiapt+cnJxQsWJFPPXUUzh9+rTKMhbZtWvX4ODggO+//x4AsG7dOri6uiIzM9Mo3bZt24zO5fbb3r17jdKKCD744APUqlULrq6uqFixIoYNG4bk5OR8r5+YmIiRI0eiWrVqcHd3R1hYGAYNGoTz588X+ZyqVq1aaFmjo6OLnG9JiY6Otvly3rx5E5MmTcK2bdtMfs6FCxcwfPhw1KhRA+7u7vD390e9evUwePBgXLhwQU83adIko/fM2dkZVapUweDBg5GYmJgv38zMTLz77ruoW7cuPD09ERQUhMceewx79uy5a3m2bNmiv8Y///xz17R9+vSBpmno1KmTyedbXIpS93fK+zx/8cUX6gpmorzvxQMHDpT4a99u4MCBaN++vVXLQIXL+x4oijfeeAONGzeGwWBQXKrSzcnSDOLi4lCrVi1kZGRg9+7dmDp1KrZu3Yr/+7//g5+fn4oyFtmBAwcgInjggQcAAHv37kWDBg3g6upaYPpp06ahdevWRsfq1q1rdH/cuHGYM2cOxo0bh0cffRQnTpzAm2++if379+Onn36Cs7MzgFs/Qq1atUJycjImT56MOnXq4OTJk5g4cSK+//57/Pbbb/D29i7SeT388MN477338h338fEpUn4lad68edYuwj3dvHkTkydPBgCTAq+LFy+icePGKFeuHMaOHYuaNWsiJSUFJ06cwJo1a/Dnn38iNDTU6DmbNm2Cr68vrl+/js2bN2PmzJnYs2cPjhw5ol9DADB48GCsWLECEyZMwCOPPIKrV69i+vTpiIqKwu7du/Hggw/mK8/169cxePBghISE4NKlS3ct+7fffov169fbzLVjbt1TfocPH8bSpUvx888/W7soVAzGjRuHuXPnYunSpXjmmWesXRzbIUUUFxcnAGT//v1GxydPniwA5JNPPilq1spMmzZNatSood9v1aqVjBgxIl+6rVu3CgD5/PPP75rfxYsXxdHRUUaNGmV0fOXKlQJAFi1apB+Lj48XAPLxxx8XmHbt2rVFOSUJCwuTjh07Fum51nTjxg1rF8Fkf//9twCQiRMnmpT+zTffFADy559/Fvh4bm6u/v+JEycKAPn777+N0jzzzDMCQH788Uf9WEZGhjg6OkqfPn2M0l66dEkAyPPPP1/g640YMUIaNWokr7/+eoGvlefatWtSqVIlmTVrls1cV+bWfUFM/TwXh8K+F0tSjx495KGHHrLa69O95X0PFNXIkSOlRo0aYjAYFJaqdFM+ZiYyMhIAcPnyZf1YYV0LAwYMQNWqVfX7Z8+ehaZpeO+99zBr1iyEh4fDy8sLzZo1y9fdY4r9+/frf7nm5ubi4MGDBf4la6q9e/ciNzcXHTp0MDqe1zz/5Zdf6sfy/rr29fU1SluuXDkAgJubW5HLcS8ZGRlo1KgRqlevjpSUFP14YmIigoODER0djdzcXAC33gMvLy8cP34cbdq0gaenJ8qXL4+RI0fi5s2bRvmKCObNm4eGDRvC3d0dfn5+eOKJJ/Dnn38apYuOjkbdunWxY8cONG/eHB4eHhg4cKD+2O3XQt57/u677+Kdd95B1apV4e7ujujoaJw6dQrZ2dl45ZVXEBISAl9fX3Tr1g1JSUn5znn16tVo1qwZPD094eXlhXbt2uHw4cNGafLO9ffff0eHDh3g5eWF0NBQjB07Vu96PHv2LMqXLw8AmDx5st5VM2DAgELr+8qVK3BwcECFChUKfNzB4d4fs4I+Nw4ODnBwcMh3Dfn4+MDBwaHAa2jnzp1YtGgRPv74Yzg6Ot71NceOHYuKFSvi+eefv2f5CpP3Xu/fvx8tW7aEh4cHqlWrhunTp+drBj9//jz69OmDChUqwNXVFbVr18bMmTP1dKbU/enTp9G7d2+jPP773/8WWLaMjAyMGTMGwcHBcHd3R1RUVL5rAgA2bNiAZs2awcPDA97e3oiJicFPP/2UL92uXbvQpk0beHt7w8PDA82bN8e33357zzpKSEhAkyZNEBERUexd8JcvX8a6devQt29fo+MGgwFTpkxBzZo14e7ujnLlyqF+/fp4//33jdKZco55XWk//vgjBg8ejICAAPj4+KBfv364ceMGEhMT0aNHD5QrVw4VK1bEuHHjkJ2dbZRHVlYWpkyZonfXly9fHs888wz+/vtvs87377//xnPPPYfQ0FA9n4cffhhbtmzR08THx6Nr166oXLky3NzcUL16dQwZMiRf92te18+vv/6KJ598Er6+vvD398eYMWOQk5ODkydPon379vD29kbVqlUxY8YMo+fndW8uX77cpOuuIKZ8jwFA3759cerUKWzdutWs+irTihoFFfYXyNy5cwWAfPnll/qxqKgoiYqKypdH//79JSwsTL9/5swZASBVq1aV9u3by/r162X9+vVSr1498fPzk2vXrt2zXFFRUQLgnrfby5P3l1yFChXE0dFRvL29pW3btrJz506jvPNaVW7/61lEJD09XTRNk4oVK+rHsrOzpUmTJnL//ffLvn37JC0tTQ4ePCgNGzaUxo0bS1ZW1j3PpSBhYWHSoUMHyc7Ozne7PUo/deqUeHt7S/fu3UXkVuvAI488IhUqVJBLly7p6fr37y8uLi5SpUoVmTp1qmzevFkmTZokTk5O0qlTJ6PXHjx4sDg7O8vYsWNl06ZNsnLlSqlVq5YEBQVJYmKi0Xvg7+8voaGh8uGHH8rWrVtl+/bt+mO3133eex4WFiadO3eWb775RpYvXy5BQUFSo0YN6du3rwwcOFA2btwoCxYsEC8vL+ncubNRuaZOnSqapsnAgQPlm2++kbVr10qzZs3E09NTjh8/nu9ca9euLe+9955s2bJF3nzzTdE0TSZPniwit1pDNm3aJABk0KBB8tNPP8lPP/0kv//+e6HvyfLlywWAtG3bVjZt2iQpKSmFpi2sZWbcuHECQA4ePGh0/IUXXhAvLy9Zt26dpKSkyJkzZ6RXr17i5+cnp0+fNkp78+ZNiYiIkJdeeumuryVyq+XQ2dlZjhw5IiJFb/GLioqSgIAAiYiIkAULFkh8fLwMHz5cAMjSpUv1dElJSVKpUiUpX768LFiwQDZt2iQjR44UADJs2DARuXfdHz9+XHx9faVevXqybNky2bx5s4wdO1YcHBxk0qRJ+mvlfZ5DQ0Ola9eu8vXXX8vy5culevXq4uPjI3/88YeedsWKFfp7t379elm9erU0adJEXFxcjD7/27ZtE2dnZ2nSpImsXr1a1q9fL23bthVN02TVqlV6uju/F48ePSqhoaHSrFmzQlvIVFq2bJkAkBMnThgdj42NFUdHR5k4caL88MMPsmnTJpkzZ45RvZl7juHh4TJ27FjZvHmzvPPOO+Lo6Ci9evWSxo0by5QpUyQ+Pl5efvllASAzZ87Un5+bmyvt27cXT09PmTx5ssTHx8vHH38slSpVkjp16sjNmzdNPt927dpJ+fLlZdGiRbJt2zZZv369vPnmm0blnT9/vsTGxsqGDRtk+/btsnTpUmnQoIHUrFnT6Hs47/NSs2ZNefvttyU+Pl7Gjx8vAGTkyJFSq1Yt+eCDDyQ+Pl5vSb39d86c666glhlTv8dERHJycsTLy0vGjBljcl2VdRYHM3v37pXs7GxJS0uTTZs2SXBwsLRq1Uqys7P1tOYGM/Xq1ZOcnBz9+L59+wSAfPbZZ/cs1+nTp+Xw4cP6D8zGjRvl8OHDMnz4cAkPD5fDhw/L4cOHjX4IDh06JC+88IKsW7dOduzYIZ988onUrl1bHB0dZdOmTXq6I0eOCAB5++23jV7zhx9+EADi4uJidDw1NVU6d+5sFERFR0fLlStX7nkehQkLCys0QLuzXKtXrxYAMmfOHHnzzTfFwcFBNm/ebJSmf//+AkDef/99o+NTp04VALJr1y4REfnpp5/yfSmJiFy4cEHc3d1l/Pjx+rG8gPKHH37IV/7CgpkGDRoYdcfMmTNHAEiXLl2Mnj969GgBoAcM58+fFycnp3xdf2lpaRIcHCw9evTId65r1qwxStuhQwepWbOmft/crg6DwSBDhgwRBwcHASCapknt2rXlxRdflDNnzhilzfsSS0xMlOzsbElOTpY1a9aIp6en9OrVq8C88967vPe5SpUqcvjw4Xxpx44dK9WqVdN/DAoLZtLS0qRq1aoyYcIE/ZglwQwA+fnnn42O16lTR9q1a6fff+WVVwpMN2zYMNE0TU6ePCkid6/7du3aSeXKlfMFiyNHjhQ3Nze5evWqiPz7o9K4cWOjAP/s2bPi7Owszz77rIjc+lENCQmRevXqGV17aWlpUqFCBWnevLl+7KGHHpIKFSpIWlqafiwnJ0fq1q0rlStX1l/n9mAmPj5efHx85IknnpD09PR7V6YCw4YNE3d393zdD506dZKGDRve9bnmnuOdn7nHH39cAMisWbOMjuf9AZfns88+yxcIiIjs379fAMi8efNMPl8vLy8ZPXq0yekNBoNkZ2fLuXPnBIB89dVX+mN5n5c7v+MaNmyYb2hAdna2lC9fXv9jUcT06+7218pjzvdYnocffliaNm1q8rmXdRYHM3feateuLcnJyUZpzQ1mXnnlFaN0GRkZAkCmT59ucvnmzJkjlSpV0u936NBBBgwYYPLzk5OTpXLlylK/fn2j461atRIfHx9Zs2aNJCcny+7duyUiIkIcHR3Fzc1NT5eVlSWPPfaYhIaGykcffSQ7duyQpUuXSkREhDRu3NikVqaChIWFSYsWLWT//v35bre3uOQZNmyYODs7i4ODg7z++uv5Hs/7gf/nn3+Mjue9F3kB0muvvSaapsnly5fztQg99NBD8uCDD+rPjYqKEj8/vwLLX1gwc/sPq4jI999/LwBk4cKFRscXLlwoAOTo0aMiIvLRRx/pPx53lqtnz55SoUIFo3PVNC3fD8srr7xi9N4VddzG2bNnZd68eTJw4ECpXr26ABAPDw/Ztm2bnibvS+zOW6tWrQpsrXv77bfFw8ND3nrrLdm6dat89dVXEhMTI4GBgXLo0CE93c8//yyOjo4SHx+f77XuDGZGjBghERERRvVgSTATHByc7/hTTz0ltWrV0u8/+OCDUqdOnXzpfv75ZwEg8+fPF5HC6z49PV3/sr/zff7uu+8EgHz33Xci8u+PynvvvVdgee+77z4RETlx4oQAkBkzZuRLN2zYMHFwcJAbN27I9evXRdM0GT58eL5077zzjgCQ3377TUT+/V4cOXKkODs7y5gxY0p0XEPXrl2lSpUq+Y6/9dZbommaDBs2rMDWw6Kc4/fff2+UbsKECQJAD0zz9OrVSwICAvT7Tz/9tJQrV06ysrLyvZeF/XAX5pFHHpFy5crJ22+/LT/99FOBn6HLly/LkCFDpHLlykZ/FNz5m5L3eSmo/AV9bzRr1kyaNGmi3zf1urv9tfKY8z2Wp1u3blK5cmUTask+WDybadmyZahduzbS0tKwevVqLFy4EL169cLGjRuLnGdAQIDR/bzZR+np6Xd9nsFg0Pvft2/fjpYtWyInJwcGgwG7d+/Ge++9h5ycHGiads/xBOXKlUOnTp2wYMECpKenw93dHQDw+eefY8CAAejRowcAwMXFBS+++CK2bNmCa9eu6c9fvHgxNm7ciP379+vjIVq2bIkWLVrgvvvuw5w5czBx4kTTK+U2vr6+ep73MnDgQMyfPx8uLi6Fjo1wcnLKV+fBwcEAbo0HAW71xYsIgoKCCsyjWrVqRvcrVqxoUvny+Pv7G913cXG56/GMjAy9XAD0GWt3unO8ioeHR76xJq6urnp+lggLC8OwYcP0+2vWrEGvXr3w0ksvYd++fUZpt2zZAl9fX1y9ehWLFi3Cl19+iVGjRmHBggV6mt9++w1vvvkmZsyYgXHjxunHH3vsMdSpUwdjxozR+8wHDhyI7t27IzIyUr8O884pNTUVrq6u8Pb2xr59+zBv3jysXbsWGRkZehqDwYCcnBxcu3YN7u7uhc74K8id1w5wq05v/7xeuXLFaHxcnpCQEP3xu7ly5QpycnLw4Ycf4sMPPywwzZ1jIPKu4TuP/fLLL0avWdC1GhISAoPBgOTkZMitP/oKTVdQ+VetWgV3d3c8++yzRZ6CWxTp6ekFjqWaMGECPD09sXz5cixYsACOjo5o1aoV3nnnHURGRurnac45mvOZvf3zdfnyZVy7dk1Pf6d7LSVwu9WrV2PKlCn4+OOP8cYbb8DLywvdunXDjBkzEBwcDIPBgLZt2+LSpUt44403UK9ePXh6esJgMOChhx4q8DeloPIX9L3h4uKC1NTUfM+/13VXEHO/x4Bb4y7v9ZtoTywOZmrXrq3/sLZu3Rq5ubn4+OOP8cUXX+CJJ54AcKvSbx+Imseci9YUAwcOxNKlS42OrVq1Sv//4MGDMXjwYISFheHs2bP3zE9EAMDoy6hChQr47rvvkJSUhMTERISFhcHd3R3z5s3TzxcAjhw5AkdHRzRu3Ngoz2rVqiEgIADHjh0ryima5caNG+jbty9q1KiBy5cv49lnn8VXX32VL11OTg6uXLli9KOUt+ZJ3rHAwEBomoadO3cW+EN357GS+gIPDAwEAHzxxRcICwsrkdc0VY8ePRAbG1vge92gQQO97DExMWjXrh0WLVqEQYMG6V9ov/zyi9HSAnmcnZ3RoEEDbN++XT92/PhxHD9+HJ9//nm+17rvvvvQoEEDHDlyBCdOnICIoFu3bvnSXbhwAX5+fpg9ezZGjx5tyannExAQgISEhHzH86aO59VFYfz8/ODo6Ii+fftixIgRBaYJDw83ul/Quj2JiYn6NZ33b2HlcnBwgJ+fH0QEDg4OZpV/xYoVeOONNxAVFYXNmzejYcOGdz0/VQIDA3Ho0KF8x52cnDBmzBiMGTMG165dw5YtW/Dqq6+iXbt2+vtu7jlaUsaAgABs2rSpwMfNWbIiMDAQc+bMwZw5c3D+/Hls2LABr7zyCpKSkrBp0yYcO3YMv/zyC5YsWYL+/fvrz/v9998tPo/C3Ou6K0hRvseuXr2q7D0pC5TPZpoxYwb8/Pzw5ptv6q0kVatWxalTp4wWq7ty5co9F/4y16RJk7B//37ExcUBgN4y8txzzyEiIgL79+/H/v378fXXX98zr+TkZHzzzTdo2LBhgX/pVKhQAfXr14evry8WLFiAGzduYOTIkfrjISEhyM3Nxf79+42ed+rUKVy5cgWVK1e28GzvbejQoTh//jzWrl2LxYsXY8OGDZg9e3aBaVesWGF0f+XKlQD+XeujU6dOEBH89ddfiIyMzHerV69esZ5LYdq1awcnJyf88ccfBZbL1Bas25naEpinoB8A4NZ6LxcuXND/si2Mpmn473//C0dHR7z++uv68bzn3TmTLzMzE4cOHTK6hrZu3ZrvlvflvX79enz88ccAgPbt2xeYNigoCA899BC2bt1qFJSr0qZNG5w4cSLfD+2yZcugaZq+vlNhde/h4YHWrVvj8OHDqF+/foHv850/Fp999pn+BwkAnDt3Dnv27NGv6Zo1a6JSpUpYuXKlUbobN27gyy+/1Gc4eXp6omnTpli7dq1RuQwGA5YvX47KlSujRo0aRq/t7++PLVu2oHbt2mjdunWRZmMWRa1atXDlypUC/3jMU65cOTzxxBMYMWIErl69irNnzxbpHIuqU6dOuHLlCnJzcwt8H2vWrFmkfKtUqYKRI0ciJiZGv87y/qi684+thQsXWnYSd3Gv664gRfke+/PPP1GnTp3iOIVSyeKWmTv5+flhwoQJGD9+PFauXIk+ffqgb9++WLhwIfr06YPBgwfjypUrmDFjhvKFuqpWrYqqVaviu+++Q926dfUVMEePHo2uXbsW+sPWu3dvVKlSBZGRkQgMDMTp06cxc+ZMXL58GUuWLDFK+9FHHwG49dfutWvXsHHjRixevBjTpk0zaoV55plnMHv2bPznP//B66+/jpo1a+LPP//EtGnT4OnpiaFDh+ppz549i/DwcPTv3z/f6xXk2rVrBX45urq6olGjRgCAjz/+GMuXL0dcXBzuv/9+3H///Rg5ciRefvllPPzww0ZT1F1cXDBz5kxcv34dDzzwAPbs2YMpU6bgscceQ4sWLQDcWqjvueeewzPPPIMDBw6gVatW8PT0REJCAnbt2oV69eoZdbGUlKpVq+Ktt97Ca6+9hj///BPt27eHn58fLl++jH379sHT01NfhM1U3t7eCAsLw1dffYU2bdrA398fgYGBBXaTAMDUqVOxe/du9OzZU5+2fubMGcydOxdXrlzBu+++e8/XjIiIwHPPPYd58+Zh165daNGiBVq0aIEHHngAkyZNws2bN9GqVSukpKTgww8/xJkzZ/Dpp5/qzy/oizJvFd2HH35Y/wsuODi4wGZwNzc3BAQEFNtCdS+++CKWLVuGjh074q233kJYWBi+/fZbzJs3D8OGDdN/KO9W9++//z5atGiBli1bYtiwYahatSrS0tLw+++/4+uvv8aPP/5o9JpJSUno1q0bBg8ejJSUFEycOBFubm6YMGECgFtN9zNmzMDTTz+NTp06YciQIfqKy9euXcP06dP1vGJjYxETE4PWrVtj3LhxcHFxwbx583Ds2DF89tlnBbZEent7Y9OmTejevTtiYmKwYcOGfItyqhYdHQ0Rwc8//4y2bdvqxzt37oy6desiMjIS5cuXx7lz5zBnzhyEhYUhIiKiyOdYFE899RRWrFiBDh064IUXXsCDDz4IZ2dnXLx4EVu3bkXXrl0LbDm8U0pKClq3bo3evXujVq1a8Pb2xv79+/U6B24Fd/fddx9eeeUViAj8/f3x9ddfIz4+Xsm5FORe111BzP0eu3LlCk6fPo1Ro0YV23mUOkUdbHO3xaHS09OlSpUqEhERoc9KWrp0qdSuXVvc3NykTp06snr16kIHAL/77rv58oQZAzIbN26sDyj9+++/xcHBQZ8aXJDY2Fhp2LCh+Pr6iqOjo5QvX166desm+/bty5d24cKFUrt2bfHw8BAvLy9p2bKlrF+/vsB8T58+LX379pWqVauKq6urVKlSRXr27Jlvmt3Ro0cLHPhckLvNZsob8Pzrr7+Ku7u79O/f3+i5GRkZ0qRJE6latao+SLt///7i6ekpv/76q0RHR4u7u7v4+/vLsGHD5Pr16/le/5NPPpGmTZuKp6enuLu7y3333Sf9+vWTAwcO6GmioqLk/vvvL7D8hQ0AvvM9L2zhs8Kuu/Xr10vr1q3Fx8dHXF1dJSwsTJ544gnZsmWLnibvXO9U0DTJLVu2SKNGjcTV1VUA5KvL2+3du1dGjBghDRo0EH9/f/0aat++vT4o9c7XKmia7uXLl8XLy0tat26tH7t27Zq89tpr+jVXoUIFiY6OzpdvQe72WneyZABwQe/1nZ9tEZFz585J7969JSAgQJydnaVmzZry7rvvGs0kErl73Z85c0YGDhwolSpVEmdnZylfvrw0b95cpkyZoqfJu3Y+/fRTef7556V8+fLi6uoqLVu2NLpO86xfv16aNm0qbm5u4unpKW3atJHdu3fnS7dz50555JFH9Gv/oYcekq+//tooTUHXZ2ZmpvznP/8RNzc3+fbbb+9an5bKzc2VqlWr5hvIO3PmTGnevLkEBgbqSzEMGjRIzp49a5SuqOcoUvj1VtDnLjs7W9577z1p0KCBuLm5iZeXl9SqVUuGDBmSb8mBwmRkZMjQoUOlfv364uPjI+7u7lKzZk2ZOHGi0SKdJ06ckJiYGPH29hY/Pz958skn5fz58/l+U8wpv0j+a9+c666wRfNM+R4TEVm8eLE4OzsbLYlh7zSR29rDyCrmzZuH8ePH448//ih0gG1xGTBgAL744gtcv369RF+XiIrHzJkzMXXqVPz111/6xAUqftu2bUPr1q3x+eefF0tX7e1atmyJKlWq5BseYM+4a7YN2Lp1K55//vkSD2SIqOwZMWIEfH19C10ZmUq3HTt2YP/+/Xj77betXRSbonzMDJmvoBkoRNaUm5uLuzXamrK8AeUnIvpWIoXRNM2iundzc8Onn35q8hL6tuj2ZTYK4+Rknz9fV65cwbJly/Ith2Hv2M1ERPlER0cbTf2+k6nLG5CxvK6IuwkLC8O5c+cKfTwqKkof3F1WTZo06Z4D98+cOVPooHyyPwxmiCifkydPIi0trdDHXV1drTYdvzRLS0vDyZMn75rmxo0b8PT0LPRxb2/vIk9fLi0uXbqkr29TmPr16xe68B7ZHwYzREREVKpxADARERGVamV+BJXBYMClS5fg7e1donukEBFR6SMiSEtLQ0hISIF7IqmSkZGBrKwsi/NxcXEpcJV6e1Pmg5lLly4hNDTU2sUgIqJS5MKFC8W27UxGRgbCw7yQmHT3mW2mCA4OxpkzZ+w+oCnzwUzepmUt0AlOmrOVS1N8NIey3eokBnVDu1TWlcpykfXY4ufHHq55W6z3HMnGTsPXZm14aa6srCwkJuXi3MGq8PEueutPapoBYU3OIisri8GMtQtQ3PK6lpw057IdzJTxLjTRFH6BKqwrleUi67HFz489XPO2WO95SqJsXt4avLyL/joG2G79lbQyH8wQERHZolwxINeC2DBX7r6woD1hMFNGyD1WFTWHpnJlV03VADp15+fg5aUsL4PCPa1Uvofq6l0tW+3uUJWXg7PKr1SF14NKCn9AxaDuOrXFLqt7MUBgQNGvPUueW9bY5jceERERkYnYMkNERGQFBhhgSTuXZc8uW+wmmHFwcYaDZvnS15KTraA0/8vLRrsV1M5WUPNhU9mEnJta+DL95iqNTdtmU9mtYKM9J6rYYtfX/zJTl5fC7xq7+PzcRa4Ici1YhN+S55Y17GYiIiKiUs1uWmaIiIhsCQcAq8NghoiIyAoMEOQymFHCboIZQ1Y2DAq6Z5X28dpo37PSsTxQOM1bFaVrM9jg+QE2O0airJdL5Zg6Tq+3DuE4lFLJboIZIiIiW8JuJnUYzBAREVkBZzOpY5vtmEREREQmsp+WGTEAChYYUrn8ts2u32Gja9YoY6vnZ4NjQGyarY6/UcVGz88mP9OllKW/SnbwKTeZ/QQzRERENiTXwtlMljy3rGEwQ0REZAW5Agt3zVZXltLOboKZ3FYNoTm5WZxPRoCzgtLc4pShrpHQKV1dP1Ous7om6YTmaurLIUdJNgCA0C03leWVWs1dWV5uyQr7ChV+y7mkZCnLKz3I8s9gHrcr6sp1tZaa99H7orqp2U431V0PiU3V1bvfaXXlcrqp8DvwppovCcnJAPasU5IXlRy7CWaIiIhsCcfMqGODo96IiIjKPgM05FpwM8D8BQz/+usv9OnTBwEBAfDw8EDDhg1x8OBB/XERwaRJkxASEgJ3d3dER0fj+PHjRnlkZmZi1KhRCAwMhKenJ7p06YKLFy9aXB+WYDBDRERkB5KTk/Hwww/D2dkZGzduxIkTJzBz5kyUK1dOTzNjxgzMmjULc+fOxf79+xEcHIyYmBikpaXpaUaPHo1169Zh1apV2LVrF65fv45OnTohV+nq8ebRpIyv3ZyamgpfX19EoyucNAXjN2x1+qwtTi0l89jqdGpeW6az1fdQpTJ+PeRINrbJOqSkpMDHx6dYXiPvd+nA8SB4eRe9Pq+nGRB5/2WTy/rKK69g9+7d2LlzZ4GPiwhCQkIwevRovPzyywButcIEBQXhnXfewZAhQ5CSkoLy5cvj008/Rc+ePQEAly5dQmhoKL777ju0a9euyOdjibJ9VRIREdkoS7qY8m7AreDo9ltmZmaBr7dhwwZERkbiySefRIUKFdCoUSN89NFH+uNnzpxBYmIi2rZtqx9zdXVFVFQU9uzZAwA4ePAgsrOzjdKEhISgbt26ehprYDBDRERUioWGhsLX11e/xcbGFpjuzz//xPz58xEREYHvv/8eQ4cOxfPPP49ly5YBABITEwEAQUFBRs8LCgrSH0tMTISLiwv8/PwKTWMNnM1ERERkBbe3rhT1+QBw4cIFo24mV1fXAtMbDAZERkZi2rRpAIBGjRrh+PHjmD9/Pvr166en0zTjMolIvmN3MiVNcWIwY022Ov5GIc3RUUk+SpdQt9WxSvZwPTio+7ITlYMNVdV9GR9PoprS66EUbrNgEA0GKXod5D3Xx8fHpDEzFStWRJ06dYyO1a5dG19++SUAIDg4GMCt1peKFSvqaZKSkvTWmuDgYGRlZSE5OdmodSYpKQnNmzcv8rlYip88IiIiO/Dwww/j5MmTRsdOnTqFsLAwAEB4eDiCg4MRHx+vP56VlYXt27frgUqTJk3g7OxslCYhIQHHjh2zajDDlhkiIiIrUNXNZKoXX3wRzZs3x7Rp09CjRw/s27cPixYtwqJFiwDc6l4aPXo0pk2bhoiICERERGDatGnw8PBA7969AQC+vr4YNGgQxo4di4CAAPj7+2PcuHGoV68eHn300SKfi6UYzFiTrXZ3KGSTTb+22p1jo++hPezuruwcbbFMNsxmr4cSkgsH5FrQQWJu9T3wwANYt24dJkyYgLfeegvh4eGYM2cOnn76aT3N+PHjkZ6ejuHDhyM5ORlNmzbF5s2b4e3traeZPXs2nJyc0KNHD6Snp6NNmzZYsmQJHBUNKygKrjNjLlv9siqFH+QywVbfQzv4IbTJ+rLFMtkLRXVfkuvM/HC0CjwtWGfmRpoBbeqdL9aylhb8BSQiIqJSjd1MREREVlDSY2bKMgYz5rKHpl97OEdV2K1gHtaX6Wy1rmy1XKryKsHrKlcckCsWjJkp04NEzGPVbqb58+ejfv36+hz5Zs2aYePGjQWmHTJkCDRNw5w5c0q2kERERGTTrNoyU7lyZUyfPh3Vq1cHACxduhRdu3bF4cOHcf/99+vp1q9fj59//hkhISHWKioREZFSBmgwWNCmYACbZvJYtWWmc+fO6NChA2rUqIEaNWpg6tSp8PLywt69e/U0f/31F0aOHIkVK1bA2VnBbCQiIiIboGqjSbKhMTO5ubn4/PPPcePGDTRr1gzArX0k+vbti5deesmopYYKUNbHD1DZwOvUdLZaV7ZaLrJrVg9mjh49imbNmiEjIwNeXl5Yt26dvnfEO++8AycnJzz//PMm55eZmWm0/XlqaqryMhMREVnK8gHA7GbKY/VgpmbNmjhy5AiuXbuGL7/8Ev3798f27duRnp6O999/H4cOHTJrJ87Y2FhMnjy5GEtMRERkuVtjZizYaJLdTDqbWwH40UcfxX333YfatWtjzJgxcHD4N2rNzc2Fg4MDQkNDcfbs2QKfX1DLTGhoKKK1bmpWAGYTa+lnq1NLicjqciQb2/BViawA/OUvNeDpXfQtAG6k5eI/DU5xBWDYQMvMnUQEmZmZ6Nu3b75Nq9q1a4e+ffvimWeeKfT5rq6ucHV1Le5iEhERWcRg4d5MnM30L6sGM6+++ioee+wxhIaGIi0tDatWrcK2bduwadMmBAQEICAgwCi9s7MzgoODUbNmTSuVmIiISA2OmVHHqsHM5cuX0bdvXyQkJMDX1xf169fHpk2bEBMTY81iERERFTsDHLjOjCJWDWYWL15sVvrCxsmYRAwAOL7BJGV9TIktlsmWlfXrgYhKPZsbM0NERGQPckVDrliw0aQFzy1rGMwQERFZQa6FA4Bz2c2ks+p2BkRERESWYssM5cdxDXQ7Xg9ExcIgDjBYMJvJwNlMOgYzREREVsBuJnXYzURERESlGltmiIiIrMAAy2YksQP4XwxmiIiIrMDyRfPYuZKHNUFERESlGltmiIiIrMDyvZnYHpGHwQwREZEVGKDBAEvGzHAF4DwMZoiIiKyALTPqsCaIiIioVGPLDBERkRVYvmge2yPyMJghIiKyAoNoMFiyzgx3zdYxrCMiIqJSjS0zREREVmCwsJuJi+b9i8EMERGRFVi+azaDmTysCSIiIirV2DJDRERkBbnQkGvBwneWPLesYTBDRERkBexmUoc1QURERKUaW2aIiIisIBeWdRXlqitKqcdghoiIyArYzaQOgxkiIiIr4EaT6rAmiIiIqFRjywwREZEVCDQYLBgzI5yarWMwQ0REZAXsZlKHNUFERESlGltmiIiIrMAgGgxS9K4iS55b1jCYISIisoJcC3fNtuS5ZQ1rgoiIiEo1BjNERERWkNfNZMnNHJMmTYKmaUa34OBg/XERwaRJkxASEgJ3d3dER0fj+PHjRnlkZmZi1KhRCAwMhKenJ7p06YKLFy8qqQ9LMJghIiKyAgMcLL6Z6/7770dCQoJ+O3r0qP7YjBkzMGvWLMydOxf79+9HcHAwYmJikJaWpqcZPXo01q1bh1WrVmHXrl24fv06OnXqhNxc626uwDEzREREdsLJycmoNSaPiGDOnDl47bXX0L17dwDA0qVLERQUhJUrV2LIkCFISUnB4sWL8emnn+LRRx8FACxfvhyhoaHYsmUL2rVrV6Lncju2zBAREVlBrmgW3wAgNTXV6JaZmVnoa54+fRohISEIDw/HU089hT///BMAcObMGSQmJqJt27Z6WldXV0RFRWHPnj0AgIMHDyI7O9soTUhICOrWraunsRYGM0RERFagasxMaGgofH199VtsbGyBr9e0aVMsW7YM33//PT766CMkJiaiefPmuHLlChITEwEAQUFBRs8JCgrSH0tMTISLiwv8/PwKTWMt7GYiIiKyArFw12z533MvXLgAHx8f/birq2uB6R977DH9//Xq1UOzZs1w3333YenSpXjooYcAAJpmPKhYRPIdy1+Oe6cpbmyZISIiKsV8fHyMboUFM3fy9PREvXr1cPr0aX0czZ0tLElJSXprTXBwMLKyspCcnFxoGmthMENERGQFudAsvlkiMzMTv/32GypWrIjw8HAEBwcjPj5efzwrKwvbt29H8+bNAQBNmjSBs7OzUZqEhAQcO3ZMT2Mt7GYiIiKyAoNYtiWBQcxLP27cOHTu3BlVqlRBUlISpkyZgtTUVPTv3x+apmH06NGYNm0aIiIiEBERgWnTpsHDwwO9e/cGAPj6+mLQoEEYO3YsAgIC4O/vj3HjxqFevXr67CZrYTBDRERkBy5evIhevXrhn3/+Qfny5fHQQw9h7969CAsLAwCMHz8e6enpGD58OJKTk9G0aVNs3rwZ3t7eeh6zZ8+Gk5MTevTogfT0dLRp0wZLliyBo6OjtU4LAKCJiJmxXemSmpoKX19fRKMrnDRnaxeHiIhsWI5kYxu+QkpKitGgWpXyfpf6b30KLl4uRc4n63oWlrZeVaxlLS3YMkNERGQFBmgwWDDuxZLnljUcAExERESlGltmiIiIrOD2VXyL+ny6hcEMERGRFRgsXDTPkueWNawJIiIiKtXYMkNERGQFBmiWrTPDAcA6BjNERERWIBbOZhIGMzoGM0RERFZw+87XRX0+3cIxM0RERFSqsWWGiIjICjibSR0GM0RERFbAbiZ1GNYRERFRqcaWGSIiIivg3kzqMJghIiKyAnYzqcNuJiIiIirV2DJDRKQp+rtODGryIbvAlhl1GMwQERFZAYMZddjNRERERKUaW2aIiNg9ZB2quveAUvkesmVGHau2zMyfPx/169eHj48PfHx80KxZM2zcuBEAkJ2djZdffhn16tWDp6cnQkJC0K9fP1y6dMmaRSYiIlJC8O/07KLcxNonYEOsGsxUrlwZ06dPx4EDB3DgwAE88sgj6Nq1K44fP46bN2/i0KFDeOONN3Do0CGsXbsWp06dQpcuXaxZZCIiIiXyWmYsudEtVu1m6ty5s9H9qVOnYv78+di7dy8GDRqE+Ph4o8c//PBDPPjggzh//jyqVKlSkkUlIiIiG2UzY2Zyc3Px+eef48aNG2jWrFmBaVJSUqBpGsqVK1eyhbudnffxWo091Ls9nKOt4tRs06m8TlVSVi4HlFT/DcfMqGP1YObo0aNo1qwZMjIy4OXlhXXr1qFOnTr50mVkZOCVV15B79694ePjU2h+mZmZyMzM1O+npqYWS7mJiIgswWBGHauH2DVr1sSRI0ewd+9eDBs2DP3798eJEyeM0mRnZ+Opp56CwWDAvHnz7ppfbGwsfH199VtoaGhxFp+IiIiszOrBjIuLC6pXr47IyEjExsaiQYMGeP/99/XHs7Oz0aNHD5w5cwbx8fF3bZUBgAkTJiAlJUW/XbhwobhPgYiIyGwcAKyO1buZ7iQiejdRXiBz+vRpbN26FQEBAfd8vqurK1xdXfM/oDmo6VNV2SfOMRKmK+vnZ8t4nVqHrdZ7WX8PS/D8RDSIBQGJJc8ta6wazLz66qt47LHHEBoairS0NKxatQrbtm3Dpk2bkJOTgyeeeAKHDh3CN998g9zcXCQmJgIA/P394eLiYs2iExERkY2wajBz+fJl9O3bFwkJCfD19UX9+vWxadMmxMTE4OzZs9iwYQMAoGHDhkbP27p1K6Kjo0u+wERERIrkLX5nyfPpFqsGM4sXLy70sapVq0JE4fw4MQCwseZRe+iyssVpnGX9/FRjfVmHPdS7TZ4jp2aXRjZ6hRMRERGZxuYGABMREdkDDgBWh8EMERGRFbCbSR27CWY0R0domqOCjNT1zElurrK8bJXmoObDJgY72B/WJscPoOxPxQXs4xxtka2O5SkhbJlRx76vJCIiIir17KZlhoiIyJaIhd1MbJn5F4MZIiIiKxAAlqxAYged7yazm2BGDALRVLz1NjrOxVbHW9ggzVHB2Kn/sYuxPDZ6PagajwUAYrDNc1RFbV3ZwTVPpY7dBDNERES2xAANGlcAVoLBDBERkRVwNpM6dhPMaA4aNM3yN15pE6uNdg2V9SZpWywToLb7y1bZat2rovKzo5LN1rvC70BVnx9NNJsdTUCFs5tghoiIyJYYRLsVPFnwfLqFwQwREZEViFg4m8lGG9yswaxgRkSwfft27Ny5E2fPnsXNmzdRvnx5NGrUCI8++ihCQ0OLq5xEREREBTIpmElPT8fs2bMxb948XLlyBQ0aNEClSpXg7u6O33//HevXr8fgwYPRtm1bvPnmm3jooYeKu9xmUzU1m9NBzWOLYwhsddwTrwfr4bYbVmKj0/5LCgcAq2NSMFOjRg00bdoUCxYsQLt27eDs7Jwvzblz57By5Ur07NkTr7/+OgYPHqy8sERERGUFgxl1TApmNm7ciLp16941TVhYGCZMmICxY8fi3LlzSgpHRERUVnEAsDomtfHdK5C5nYuLCyIiIopcICIiIip+sbGx0DQNo0eP1o+JCCZNmoSQkBC4u7sjOjoax48fN3peZmYmRo0ahcDAQHh6eqJLly64ePFiCZfemNmzmapVq4aoqCgsWLAArq6u+vF//vkHDz74IP7880+lBVRFc3SEpilYh0Dlugg2On5AaT+2ovpSORZBbb2X/bVhbHZcg8p1mhSx2c+0jbL3MUbWnM20f/9+LFq0CPXr1zc6PmPGDMyaNQtLlixBjRo1MGXKFMTExODkyZPw9vYGAIwePRpff/01Vq1ahYCAAIwdOxadOnXCwYMH4Wil9bLM/pY6e/Ysdu/ejZYtWyIhIUE/npuby+4lIiIiE90KZjQLbkV73evXr+Ppp5/GRx99BD8/v9vKI5gzZw5ee+01dO/eHXXr1sXSpUtx8+ZNrFy5EgCQkpKCxYsXY+bMmXj00UfRqFEjLF++HEePHsWWLVtUVEuRmB3MaJqGTZs2oXLlyoiMjMT+/fuLo1xERERkgtTUVKNbZmbmXdOPGDECHTt2xKOPPmp0/MyZM0hMTETbtm31Y66uroiKisKePXsAAAcPHkR2drZRmpCQENStW1dPYw1mdzOJCLy8vLB27VpMmDABUVFRWLRoEWJiYoqjfOqIAYCCZmk7aHKXXHVreatqdlfafG+r76GtssHuHOVUXRM2ukWJrdIc7ODaugtVs5nuXONt4sSJmDRpUoHPWbVqFQ4dOlRgQ0RiYiIAICgoyOh4UFCQ3vOSmJgIFxcXoxadvDR5z7cGs4OZ2/c3io2Nxf3334/BgwejV69eSgtGRERUlsn/bpY8HwAuXLgAHx8f/fjt41lvd+HCBbzwwgvYvHkz3NzcCs33zn0MReSeexuakqY4mR36yx2ddH369MGPP/6I7777TlmhiIiIyDQ+Pj5Gt8KCmYMHDyIpKQlNmjSBk5MTnJycsH37dnzwwQdwcnLSW2TubGFJSkrSHwsODkZWVhaSk5MLTWMNZgczBoMBFSpUMDrWrFkz/PLLL/jxxx+VFYyIiKgss2zwr/ldVG3atMHRo0dx5MgR/RYZGYmnn34aR44cQbVq1RAcHIz4+Hj9OVlZWdi+fTuaN28OAGjSpAmcnZ2N0iQkJODYsWN6GmtQttFkUFCQVaOye1E2NVthP7bSsSkqp8Mp2PZBz0rVMvEK68rBreC/WopCsrLU5aVy+rnC60FyFC5HoPQ6VTimRNV1qvB6sI9p3gqvByc1P2eaaMBNJVndm6p+JhN5e3vnWzfO09MTAQEB+vHRo0dj2rRpiIiIQEREBKZNmwYPDw/07t0bAODr64tBgwZh7NixCAgIgL+/P8aNG4d69erlG1Bckkx+9xs1amRSf9ihQ4csKhAREZFdsHAAMIphBeDx48cjPT0dw4cPR3JyMpo2bYrNmzfra8wAwOzZs+Hk5IQePXogPT0dbdq0wZIlS6y2xgxgRjDz+OOP6/8XEcTGxmLo0KHw9/cvjnIRERFRMdu2bZvRfU3TMGnSpEJnQwGAm5sbPvzwQ3z44YfFWzgzmBzMTJw40ej+zJkz8cILL6BatWrKC1UcHMr5wsHBxeJ8cv+5oqA0tzjcFulaypCWpiwvlc33huwcJfko3a1cUZmUUzq9XllWaruGVHZ/KezSUUbhZ0dzd1eWl+GGun4TpdeDwmveISRYTT65mUAJLWRvzRWAyxplY2aIiIjIdNw1W52yvyoTERERlWlsmSEiIrIG0SwbxMuWGZ3JwcwHH3xgdD8nJwdLlixBYGCg0fHnn39eTckUM1xLgUFztjwjlVOz0zOU5aW0r94Gd5VWOtXYBrdrABSPRVBI6ZRx2OhyBDZI5TgXpVSO7VJ4bRnOX1STj2QryccUHDOjjsnBzOzZs43uBwcH49NPPzU6pmmazQYzREREVDaZHMycOXOmOMtBRERkX0p40byyzOy+iQsXLhT62N69ey0qDBERkb0o6e0MyjKzBwDHxMRg9+7dCAgIMDq+e/dudOzYEdeuXVNVNrU0Tcm4Es1F4QSwXJXriihcWETlEuOqqFyPwtNDWV6SkaksL6Xn6FdOWV6G5GvK8lK5zozScVQGNXWvOSj8flBUJkDx9fD3P8ryUknV+Js7N1Om0sHsT17Lli3Rtm1bpN22SNuOHTvQoUOHfAvrERER0V2IBTfSmR3MLFq0COHh4ejYsSMyMjKwdetWdOzYEW+99RZefPHF4igjERFRmcNuJnXM7mbSNA2fffYZOnbsiDZt2uDXX39FbGwsRo4cWRzlszmas4Lp3f8jOenK8nJwsXyrhn8zs8EPiAmbnJqclYe6ZeKVdjOp3AU6R+EUaC9PZXkp7VrNVjeFVlU3jMouOZVdVpKSqiwvpV2FmsLmBUc19aWJACW144kdDgA+e/Ysdu7cibNnz+LmzZsoX748GjVqhGbNmsHNza3I+ZoUzPz666/5jk2cOBG9evVCnz590KpVKz1N/fr1i1wYIiIiKntWrlyJDz74APv27UOFChVQqVIluLu74+rVq/jjjz/g5uaGp59+Gi+//DLCwsLMzt+kYKZhw4bQNM1oYFTe/YULF2LRokUQEWiahlylA1GJiIjKKu1/N0ueb/saN24MBwcHDBgwAGvWrEGVKlWMHs/MzMRPP/2EVatWITIyEvPmzcOTTz5p1muYFMxwjRkiIiLF7KSb6e2330bHjh0LfdzV1RXR0dGIjo7GlClTihRzmBTMFKXJx+Y4aErHXaigciyCXL+hLC8YbG//Uc1F3TZiBpXjB2x0OwPJylKYl8Ll3VWOx1L4eTb8c1VNRiqX+lc5hkrReBIA0JwUbunnrPBznXpdST4iJTVgxn507NgRf//9N8qXL3/PtIGBgfm2STKFSVf4Tz/9ZHKGN27cwPHjx80uCBERkV2xZFp2KZueXalSJTzxxBPYuHFjsazlY1Iw069fP8TExGDNmjW4fr3g6PfEiRN49dVXUb16dRw6dEhpIYmIiMqcvF2zLbmVEkuXLkVqaio6d+6M0NBQvPHGG/jjjz+U5W9SMHPixAl07doVb775Jvz8/HD//fcjJiYGnTt3RosWLRAYGIgmTZrg3LlziI+PR9++fZUVkIiIiEq3Xr16YfPmzThz5gwGDx6MFStWoEaNGmjdujVWrFiBjIwMi/LXxMz2nkOHDulzxNPT0xEYGIhGjRqhdevW8Pf3t6gwxSE1NRW+vr54xLUHnDQFa7HYaJ9/madwfRIHHy9leRlu3FSWl0oq1yhRuS6PIU3NuAZA7RgjzdVVST6Gm7Z5PTj4eCvLS26qWx9L5TYsmpua9zDHkIUfkpciJSUFPj4+SvK8U97vUuW5k+HgXvS1VQzpGbg4cmKxlrU4/fDDD4iLi8O6devg4uKCXr16Yd68eUXKy+zRV40bN0bjxo2L9GJERET0P3Yym6kwbdq0QZs2bfDll1/iueeew8KFC0sumCEiIiKyxNmzZxEXF4elS5fi4sWLaN26NQYNGlTk/OwmmHHw9ISDg+XdTCqnvKqclqhUtsKpiaq6O9TtIqF0arbmrq4LRmm3o8Lme8lUd82r6s4BoPYcc9Rc85rKbUUUUtk1pHQ7A6W7jCtqpijJXbMtHcRbigYAA0BGRgY+//xzxMXFYceOHahUqRIGDBiAZ555BlWrVrUobxv9NSUiIirbNLl1s+T5pcVzzz2HNWvWICMjA127dsW3336Ltm3bQlP0RxyDGSIiImuwozEze/fuxeTJk9G3b99imSxkdjBz5swZhIeHKy8IERERlU0FbVh9u4SEBHz66acYP358kfI3O5ipXr06WrVqhUGDBuGJJ56waMvuEuXmAjhY3l+vavofACAjU11eConKPnFV03oVjWkA1G4joVS2wm0DFA4yUrmdgeaicPBTrrrrVNmSC54Kry2V07wVjscShd9bmqeHsrxUjXXRSnI7FzsbMwMAAwcOLPD4uXPnsG/fviIHM2a/a7/88gsaNWqEsWPHIjg4GEOGDMG+ffuK9OJERER2y462M8iTnJxsdPvnn3+wb98+bNu2De+9916R8zW7ZaZu3bqYNWsWZsyYga+//hpLlixBixYtEBERgUGDBqFv374mbSZFRERE9mXdunUFHp86dSrWr1+PIUOGFCnfIrenOTk5oVu3blizZg3eeecd/PHHHxg3bhwqV66Mfv36ISEhoahZExERlX122DJTmF69emHbtm1Ffn6RZzMdOHAAn3zyCVatWgVPT0+MGzcOgwYNwqVLl/Dmm2+ia9euNtX9JL5eEEcFY2b+uWZ5Yf7HEBasLC/kqruqNZXrdyjKR7tu2b4dRkTd1giicnl+hcuRi5e6sWzirHAM1cUkZXmhvMIZEX9fVZOPwutBQtS1cIuTwu0tchR+fhSO5dHSFa2HlFuCk3ztaDbTveQNYSkqs9+1WbNmIS4uDidPnkSHDh2wbNkydOjQAQ7/W/woPDwcCxcuRK1atYpcKCIiIip7xowZk+9YYmIiNmzYgI4dOxo9PmvWLJPzNTuYmT9/PgYOHIhnnnkGwcEFtyxUqVIFixcvNjdrIiIi+2GHs5kOHz5c4PEHHngASUlJSEq61Xpr7mJ6Zgczp0+fvmcaFxcX9O/f39ysi1Wulxs0J8ub3hNjAhWU5pYMheOkHRTO6lWZV9UVfynJJ7F9JSX5AIBB4YrzLqnq2nn9f1W3zcKZbr7K8gr77oayvDIbVVWWV8LD6t7IkJ1q6ksc1f24XGqhbhq7+9/KsoKmrhcaQXuuKcsrs6qfknxycjKAP5RkdU/2tAJwnq1btxZLvmZ3pMbFxeHzzz/Pd/zzzz/H0qVLlRSKiIiIyFRmBzPTp09HYGD+1okKFSpg2rRpZuU1f/581K9fHz4+PvDx8UGzZs2wceNG/XERwaRJkxASEgJ3d3dER0fj+PHj5haZiIjI9tjJbKb27dtjz54990yXlpaGd955B//973/Nfg2zu5nOnTtX4HYGYWFhOH/+vFl5Va5cGdOnT0f16tUBAEuXLkXXrl1x+PBh3H///ZgxYwZmzZqFJUuWoEaNGpgyZQpiYmJw8uRJeHt7m1t0IiIiKmFPPvkkevToAW9vb3Tp0gWRkZEICQmBm5sbkpOTceLECezatQvfffcdOnXqhHfffdfs19BEzFsDukqVKpg7dy66dOlidPyrr77CiBEjcPHiRbMLcTt/f3+8++67GDhwIEJCQjB69Gi8/PLLAIDMzEwEBQXhnXfeMXlhndTUVPj6+uKHo1Xg6W359MQjGVUsziNPVRd1HdmLEqKV5bUs/FtleS26VlNJPg3czynJBwCauSqawgngp0x14zYiXdKV5XVT1G3/cDRL3fibbKib5t3YRdF0agAnstX8cRTsqG5qdjkH2/yz+69cddd8Exd1eW3LUDNe6UZaLrrU/wMpKSnwUbhcwu3yfpfC3pkCBwu2BDJkZODcy68Xa1lVycrKwhdffIHVq1dj586duHbtGoBbA33r1KmDdu3aYfDgwahZs2i/GWa3zDz11FN4/vnn4e3tjVatWgEAtm/fjhdeeAFPPfVUkQoBALm5ufj8889x48YNNGvWDGfOnEFiYiLatm2rp3F1dUVUVBT27NlTaDCTmZmJzMx/9w5JTVU3qJKIiIjM5+Ligt69e6N3794AgJSUFKSnpyMgIADOzpYPdjc7mJkyZQrOnTuHNm3awMnp1tMNBgP69etn9pgZADh69CiaNWuGjIwMeHl5Yd26dahTp47evxYUFGSUPigoCOfOFf5XemxsLCZPnmx2OYiIiEqUHU7NzuPr6wtfX3WtvmYHMy4uLli9ejXefvtt/PLLL3B3d0e9evUQFhZWpALUrFkTR44cwbVr1/Dll1+if//+2L59u/74nXPNReSu888nTJhgtOhOamoqQkNDi1Q2IiKiYsMVgJUp8rrNNWrUQI0aNSwugIuLiz4AODIyEvv378f777+vj5NJTExExYoV9fRJSUn5Wmtu5+rqClfX/NsWvD2oL5wUrDOjlMKlvFXq6li0jb4Komrdje+yFC6hrnAtEJVLu2u56vLKdVO3JLtmUPeN6ZBtm+fomKFmjJHK68HgWoLL6pvB4KxwawSF15aqRoqcnAwAb6vJjEqM2Z+W3NxcLFmyBD/88AOSkpJgMBh/eH/88UeLCiQiyMzMRHh4OIKDgxEfH6/v15CVlYXt27fjnXfeseg1iIiIrI4tM8qYHcy88MILWLJkCTp27Ii6deuaveTw7V599VU89thjCA0NRVpaGlatWoVt27Zh06ZN0DQNo0ePxrRp0xAREYGIiAhMmzYNHh4e+gAiIiKi0sqeVgDOycnRx9kWB7NzXrVqFdasWYMOHTpY/OKXL19G3759kZCQAF9fX9SvXx+bNm1CTEwMAGD8+PFIT0/H8OHDkZycjKZNm2Lz5s1FWmPG6e9UODlk3jvhveSom/IKhd0KSrlZvru47qai6cYqu+Sc1E0PFl8vZXlpKeqm9ToqbL5Xyl1dV6/jjZvK8lJ2TeSoW+vfQeG0Zbiq2xpB6feWys/1dTXbbjgY1C3dQP+qWLEi+vfvj0GDBqF27drK8y/SAOC8MS6WutdmlJqmYdKkSZg0aZKS1yMiIrIZdtTNNGbMGCxZsgSzZ8/Ggw8+iGeffRY9e/aEl5eaPwjNHsk1duxYvP/++zBzrT0iIiK6XQlvZ6BiC6HMzEyMGjUKgYGB8PT0RJcuXUxaLHfChAk4efIktm3bhlq1amH06NGoWLEinnnmGezevdu8EymA2cHMrl27sGLFCtx3333o3LkzunfvbnQjIiIi25O3hdCBAwdw4MABPPLII+jatasesORtITR37lzs378fwcHBiImJQVpamp7H6NGjsW7dOqxatQq7du3C9evX0alTJ+TmmtbF2rJlS8TFxSExMRFz5szB77//jpYtW6JmzZqYMWNGkc/N7O0Mnnnmmbs+HhcXV+TCFIe8ZaPb+PWHk4OCPmiFYxE0F3X92JJpm/28mquifn+Ffesq60rle2izVA7aU3mdOqqbIqxsHIgtlgkAHGxzGQilFH035xiysOVqXIlsZxD+1lSLtzM48+ZrFpXVnC2EUlJSUL58eXz66afo2bMnAODSpUsIDQ3Fd999h3bt2hWpDN9++y369euHa9eumRwU3cnsbylbC1aIiIhKJSuuAFyULYQOHjyI7OxsozQhISGoW7cu9uzZY1Ywc/PmTaxevRpxcXHYvXs37rvvPrz00ktFPp8i/cmVk5ODbdu24Y8//kDv3r3h7e2NS5cuwcfHR9lgHiIiojJN0QDgO/cgLGzxWMCyLYQSExPh4uICPz+/fGkSExNNKvLOnTsRFxeHL774Arm5uXjiiScwZcoUfa/HojI7mDl37hzat2+P8+fPIzMzEzExMfD29saMGTOQkZGBBQsWWFQgIiIiMt2dW/ZMnDix0FnAqrcQMjXNtGnTsGTJEvzxxx+IjIzEu+++i169einryivSonmRkZH45ZdfEBAQoB/v1q0bnn32WSWFsmVyU+HaFg6e6vJSOaYky/bGNcgNRevVANA83ZXlJQrXHdIU7BybRzIUrKmUJz1DXV6O6tb4QRH71ouTpKu7Th38yinLS2W5bJaiMUYiCtcSuwdVi+ZduHDBKCgorFUGsGwLoeDgYGRlZSE5OdmodSYpKQnNmze/a1lnz56NPn36YNCgQahbt655J2qCIs1mev311+Fyx4JOYWFh+Ouvv5QVjIiIqExTNDU7b6p13u1uwUy+IhSwhVCevC2E8gKVJk2awNnZ2ShNQkICjh07ds9g5tKlS5g9e7bJgUy9evVw4cIFk8/D7JYZg8FQ4GjjixcvFmllXiIiIip+lm4h5Ovri0GDBmHs2LEICAiAv78/xo0bh3r16uHRRx+962s7m9nyfPbsWWRnZ5uc3uxgJiYmBnPmzMGiRYsA3Opfu379OiZOnKhki4Nik5MDaAq6PBQ2k6vsCtAcFO5kqzAvVeeoOSucHpxl+gekJInCconCLhhN4dRspV2YCmmKPtdKPzspqfdOZAViUDhlXOXiq4q62kVK8PvBwm4mcwcPq9hCaPbs2XByckKPHj2Qnp6ONm3aYMmSJXBU2YVcBGavM3Pp0iW0bt0ajo6OOH36NCIjI3H69GkEBgZix44dqFChQnGVtUj0dWa8n4aTZvmaJyrHSKgc56LyS1QlVV98tnp+tspmgxkbHOcCqAtmlP4426iyHszkSBZ+vLmqRNaZqfb6NDhasM5MbkYG/pzyarGW1Vq8vb3xyy+/oFq1aialN/tbKiQkBEeOHMFnn32GQ4cOwWAwYNCgQXj66afh7q5uYCURERGRKYr0J5e7uzsGDhyIgQMHqi4PERGRfbCjjSaLm9nBzLJly+76eL9+/YpcmOIkubkQzcaauBU2sdpq872yfmyFTdtKxzXYar2rZKtdJyo/P7Y4jkrh1gg2202rsKtd2fVQgte7qqnZVMR1Zm6XnZ2NmzdvwsXFBR4eHjYbzBAREZHt+uuvv1CpUiUAwMKFC/OtRnw3ZofrycnJRrfr16/j5MmTaNGiBT777DNzsyMiIiI7lpiYiFGjRumL+QFA79694elp+sKyStoeIyIiMH369HytNkRERFQIRYvmlQbXrl3D008/jfLlyyMkJAQffPABDAYD3nzzTVSrVg179+7FJ598UuT8lc25dHR0xKVLl1Rlp5yDjw8cHBRMzU67rqA0t2juRZ+SdydDqrpyQdSNT3EI8FeSj+FaipJ8ALX1Lirr3UHh+AGFY3nEoO4b06GcuumjhmsK12FRte2GyrE3Ct9DB/9yyvKSlDRleakcF6Ru/I3Cz+G9XsmOxsy8+uqr2LFjB/r3749NmzbhxRdfxKZNm5CRkYGNGzciKirKovzNDmY2bNhgdF9EkJCQgLlz5+Lhhx+2qDBERERU9nz77beIi4vDo48+iuHDh6N69eqoUaMG5syZoyR/s4OZxx9/3Oi+pmkoX748HnnkEcycOVNJoYiIiOxCKWpdscSlS5dQp04dAEC1atXg5uamdHPqIu3NVBoZribDoCnYlVjFlgj/I1nqmslVdgUoWw0VQG7S30ryUVkmpV1yCkm2wh24VW67kaOu60Rp15DC7lDk2N73mqaw29GgsGtI6XIEKleqVraKcwleC3a0zozBYDDan8nR0dGsAb73onDDGyIiIqL8RAQDBgzQd/TOyMjA0KFD8wU0a9euLVL+ZgczY8aMMTntrFmzzM2eiIjILtjTAOD+/fsb3e/Tp4/S/M0OZg4fPoxDhw4hJycHNWvWBACcOnUKjo6OaNy4sZ5OU7myIxERUVljR91McXFxxZq/2cFM586d4e3tjaVLl8LPzw/ArYX0nnnmGbRs2RJjx45VXki6N5X960r7xBWOMVJF6Y7SKqdTK6RynIvScWK2WveKxltoUDglXunO5wq3RlA4HqtEx6dQmWb2FT5z5kzExsbqgQwA+Pn5YcqUKZzNREREZKK8biZLbnSL2cFMamoqLl++nO94UlIS0tIULqZERERUltnRCsDFzexgplu3bnjmmWfwxRdf4OLFi7h48SK++OILDBo0CN27dy+OMhIREREVyuwxMwsWLMC4cePQp08fZGff6pd3cnLCoEGD8O677yovoCpiEIiKNjlROBbBVqkc56KoT1wMtlemW1nZZrmUUlpfCv+UFBvc/sEGx4gBisfBqbxOldaXmnMUrjNTKpkdzHh4eGDevHl499138ccff0BEUL16daWL3xAREZV19jQ1u7gVOSxOSEhAQkICatSoAU9PT4iwVomIiEzGMTPKmN0yc+XKFfTo0QNbt26Fpmk4ffo0qlWrhmeffRblypWz3RlNYgBgo834ZZiqbgXNwUbfO1vtGrLBrkLAdqey22r3EJlB1XVqq59puiuzP8EvvvginJ2dcf78eXh4eOjHe/bsiU2bNiktHBERUZnFlhllzG6Z2bx5M77//ntUrlzZ6HhERATOnTunrGBERERlGcfMqGN2y8yNGzeMWmTy/PPPP/oGUkREREQlxeyWmVatWmHZsmV4++23Adzag8lgMODdd99F69atlRdQFVVTs5VuG6BwmqrSsQj2MEairGO/v3nKen3Z6PnZ7PYWJYVTs5UxO5h59913ER0djQMHDiArKwvjx4/H8ePHcfXqVezevbs4ykhERFTmsJtJHbO7merUqYNff/0VDz74IGJiYnDjxg10794dhw8fxn333VccZSQiIiIqlFktM9nZ2Wjbti0WLlyIyZMnF1eZiIiIyj52MyljVjDj7OyMY8eOQdNKYd8kmcxmx/IoonRJfSoTVF2nZf2zY8tU1X2JLgDLYEYZs7uZ+vXrh8WLFxdHWYiIiIjMZvYA4KysLHz88ceIj49HZGRkvj2ZZs2apaxwREREZZX2v5slz6dbzA5mjh07hsaNGwMATp06ZfSYPXQ/2WoXBctlOlttvrfFurIXyureVndktwOqPteaaKo24L43djMpY3Iw8+effyI8PBxbt24tzvIQERHZBU7NVsfk0D8iIgJ///23fr9nz564fPlysRSKiIiIyFQmBzN3jvD+7rvvcOPGDeUFIiIisgvcaFIZs8fMEJlF1RgCTd34AU6ftSKVy+orvCaUscUy2YlSOTUbYECiiMmfPE3T8g3wtYcBv0RERGTbTG6ZEREMGDBA3xk7IyMDQ4cOzTc1e+3atWpLSEREVAZxALA6Jgcz/fv3N7rfp08f5YUhIiKyG5yarYzJwUxcXFxxlqP4iQGAwv56W2OrffW2Wi5FlK4No3I8iUq2+h7a4vgbvofmscX3kEolDgAmIiKyAnYzqcNghoiIyBrYzaQMgxlrUtksaqvNtbba7K6KyrpiM7n12OASAkrZ6veDSqrOsax/Z5VRDGaIiIisgN1M6jCYISIisgZ2MynDYIaIiMgaGMwow2CmrOA4F+tgXdHt7OF6sIdzpFLHRkdyERERlW15Y2YsuZkjNjYWDzzwALy9vVGhQgU8/vjjOHnypFEaEcGkSZMQEhICd3d3REdH4/jx40ZpMjMzMWrUKAQGBsLT0xNdunTBxYsXLa0OizCYISIisoYS3jV7+/btGDFiBPbu3Yv4+Hjk5OSgbdu2uHHjhp5mxowZmDVrFubOnYv9+/cjODgYMTExSEtL09OMHj0a69atw6pVq7Br1y5cv34dnTp1Qm5ublFrwmLsZiIiIrIDmzZtMrofFxeHChUq4ODBg2jVqhVEBHPmzMFrr72G7t27AwCWLl2KoKAgrFy5EkOGDEFKSgoWL16MTz/9FI8++igAYPny5QgNDcWWLVvQrl27Ej8vgC0z1iUG27yRdWgO6m5EZPM0EYtvAJCammp0y8zMNOn1U1JSAAD+/v4AgDNnziAxMRFt27bV07i6uiIqKgp79uwBABw8eBDZ2dlGaUJCQlC3bl09jTVY9VvPlP6769evY+TIkahcuTLc3d1Ru3ZtzJ8/30olJiIiUkRRN1NoaCh8fX31W2xs7L1fWgRjxoxBixYtULduXQBAYmIiACAoKMgobVBQkP5YYmIiXFxc4OfnV2gaa7BqN1Ne/90DDzyAnJwcvPbaa2jbti1OnDgBT09PAMCLL76IrVu3Yvny5ahatSo2b96M4cOHIyQkBF27drVm8YmIiKzuwoUL8PHx0e+7urre8zkjR47Er7/+il27duV7TNM0o/siku/YnUxJU5ysGszcq/8OAH766Sf0798f0dHRAIDnnnsOCxcuxIEDBxjMUNnCLj4iu6JqBWAfHx+jYOZeRo0ahQ0bNmDHjh2oXLmyfjw4OBjArdaXihUr6seTkpL01prg4GBkZWUhOTnZqHUmKSkJzZs3L/rJWMimOtfv7L8DgBYtWmDDhg3466+/ICLYunUrTp06Veggo8zMzHz9h0RERDanhGcziQhGjhyJtWvX4scff0R4eLjR4+Hh4QgODkZ8fLx+LCsrC9u3b9cDlSZNmsDZ2dkoTUJCAo4dO2bVYMZmZjMV1H8HAB988AEGDx6MypUrw8nJCQ4ODvj444/RokWLAvOJjY3F5MmTS6rYREREpcKIESOwcuVKfPXVV/D29tbHuPj6+sLd3R2apmH06NGYNm0aIiIiEBERgWnTpsHDwwO9e/fW0w4aNAhjx45FQEAA/P39MW7cONSrV0+f3WQNNhPMFNZ/98EHH2Dv3r3YsGEDwsLCsGPHDgwfPhwVK1YssOImTJiAMWPG6PdTU1MRGhpa7OUnIiIyR0lvNJk3eSZv2EaeuLg4DBgwAAAwfvx4pKenY/jw4UhOTkbTpk2xefNmeHt76+lnz54NJycn9OjRA+np6WjTpg2WLFkCR0fHop+MhTQRsfruDqNGjcL69euxY8cOo2av9PR0+Pr6Yt26dejYsaN+/Nlnn8XFixfzjbkpSGpqKnx9fRGNrnDSnIul/EREVDbkSDa24SukpKSYNQ7FHHm/S42fmgpHF7ci55OblYFDq14r1rKWFlZtmRERjBo1CuvWrcO2bdvy9d9lZ2cjOzsbDg7GQ3scHR1hMHCwJBERlV4l3TJTllk1mLlX/52Pjw+ioqLw0ksvwd3dHWFhYdi+fTuWLVuGWbNmWbPoREREZCOsGsyY0n+3atUqTJgwAU8//TSuXr2KsLAwTJ06FUOHDi3h0hIRESlUhBlJ+Z5PAGygm+legoODERcXVwKlISIiKlnsKlLDptaZISIiIjKXzUzNJiIisisit26WPJ8AMJghIiKyCs5mUofdTERERFSqsWWGiIjIGjibSRkGM0RERFagGW7dLHk+3cJuJiIiIirV2DJDRERkDexmUobBDBERkRVwNpM6DGaIiIisgevMKMMxM0RERFSqsWWGiIjICtjNpA6DGSIiImvgAGBl2M1EREREpRpbZoiIiKyA3UzqMJghIiKyBs5mUobdTERERFSqsWWmrNAUxqXCDT+IiIobu5nUYTBDRERkDZzNpAy7mYiIiKhUY8sMERGRFbCbSR0GM2UFx7kQEZUuBrl1s+T5BIDBDBERkXVwzIwyHDNDREREpRpbZoiIiKxAg4VjZpSVpPRjMENERGQNXAFYGXYzERERUanGlhkiIiIr4NRsdRjMEBERWQNnMynDbiYiIiIq1dgyQ0REZAWaCDQLBvFa8tyyhsEMERGRNRj+d7Pk+QTAnoIZzeHWzVLcNoCKi4rrMw+v09KP1wORyewnmCEiIrIh7GZSh8EMERGRNXA2kzL2E8yIpZ2T/2MPTb/2cI62yFbrSuX1oJKt1pcqtnp+/H5QhysAK2Oj31JEREREprGflhkiIiIbwhWA1WEwQ0REZA3sZlKGwYy57KGP1xbPkeM2zMNxDXQ7Xg9UxjGYISIisgLNcOtmyfPpFgYzRERE1sBuJmVstO2eiIiIyDT2E8zkbWdg6c0eqKor1f30qm62SmW922p9qTxHW7xO7YGt1rutlutuRMHNDDt27EDnzp0REhICTdOwfv164+KIYNKkSQgJCYG7uzuio6Nx/PhxozSZmZkYNWoUAgMD4enpiS5duuDixYtmnrh6/BQTERFZQd52BpbczHHjxg00aNAAc+fOLfDxGTNmYNasWZg7dy7279+P4OBgxMTEIC0tTU8zevRorFu3DqtWrcKuXbtw/fp1dOrUCbm5uRbVhaU4ZoaIiMgOPPbYY3jssccKfExEMGfOHLz22mvo3r07AGDp0qUICgrCypUrMWTIEKSkpGDx4sX49NNP8eijjwIAli9fjtDQUGzZsgXt2rUrsXO5k90EMw7OTnDQFJyuo6PlefyPISNTWV4qaQrPUXOwvUvMkJVl7SIUP9VdfIqovLYkJ1tZXrbY1eTgrO6zY8jOUZaXSg4uLsrystVzvCtFA4BTU1ONDru6usLV1dWsrM6cOYPExES0bdvWKJ+oqCjs2bMHQ4YMwcGDB5GdnW2UJiQkBHXr1sWePXusGszY3ieYiIjIHghubRlY1Nv/4qDQ0FD4+vrqt9jYWLOLkpiYCAAICgoyOh4UFKQ/lpiYCBcXF/j5+RWaxlps789mIiIiO1CUcS93Ph8ALly4AB8fH/24ua0yRnlqmtF9Ecl37E6mpClubJkhIiIqxXx8fIxuRQlmgoODASBfC0tSUpLeWhMcHIysrCwkJycXmsZa7KZlxpCdA4OKyLE09suaSRSOShfrDnAvmA2Oj7BpCutL5bVV1t/HUjkGxExKx6+VxutBYOGYGWUlQXh4OIKDgxEfH49GjRoBALKysrB9+3a88847AIAmTZrA2dkZ8fHx6NGjBwAgISEBx44dw4wZM9QVpgjsJpghIiKyKSW8AvD169fx+++/6/fPnDmDI0eOwN/fH1WqVMHo0aMxbdo0REREICIiAtOmTYOHhwd69+4NAPD19cWgQYMwduxYBAQEwN/fH+PGjUO9evX02U3WwmCGiIjIDhw4cACtW7fW748ZMwYA0L9/fyxZsgTjx49Heno6hg8fjuTkZDRt2hSbN2+Gt7e3/pzZs2fDyckJPXr0QHp6Otq0aYMlS5bAUeFMxaLQRMr25g6pqanw9fVFa8fucNKcLc5P5dRSley+udYMSt9DhdOWxVCmP4oAAAe3og9MvJMovObLfN2rXMnZRr8fNAc1A1BzJBtbc9ciJSXFaFCtSnm/S4/UexlOjkX/TOTkZuLHo+8Ua1lLC7bMEBERWYGq2UzE2UxERERUyrFlhoiIyBpKeABwWcZgxkwqp0uq6uMFbHcsj6qxCCrrylbHuSg9RxulcpwLmU5zsny8oM5Gd55X9Vks0WGkDGaUYTcTERERlWpsmSEiIrIGtswow2CGiIjIGgwALOldts0eP6uwm2BGc3SEpqkYV2KL6/PbLmVjeWy0n17pOBcbXb/DVuteJZu8TlVeD7b6Hio8R81BzTlqopXY1zynZqtj1W/P2NhYPPDAA/D29kaFChXw+OOP4+TJk/nS/fbbb+jSpQt8fX3h7e2Nhx56COfPn7dCiYmIiMjWWDWY2b59O0aMGIG9e/ciPj4eOTk5aNu2LW7cuKGn+eOPP9CiRQvUqlUL27Ztwy+//II33ngDbm5uViw5ERGRhfLGzFhyIwBW7mbatGmT0f24uDhUqFABBw8eRKtWrQAAr732Gjp06GC0I2e1atXMfi0xCESz/I3XXFwsziOPymmqWhG2fC9Uri02SSuceq6wa0hsdWdjhd0KKqf1Sk62srxU0pxtsMdd6RYLNrqFh8Jd1FV9N2sCIF1JVvdmkP+9oAXPJwA2NjU7JSUFAODv7w8AMBgM+Pbbb1GjRg20a9cOFSpUQNOmTbF+/fpC88jMzERqaqrRjYiIiMoumwlmRARjxoxBixYtULduXQBAUlISrl+/junTp6N9+/bYvHkzunXrhu7du2P79u0F5hMbGwtfX1/9FhoaWpKnQUREZBp2MyljM22rI0eOxK+//opdu3bpxwyGW82ZXbt2xYsvvggAaNiwIfbs2YMFCxYgKioqXz4TJkzQtzUHbu1OyoCGiIhsj6UBCYOZPDYRzIwaNQobNmzAjh07ULlyZf14YGAgnJycUKdOHaP0tWvXNgp6bufq6gpXleNH7qByzAwU9herZJPjB2yVwj5rleNJlI6hUsjBxUNhZgobllV9FjV147Fyr9+4dyITOfn7KcvLoLBcDu4KxyAaVI3lKfvbipRFVv3VEhGMGjUK69atw7Zt2xAeHm70uIuLCx544IF807VPnTqFsLCwkiwqERGRWlwBWBmrBjMjRozAypUr8dVXX8Hb2xuJiYkAAF9fX7i7uwMAXnrpJfTs2ROtWrVC69atsWnTJnz99dfYtm2bFUtORERkIYPAoq4izmbSWXUA8Pz585GSkoLo6GhUrFhRv61evVpP061bNyxYsAAzZsxAvXr18PHHH+PLL79EixYtrFhyIiIishVW72YyxcCBAzFw4ECLXsuhVjU4OCoYR3DukuV5/I/KcQ2afzllecnVa8ryUjquQRHN20tZXnI1WVleDu7eyvJSuYaRQ4XyyvLCzZvq8lI4PkVuqllYROW15RQSpCwv3FC3cIqDq8JxLjcUXg+q1nwqya0fxGDZ69nqNhVWwJGeRERE1sAxM8owmCEiIrIGjplRxm6CmfSKnnBytnw/p8y6de6dyEQeCeq6AlSOfsrwr6QsL7d/1Ew3Tq+gbkn9HHd13RPO19WtYeR8Xd1U/RxPdcvX57ip3BlcXVbeZ9V1nWT5qek6yXFT90E0KPx29lT4XZPjpvDa8lC4a7ai3/Wc7Azg6zVqMqMSYzfBDBERkU1hN5MyDGaIiIisQWBhMKOsJKWe7U01ISIiIjKD3bTMuO3+DU6a5f3ibrnqpsJpLurGgUDhFgQuCs9R1RRhVw91y+CLym0kbHRLCpVT4jUnddeWyinjKjnmqJnWq3K7E8lWuL2Fs7rvGmdl2wYAcFQ3/gaK3sMcKcFrlN1MythNMENERGRTDAYAFgSHKgPLUo7dTERERFSqsWWGiIjIGtjNpIz9BDM5uYCmoE9VYR+vZGYqywtZ6vrXlS6Rralp/DNcv6EkHwCAg8p1UxTmpXKsksKxPJrC8VhKxxgpurYAKLsmlI4JUrggmuQq/K5Ryva+t0QUluneL8ZgRhF2MxEREVGpZj8tM0RERLaE2xkoYzfBjOTmQlQ0S9vsxaOw+V5hN5MYFE15Vdg1pDmpm6YquYp26lVMZX2Jqt2IobhcOQqnLivqPlY67V8llV1yZZyUYNeNiAFiwfetJc8ta+wmmCEiIrIpIpb9gcwxMzqG60RERFSqsWWGiIjIGsTCMTNsmdHZTzCjObDf2ApsciyCwrEWKonC8Viag8ItCJSOA1G4fL0NUvoeqlzq3w7GVqiqL00ULrdwLwYDoFnw3tjB+2oq/roTERFRqWY/LTNERES2hN1MyjCYISIisgIxGCAWdDNxava/GMyYSeky8SqX1VdI7dgNNR82BxcXJfkAgEHhkvO2+h4qPUcbHbuh8jpVuk6TKjZaV7Z6zav6bhaxwWuB7onBDBERkTWwm0kZBjNERETWYBBAYzCjgt0EM6q2M7DVJnebpWg6vNKl6220mVzptWWjU6CVdtOq3MFeUbls9dqy1W5ald+Baj8/VNrYTTBDRERkU0QAWLLODFtm8jCYISIisgIxCMSCbqaS3BTT1nHRPCIiImsQg+W3Ipg3bx7Cw8Ph5uaGJk2aYOfOnYpPrOTZTcvMtacj4ejiZnE+5TefU1Ca//FwV5aVOKnrL9ay1I1PEU/L6xwAoHKsRa7Cv2ZyFY57ys5RlpUhwFtZXg5/X1OWl0U7BN/JVd04EDgr+irMUTitV+FnWmW5NA9XdXndzFSWFxwVjc/LzQROK8nKJq1evRqjR4/GvHnz8PDDD2PhwoV47LHHcOLECVSpUsXaxSsytswQERFZgRjE4pu5Zs2ahUGDBuHZZ59F7dq1MWfOHISGhmL+/PnFcIYlh8EMERGRNZRwN1NWVhYOHjyItm3bGh1v27Yt9uzZo/LMSlyZ72bKGyCVm5WhJL8cg8Jm0Vx1saRoCruZDAq7mXIVTVW1h24mg8JuplxnZXk5qLzmVXYzqcxL1fWlcodxhZ9pleVSuUCulqvw2lL0t3nO/8pUEoNrc5Bt0Zp5Obj1XZ2ammp03NXVFa6u+bsD//nnH+Tm5iIoKMjoeFBQEBITE4teEBtQ5oOZtLQ0AMDRNW9buSREJUjh0C4ie5SWlgZfX99iydvFxQXBwcHYlfidxXl5eXkhNDTU6NjEiRMxadKkQp+jacZ/ZIpIvmOlTZkPZkJCQnDhwgV4e3sX+malpqYiNDQUFy5cgI+PTwmXsPRhfZmH9WU61pV5WF+mM7WuRARpaWkICQkptrK4ubnhzJkzyFKwAGFBgUhBrTIAEBgYCEdHx3ytMElJSflaa0qbMh/MODg4oHLlyial9fHx4ReCGVhf5mF9mY51ZR7Wl+lMqaviapG5nZubG9zcFM32NJGLiwuaNGmC+Ph4dOvWTT8eHx+Prl27lmhZVCvzwQwRERHdMmbMGPTt2xeRkZFo1qwZFi1ahPPnz2Po0KHWLppFGMwQERHZiZ49e+LKlSt46623kJCQgLp16+K7775DWFiYtYtmEQYzuNW/OHHixEL7GckY68s8rC/Tsa7Mw/oyHevqX8OHD8fw4cOtXQylNOHmDkRERFSKcdE8IiIiKtUYzBAREVGpxmCGiIiISjUGM0RERFSqMZgBMG/ePISHh8PNzQ1NmjTBzp07rV0kq4uNjcUDDzwAb29vVKhQAY8//jhOnjxplEZEMGnSJISEhMDd3R3R0dE4fvy4lUpsO2JjY6FpGkaPHq0fY10Z++uvv9CnTx8EBATAw8MDDRs2xMGDB/XHWV//ysnJweuvv47w8HC4u7ujWrVqeOutt2Aw/LsvmD3X144dO9C5c2eEhIRA0zSsX7/e6HFT6iYzMxOjRo1CYGAgPD090aVLF1y8eLEEz4IsJnZu1apV4uzsLB999JGcOHFCXnjhBfH09JRz585Zu2hW1a5dO4mLi5Njx47JkSNHpGPHjlKlShW5fv26nmb69Oni7e0tX375pRw9elR69uwpFStWlNTUVCuW3Lr27dsnVatWlfr168sLL7ygH2dd/evq1asSFhYmAwYMkJ9//lnOnDkjW7Zskd9//11Pw/r615QpUyQgIEC++eYbOXPmjHz++efi5eUlc+bM0dPYc31999138tprr8mXX34pAGTdunVGj5tSN0OHDpVKlSpJfHy8HDp0SFq3bi0NGjSQnJycEj4bKiq7D2YefPBBGTp0qNGxWrVqySuvvGKlEtmmpKQkASDbt28XERGDwSDBwcEyffp0PU1GRob4+vrKggULrFVMq0pLS5OIiAiJj4+XqKgoPZhhXRl7+eWXpUWLFoU+zvoy1rFjRxk4cKDRse7du0ufPn1EhPV1uzuDGVPq5tq1a+Ls7CyrVq3S0/z111/i4OAgmzZtKrGyk2XsupspKysLBw8eRNu2bY2Ot23bFnv27LFSqWxTSkoKAMDf3x8AcObMGSQmJhrVnaurK6Kiouy27kaMGIGOHTvi0UcfNTrOujK2YcMGREZG4sknn0SFChXQqFEjfPTRR/rjrC9jLVq0wA8//IBTp04BAH755Rfs2rULHTp0AMD6uhtT6ubgwYPIzs42ShMSEoK6devaff2VJna9AvA///yD3NzcfLuFBgUF5dtV1J6JCMaMGYMWLVqgbt26AKDXT0F1d+7cuRIvo7WtWrUKhw4dwv79+/M9xroy9ueff2L+/PkYM2YMXn31Vezbtw/PP/88XF1d0a9fP9bXHV5++WWkpKSgVq1acHR0RG5uLqZOnYpevXoB4PV1N6bUTWJiIlxcXODn55cvDX8HSg+7Dmby3Ll9uhSwpbo9GzlyJH799Vfs2rUr32OsO+DChQt44YUXsHnz5rvugsu6usVgMCAyMhLTpk0DADRq1AjHjx/H/Pnz0a9fPz0d6+uW1atXY/ny5Vi5ciXuv/9+HDlyBKNHj0ZISAj69++vp2N9Fa4odcP6K13supspMDAQjo6O+aLvpKSkfJG8vRo1ahQ2bNiArVu3onLlyvrx4OBgAGDd4VYzdVJSEpo0aQInJyc4OTlh+/bt+OCDD+Dk5KTXB+vqlooVK6JOnTpGx2rXro3z588D4LV1p5deegmvvPIKnnrqKdSrVw99+/bFiy++iNjYWACsr7sxpW6Cg4ORlZWF5OTkQtOQ7bPrYMbFxQVNmjRBfHy80fH4+Hg0b97cSqWyDSKCkSNHYu3atfjxxx8RHh5u9Hh4eDiCg4ON6i4rKwvbt2+3u7pr06YNjh49iiNHjui3yMhIPP300zhy5AiqVavGurrNww8/nG+a/6lTp/Rde3ltGbt58yYcHIy/qh0dHfWp2ayvwplSN02aNIGzs7NRmoSEBBw7dszu669UsdrQYxuRNzV78eLFcuLECRk9erR4enrK2bNnrV00qxo2bJj4+vrKtm3bJCEhQb/dvHlTTzN9+nTx9fWVtWvXytGjR6VXr152Mx30Xm6fzSTCurrdvn37xMnJSaZOnSqnT5+WFStWiIeHhyxfvlxPw/r6V//+/aVSpUr61Oy1a9dKYGCgjB8/Xk9jz/WVlpYmhw8flsOHDwsAmTVrlhw+fFhfXsOUuhk6dKhUrlxZtmzZIocOHZJHHnmEU7NLGbsPZkRE/vvf/0pYWJi4uLhI48aN9enH9gxAgbe4uDg9jcFgkIkTJ0pwcLC4urpKq1at5OjRo9YrtA25M5hhXRn7+uuvpW7duuLq6iq1atWSRYsWGT3O+vpXamqqvPDCC1KlShVxc3OTatWqyWuvvSaZmZl6Gnuur61btxb4XdW/f38RMa1u0tPTZeTIkeLv7y/u7u7SqVMnOX/+vBXOhopKExGxTpsQERERkeXseswMERERlX4MZoiIiKhUYzBDREREpRqDGSIiIirVGMwQERFRqcZghoiIiEo1BjNERERUqjGYISKr6du3r77hZHF74IEHsHbt2hJ5LSIqWQxmiADs2bMHjo6OaN++vbWLYpYBAwbg8ccfL5a8J02ahIYNG94z3fHjx/Gf//wHVatWhaZpmDNnjkn5//rrr/j2228xatSoIpfxyy+/hKOjo75J5Z1q1aqF559/HgDwxhtv4JVXXtH3NCKisoPBDBGATz75BKNGjcKuXbsK/WGkgt28eRPVqlXD9OnT9V2KTTF37lw8+eST8Pb2LvJrd+nSBQEBAVi6dGm+x3bv3o2TJ09i0KBBAICOHTsiJSUF33//fZFfj4hslLX3UyCytuvXr4u3t7f83//9n/Ts2VMmT55s9HhcXJz4+voaHVu3bp3kfXwMBoO0adNG2rVrJwaDQUREkpOTJTQ0VF599dVCX/fq1avSt29fKVeunLi7u0v79u3l1KlT+uMTJ06UBg0aGD1n9uzZEhYWpj+OO/aj2bp1q5w5c0YAyGeffSbNmjUTV1dXqVOnjmzdutXkc4qLi7vrvlyFCQsLk9mzZ98zXW5urpQrV06++eabfM9/++23pW/fvuLp6SlVqlSR9evXS1JSknTp0kU8PT2lbt26sn//fv05Y8aMkWrVqul1n2fgwIHSpEkTo2MDBgyQvn373rN8RFS6sGWG7N7q1atRs2ZN1KxZE3369EFcXBzEjC3LNE3D0qVLsW/fPnzwwQcAgKFDhyIoKAiTJk0q9HkDBgzAgQMHsGHDBvz0008QEXTo0AHZ2dkmve64cePQo0cPtG/fHgkJCUhISEDz5s31x1966SWMHTsWhw8fRvPmzdGlSxdcuXLFpLx79uyJsWPH4v7779fz7tmzp0nPNcWvv/6Ka9euITIyMt9js2fPxsMPP4zDhw+jY8eO6Nu3L/r164c+ffrg0KFDqF69Ovr166e/R4MGDcKff/6J7du363ncuHEDa9as0Vtl8jz44IPYuXOnsvMgItvAYIbs3uLFi9GnTx8AQPv27XH9+nX88MMPZuVRqVIlLFy4EC+//DJeffVVfP3111ixYgWcnZ0LTH/69Gls2LABH3/8MVq2bIkGDRpgxYoV+Ouvv7B+/XqTXtPLywvu7u5wdXVFcHAwgoOD4eLioj8+cuRI/Oc//0Ht2rUxf/58+Pr6YvHixSbl7e7uDi8vLzg5Oel5u7u7m/RcU5w9exaOjo6oUKFCvsc6dOiAIUOGICIiAm+++SbS0tLwwAMP4Mknn0SNGjXw8ssv47fffsPly5cBAHXq1EHTpk0RFxen57FmzRrk5uaiV69eRnlXqlQJ58+f57gZojKGwQzZtZMnT2Lfvn146qmnAABOTk7o2bMnPvnkE7PzevLJJ9G9e3fExsZi5syZqFGjRqFpf/vtNzg5OaFp06b6sYCAANSsWRO//fab+SdSgGbNmun/d3JyQmRkpLK8LZWeng5XV1dompbvsfr16+v/DwoKAgDUq1cv37GkpCT92KBBg/DFF18gLS0NwK0xUN27d0e5cuWM8nZ3d4fBYEBmZqaycyEi62MwQ3Zt8eLFyMnJQaVKleDk5AQnJyfMnz8fa9euRXJyMgDAwcEhX7dTQV1BN2/exMGDB+Ho6IjTp0/f9XUL68YSEf0H3tTXNUdx5m2OwMBA3Lx5E1lZWfkeu701K6+8BR27vXXlqaeegqZpWL16NX7//Xfs2rUrXxcTAFy9ehUeHh5KW5mIyPoYzJDdysnJwbJlyzBz5kwcOXJEv/3yyy8ICwvDihUrAADly5dHWloabty4oT/3yJEj+fIbO3YsHBwcsHHjRnzwwQf48ccfC33tOnXqICcnBz///LN+7MqVKzh16hRq166tv25iYqJR0HHn67q4uCA3N7fA19i7d6/RuR48eBC1atUy+Zzulrel8qZ8nzhxQkl+3t7eePLJJxEXF4dPPvkE1apVQ3R0dL50x44dQ+PGjZW8JhHZEKsNPSaysnXr1omLi4tcu3Yt32OvvvqqNGzYUERErly5Ip6envL888/L6dOnZcWKFRISEiK3f3y++eYbcXFxkYMHD4qIyOuvvy6VK1eWq1evFvr6Xbt2lTp16sjOnTvlyJEj0r59e6levbpkZWWJiMiJEydE0zSZPn26/P777zJ37lzx8/PTZzOJiEydOlWqVKki//d//yd///23ZGVl6bOZqlSpImvXrpXffvtNnnvuOfHy8pK///7b5HNasWKFeHp6yuHDh+Xvv/+WjIyMAs8jMzNTDh8+LIcPH5aKFSvKuHHj5PDhw3L69Om71n/jxo3lww8/NDpW0GwoALJu3Tr9ft75HT582Cjdzp07BYCUK1dOpkyZUuBrRkVFyVtvvXXXchFR6cNghuxWp06dpEOHDgU+dvDgQQGgByfr1q2T6tWri5ubm3Tq1EkWLVqk//AnJSVJUFCQTJs2TX9+dna2PPjgg9KjR49CXz9varavr6+4u7tLu3btjKZmi4jMnz9fQkNDxdPTU/r16ydTp041CmaSkpIkJiZGvLy88k3NXrlypTRt2lRcXFykdu3a8sMPPxjlfbdzEhHJyMiQ//znP1KuXLm7Ts3Oe707b1FRUYWeu4jIggUL5KGHHjI6ZkkwIyJSs2ZNcXBwkAsXLuR77OLFi+Ls7FzgY0RUumkiZsxBJSKbd/bsWYSHh+Pw4cMmreBrLRkZGahZsyZWrVplNFi5uLz00ktISUnBokWLiv21iKhkOVm7AERkn9zc3LBs2TL8888/JfJ6FSpUwLhx40rktYioZLFlhqiMKS0tM0REqjCYISIiolKNU7OJiIioVGMwQ0RERKUagxkiIiIq1RjMEBERUanGYIaIiIhKNQYzREREVKoxmCEiIqJSjcEMERERlWoMZoiIiKhU+39n1f6JHIlCswAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "do1d(lockin1.aux_out1, 0, 0.1, 21, 0.05, Frequency_Buffer, do_plot=True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Non-buffer measurements" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The instrument also supports do1d and do2d measurements without buffer" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting experimental run with id: 562. Using 'qcodes.dataset.do1d'\n" + ] + }, + { + "data": { + "text/plain": [ + "(results #562@C:\\Users\\Farzad\\experiments.db\n", + " -------------------------------------------\n", + " lockin_frequency - numeric\n", + " lockin_R_V - numeric,\n", + " (,),\n", + " (None,))" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHFCAYAAAD2eiPWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABy+ElEQVR4nO3dd3gU1f4G8Hd7ekgvEAJKhwBSpIgkdFAEQQRBEQRREbgiIIpeNVhAUYriBfGn0hW8KogigXClI1IEpSg1wQAJgZBetp7fH8lOsqSQtjvJ5v087iM7e3b27GR39junfI9CCCFARERE5MSUcleAiIiIyN4Y8BAREZHTY8BDRERETo8BDxERETk9BjxERETk9BjwEBERkdNjwENEREROjwEPEREROT0GPEREROT0GPDcwapVq6BQKKSbWq1GSEgIHnvsMZw/f17u6gEA0tLSoFQqsX37dgDApk2boNPpoNfrbcrt3r3b5r0UvR06dKjYfo1GIxYtWoSIiAi4urqiXr166N69Ow4ePCiVOXfuHGbNmoWOHTuiXr168PX1xX333Ydvv/22Su+pUaNGpdY1KiqqSvt2hKioqBpfz5ycHERHR2P37t3lfk5CQgKef/55NGvWDK6urvD19UVERAQmTZqEhIQEqVx0dLTN30yj0aBhw4aYNGkSkpKSiu1Xr9fjgw8+QJs2beDu7o6goCAMGjTI5rNWkp07d0qvcfPmzTLLPvHEE1AoFBg8eHC536+9VObY3876fa7qd60yrOfFo0ePOvy1i5owYQIGDhwoax2odNbzQGW8/vrr6NChAywWS7XVR11te3JyK1euRIsWLZCXl4cDBw7g3Xffxa5du/D333/Dx8dH1rodPXoUQgh07twZAHDo0CG0a9cOOp2uxPLz5s1Dr169bLa1adPG5r7ZbMawYcOwf/9+zJ49G927d0d2djaOHTuG7OxsqdyOHTuwdetWjB07Fp07d4bJZMLGjRvx6KOPYu7cuXjjjTcq/b7uu+8+fPjhh8W2e3l5VXqfjrJs2TK5q3BHOTk5mDt3LgCUKzi7cuUKOnTogHr16mHmzJlo3rw50tPTcebMGXzzzTe4dOkSwsLCbJ4TExMDb29vZGVlYceOHVi4cCEOHjyIEydOQKPRSOUmTZqE9evXY86cOejduzdu3bqF9957D5GRkThw4ADuvffeYvXJysrCpEmTEBoaimvXrpVZ961bt2Lz5s015rNT0WNPxR0/fhyrV6/Gb7/9JndVyA5mzZqFTz75BKtXr8ZTTz1VPTsVVKaVK1cKAOLIkSM22+fOnSsAiC+//FKmmhWaN2+eaNasmXS/Z8+eYsqUKcXK7dq1SwAQ//3vf++4z8WLFwulUil+/fXXMsvduHFDWCyWYtsffPBB4ebmJvLy8srxDooLDw8XDz74YKWeK6fs7Gy5q1BuN27cEADEm2++Wa7yb7zxhgAgLl26VOLjZrNZ+vebb74pAIgbN27YlHnqqacEAPHLL79I2/Ly8oRKpRJPPPGETdlr164JAOJf//pXia83ZcoUcc8994h///vfJb6WVVpamqhfv75YtGhRjflcVfTYl6Qi3+fqVtp50ZFGjhwpunbtKtvr051ZzwOVNXXqVNGsWbMSf2Mqg11aldSpUycAwPXr16VtpXVjjB8/Ho0aNZLux8fHQ6FQ4MMPP8SiRYvQuHFjeHh4oFu3biV2Ld3JkSNHpCtgs9mMY8eOlXhFXBEfffQRevbsia5du5ZZzt/fv8Qmy3vvvRc5OTm4detWlepRlry8PNxzzz1o0qQJ0tPTpe1JSUkIDg5GVFQUzGYzgPy/gYeHB06fPo0+ffrA3d0dAQEBmDp1KnJycmz2K4TAsmXL0L59e7i6usLHxwcjRozApUuXbMpFRUWhTZs22Lt3L7p37w43NzdMmDBBeqzoZ8H6N//ggw/w/vvvo1GjRnB1dUVUVBTOnTsHo9GIV155BaGhofD29sawYcOQnJxc7D1v3LgR3bp1g7u7Ozw8PDBgwAAcP37cpoz1vV64cAEPPPAAPDw8EBYWhpkzZ0rdnPHx8QgICAAAzJ07V+oWGj9+fKnHOyUlBUqlEoGBgSU+rlTe+XRS0vdGqVRCqVTC29vbpqyXlxeUSiVcXFyK7Wffvn347LPP8Pnnn0OlUpX5mjNnzkRISAj+9a9/3bF+pbH+rY8cOYL7778fbm5uuOuuu/Dee+8Va3L/559/8MQTTyAwMBA6nQ4tW7bEwoULpXLlOfbnz5/HmDFjbPbxn//8p8S65eXlYcaMGQgODoarqysiIyOLfSYAYMuWLejWrRvc3Nzg6emJfv364ddffy1Wbv/+/ejTpw88PT3h5uaG7t27Y+vWrXc8RomJiejYsSOaNm1q9+7+69evY9OmTRg7dqzNdovFgnfeeQfNmzeXuuHbtm2Ljz76yKZced6jtdvul19+waRJk+Dn5wcvLy88+eSTyM7ORlJSEkaOHIl69eohJCQEs2bNgtFotNmHwWDAO++8gxYtWkCn0yEgIABPPfUUbty4UaH3e+PGDTzzzDMICwuT9nPfffdh586dUpnY2FgMHToUDRo0gIuLC5o0aYJnn322WFevtZvpzz//xKOPPgpvb2/4+vpixowZMJlMOHv2LAYOHAhPT080atQICxYssHm+tSt13bp15frclaQ85zEAGDt2LM6dO4ddu3ZV6HiVqlrCJidW2pXMJ598IgCI7777TtoWGRkpIiMji+1j3LhxIjw8XLofFxcnAIhGjRqJgQMHis2bN4vNmzeLiIgI4ePjI9LS0u5Yr8jISAHgjrei9bFeEQYGBgqVSiU8PT1F//79xb59+2z2/c8//wgAYtq0aWLOnDlS+VatWolVq1aV67hFRUWJgIAAYTKZylX+duHh4eKBBx4QRqOx2K1otH/u3Dnh6ekphg8fLoTIb2Xo3bu3CAwMFNeuXZPKjRs3Tmi1WtGwYUPx7rvvih07dojo6GihVqvF4MGDbV570qRJQqPRiJkzZ4qYmBjx1VdfiRYtWoigoCCRlJQklYuMjBS+vr4iLCxMLF26VOzatUvs2bNHeqzosbf+zcPDw8VDDz0kfvrpJ7Fu3ToRFBQkmjVrJsaOHSsmTJggtm3bJj799FPh4eEhHnroIZt6vfvuu0KhUIgJEyaIn376SXz//feiW7duwt3dXZw+fbrYe23ZsqX48MMPxc6dO8Ubb7whFAqFmDt3rhAiv1UlJiZGABATJ04Uv/76q/j111/FhQsXSv2brFu3TgAQ/fv3FzExMSI9Pb3UsqW18MyaNUsAEMeOHbPZ/sILLwgPDw+xadMmkZ6eLuLi4sTo0aOFj4+POH/+vE3ZnJwc0bRpU/HSSy+V+VpCCBEbGys0Go04ceKEEKLyLYeRkZHCz89PNG3aVHz66aciNjZWPP/88wKAWL16tVQuOTlZ1K9fXwQEBIhPP/1UxMTEiKlTpwoAYvLkyUKIOx/706dPC29vbxERESHWrFkjduzYIWbOnCmUSqWIjo6WXsv6fQ4LCxNDhw4VP/74o1i3bp1o0qSJ8PLyEhcvXpTKrl+/Xvrbbd68WWzcuFF07NhRaLVam+//7t27hUajER07dhQbN24UmzdvFv379xcKhUJs2LBBKnf7efHkyZMiLCxMdOvWrdSWtuq0Zs0aAUCcOXPGZvv8+fOFSqUSb775pvjf//4nYmJixJIlS2yOW0XfY+PGjcXMmTPFjh07xPvvvy9UKpUYPXq06NChg3jnnXdEbGysePnllwUAsXDhQun5ZrNZDBw4ULi7u4u5c+eK2NhY8fnnn4v69euLVq1aiZycnHK/3wEDBoiAgADx2Wefid27d4vNmzeLN954w6a+y5cvF/PnzxdbtmwRe/bsEatXrxbt2rUTzZs3FwaDQSpn/b40b95cvP322yI2NlbMnj1bABBTp04VLVq0EB9//LGIjY2VWmSL/s5V5HNXUgtPec9jQghhMpmEh4eHmDFjRrmPVVkY8NyB9UN/6NAhYTQaRWZmpoiJiRHBwcGiZ8+ewmg0SmUrGvBERETYBASHDx8WAMTXX399x3qdP39eHD9+XPoR2rZtmzh+/Lh4/vnnRePGjcXx48fF8ePHbX4sfv/9d/HCCy+ITZs2ib1794ovv/xStGzZUqhUKhETEyOV+/XXXwUA4eXlJVq1aiW++eYbsX37djFixAgBQHz22Wdl1u3//u//BADx0Ucf3fF9lCY8PLzUIO7tt9+2Kbtx40YBQCxZskS88cYbQqlUih07dtiUGTduXIl1evfddwUAsX//fpv3XvTEJYQQCQkJwtXVVcyePVvaZg06//e//xWrf2kBT7t27Wy6fpYsWSIAiCFDhtg8f/r06QKAFFT8888/Qq1Wi2nTptmUy8zMFMHBwWLkyJHF3us333xjU/aBBx4QzZs3l+5XtFvFYrGIZ599ViiVSgFAKBQK0bJlS/Hiiy+KuLg4m7LWE11SUpIwGo0iNTVVfPPNN8Ld3V2MHj26xH1b/3bWv3PDhg3F8ePHi5WdOXOmuOuuu6QfjNICnszMTNGoUSMxZ84caVtVAh4A4rfffrPZ3qpVKzFgwADp/iuvvFJiucmTJwuFQiHOnj0rhCj72A8YMEA0aNCgWEA5depU4eLiIm7duiWEKPzh6dChg81FQHx8vNBoNOLpp58WQuT/8IaGhoqIiAibz15mZqYIDAwU3bt3l7Z17dpVBAYGiszMTGmbyWQSbdq0EQ0aNJBep2jAExsbK7y8vMSIESNEbm7unQ9mNZg8ebJwdXUt1tUxePBg0b59+zKfW9H3ePt37uGHHxYAxKJFi2y2t2/fXnTo0EG6//XXXxcLFoQQ4siRIwKAWLZsWbnfr4eHh5g+fXq5y1ssFmE0GsXly5cFAPHDDz9Ij1m/L7ef49q3by8AiO+//17aZjQaRUBAgHRBKUT5P3dFX8uqIucxq/vuu0906dKl3O+9LAx47sD6ob/91rJlS5GammpTtqIBzyuvvGJTLi8vTwAQ7733Xrnrt2TJElG/fn3p/gMPPCDGjx9f7uenpqaKBg0aiLZt20rbDhw4IAAIrVYr4uPjpe0Wi0V06NBBNGjQoNT9/fzzz0Kr1YoRI0ZUqd81PDxc9OjRQxw5cqTYrWjLjdXkyZOFRqMRSqVS/Pvf/y72uDUIuHnzps1269/CGkS99tprQqFQiOvXrxdrWeratau49957pedGRkYKHx+fEutfWsBT9MdXCCG2b98uAIgVK1bYbF+xYoUAIE6ePCmEKAwijxw5Uqxeo0aNEoGBgTbvVaFQFPvxeeWVV4SLi4t0v7LjSOLj48WyZcvEhAkTRJMmTQQA4ebmJnbv3i2VsZ7obr/17NnT5mrT6u233xZubm7irbfeErt27RI//PCD6Nevn/D39xe///67VO63334TKpVKxMbGFnut2wOeKVOmiKZNm9och6oEPMHBwcW2P/bYY6JFixbS/XvvvVe0atWqWLnffvtNABDLly8XQpR+7HNzc6UfhNv/zj///LMAIH7++WchROEPz4cfflhife+++24hhBBnzpwRAMSCBQuKlZs8ebJQKpUiOztbZGVlCYVCIZ5//vli5d5//30BQPz1119CiMLz4tSpU4VGoxEzZsyotnEW5TF06FDRsGHDYtvfeustoVAoxOTJk0tshazMe9y+fbtNuTlz5ggAUvBqNXr0aOHn5yfdf/zxx0W9evWEwWAo9rcs7ce9NL179xb16tUTb7/9tvj1119L/A5dv35dPPvss6JBgwY2Fw63/6ZYvy8l1b+k80a3bt1Ex44dpfvl/dwVfS2ripzHrIYNG1bmb05FcJZWOa1ZswYtW7ZEZmYmNm7ciBUrVmD06NHYtm1bpffp5+dnc986qyo3N7fM51ksFmk8wJ49e3D//ffDZDLBYrHgwIED+PDDD2EymaBQKO44vqFevXoYPHgwPv30U+Tm5sLV1VWqV4sWLRAeHi6VVSgUGDBgAObPn4/k5ORiYzm2b9+O4cOHo1+/fli/fn2lpyNaeXt7S2M+7mTChAlYvnw5tFptqWM11Gp1sWMeHBwMIH98CpA/NkAIgaCgoBL3cdddd9ncDwkJKVf9rHx9fW3ua7XaMrfn5eVJ9QIgzcS73e3jZ9zc3IqNfdHpdNL+qiI8PByTJ0+W7n/zzTcYPXo0XnrpJRw+fNim7M6dO+Ht7Y1bt27hs88+w3fffYdp06bh008/lcr89ddfeOONN7BgwQLMmjVL2j5o0CC0atUKM2bMkPrwJ0yYgOHDh6NTp05IS0sDUHiMMjIyoNPp4OnpicOHD2PZsmX4/vvvkZeXJ5WxWCwwmUxIS0uDq6trqTMZS3L7ZwfIP6ZFv68pKSk24/WsQkNDpcfLkpKSApPJhKVLl2Lp0qUllrl9TIb1M3z7tj/++MPmNUv6rIaGhsJisSA1NRUi/wK41HIl1X/Dhg1wdXXF008/XeXve0Xk5uaWOLZrzpw5cHd3x7p16/Dpp59CpVKhZ8+eeP/999GpUyfpfVbkPVbkO1v0+3X9+nWkpaVJ5W93pzQKRW3cuBHvvPMOPv/8c7z++uvw8PDAsGHDsGDBAgQHB8NisaB///64du0aXn/9dURERMDd3R0WiwVdu3Yt8TelpPqXdN7QarXIyMgo9vw7fe5KUtHzGAC4uLjc8TexvBjwlFPLli2lH99evXrBbDbj888/x7fffosRI0YAyP/DFB08a1WRD3Z5TJgwAatXr7bZtmHDBunfkyZNwqRJkxAeHo74+Pg77k8IAQDSCevuu++Gm5tbmWVv/2Bu374dDz/8MCIjI/Hdd9+V+iW3h+zsbIwdOxbNmjXD9evX8fTTT+OHH34oVs5kMiElJcXmh8uaE8a6zToIe9++fSX+GN6+zVEneX9/fwDAt99+axOE1gQjR47E/PnzcerUqWKPtWvXTqp7v379MGDAAHz22WeYOHGidNL7448/bNIqWGk0GrRr1w579uyRtp0+fRqnT5/Gf//732Kvdffdd6Ndu3Y4ceIEzpw5AyEEhg0bVqxcQkICfHx8sHjxYkyfPr0qb70YPz8/JCYmFttunTZvPRal8fHxgUqlwtixYzFlypQSyzRu3Njmfkl5jZKSkqTPtPX/pdVLqVTCx8cHQggolcoK1X/9+vV4/fXXERkZiR07dqB9+/Zlvr/q4u/vj99//73YdrVajRkzZmDGjBlIS0vDzp078eqrr2LAgAHS372i77EqdfTz80NMTEyJj3t6elZoX0uWLMGSJUvwzz//YMuWLXjllVeQnJyMmJgYnDp1Cn/88QdWrVqFcePGSc+7cOFCld9Hae70uStJZc5jt27dqra/CWdpVdKCBQvg4+ODN954Q2ptadSoEc6dO2eT8C8lJeWOydMqKjo6GkeOHMHKlSsBANu2bcORI0fwzDPPoGnTpjhy5AiOHDmCH3/88Y77Sk1NxU8//YT27dtLkb1arcbQoUPx119/2QRMQgjExMTg7rvvtvkA7tixAw8//DB69OiBzZs3V+iquTo899xz+Oeff/D999/jiy++wJYtW7B48eISy65fv97m/ldffQWgMBfK4MGDIYTA1atX0alTp2K3iIgIu76X0gwYMABqtRoXL14ssV7lbQkrqrwtilYl/UgA+flwEhISpCvk0igUCvznP/+BSqXCv//9b2m79Xm3z1DU6/X4/fff0aBBA2nbrl27it2sJ/jNmzfj888/BwAMHDiwxLJBQUHo2rUrdu3aJV2oVKc+ffrgzJkzxX6M16xZA4VCIeW/Ku3Yu7m5oVevXjh+/Djatm1b4t/59h+Ur7/+WroQAYDLly/j4MGD0me6efPmqF+/Pr766iubctnZ2fjuu++kmVvu7u7o0qULvv/+e5t6WSwWrFu3Dg0aNECzZs1sXtvX1xc7d+5Ey5Yt0atXr0rNMq2MFi1aICUlpcQLTKt69ephxIgRmDJlCm7duoX4+PhKvcfKGjx4MFJSUmA2m0v8OzZv3rxS+23YsCGmTp2Kfv36SZ8z64XX7efeFStWVO1NlOFOn7uSVOY8dunSJbRq1apa6swWnkry8fHBnDlzMHv2bHz11Vd44oknMHbsWKxYsQJPPPEEJk2ahJSUFCxYsKDak501atQIjRo1ws8//4w2bdpImUanT5+OoUOHlvrjN2bMGDRs2BCdOnWCv78/zp8/j4ULF+L69etYtWqVTdm3334b27Ztw8CBAxEdHQ0vLy98/vnn+OOPP/DNN99I5fbv34+HH34YwcHBePXVV3HixAmb/bRq1Up6//Hx8WjcuDHGjRtX7PVKkpaWVuIJVKfT4Z577gEAfP7551i3bh1WrlyJ1q1bo3Xr1pg6dSpefvll3HfffTbT87VaLRYuXIisrCx07twZBw8exDvvvINBgwahR48eAPKTHT7zzDN46qmncPToUfTs2RPu7u5ITEzE/v37ERERYdOd4yiNGjXCW2+9hddeew2XLl3CwIED4ePjg+vXr+Pw4cNwd3eXEtmVl6enJ8LDw/HDDz+gT58+8PX1hb+/f4ldMgDw7rvv4sCBAxg1apQ0ZT8uLg6ffPIJUlJS8MEHH9zxNZs2bYpnnnkGy5Ytw/79+9GjRw/06NEDnTt3RnR0NHJyctCzZ0+kp6dj6dKliIuLw9q1a6Xnl3QytWYrvu+++6RAPDg4uMQmdxcXF/j5+dkt2d+LL76INWvW4MEHH8Rbb72F8PBwbN26FcuWLcPkyZOlH9Oyjv1HH32EHj164P7778fkyZPRqFEjZGZm4sKFC/jxxx/xyy+/2LxmcnIyhg0bhkmTJiE9PR1vvvkmXFxcMGfOHAD5rbELFizA448/jsGDB+PZZ5+VMlunpaXhvffek/Y1f/589OvXD7169cKsWbOg1WqxbNkynDp1Cl9//XWJLZqenp6IiYmRurO3bNlSLLFpdYuKioIQAr/99hv69+8vbX/ooYfQpk0bdOrUCQEBAbh8+TKWLFmC8PBwNG3atNLvsTIee+wxrF+/Hg888ABeeOEF3HvvvdBoNLhy5Qp27dqFoUOHltgCebv09HT06tULY8aMQYsWLeDp6YkjR45IxxzIDwDvvvtuvPLKKxBCwNfXFz/++CNiY2Or5b2U5E6fu5JU9DyWkpKC8+fPY9q0adVT6WoZCeTEykqwlZubKxo2bCiaNm0qzbZavXq1aNmypXBxcRGtWrUSGzduLHXQ8gcffFBsn6jAINIOHTpIg2Bv3LghlEqlNC26JPPnzxft27cX3t7eQqVSiYCAADFs2DBx+PDhEsufPHlSPPjgg8LT01O4uLiIrl27ih9//NGmTGmDU623Xbt22ewPJQzWLklZs7Ssg7T//PNP4erqKsaNG2fz3Ly8PNGxY0fRqFEjaWD5uHHjhLu7u/jzzz9FVFSUcHV1Fb6+vmLy5MkiKyur2Ot/+eWXokuXLsLd3V24urqKu+++Wzz55JPi6NGjUpnIyEjRunXrEutf2qDl2//mpSWPK+1zt3nzZtGrVy/h5eUldDqdCA8PFyNGjBA7d+6Uyljf6+1KmiK6c+dOcc899widTicAFDuWRR06dEhMmTJFtGvXTvj6+kqfoYEDB0oDaW9/rZKmKF+/fl14eHiIXr16SdvS0tLEa6+9Jlq2bCnc3NxEYGCgiIqKKrbfkpT1WreryqDlkv7Wt3+3hRDi8uXLYsyYMcLPz09oNBrRvHlz8cEHH9jMkBKi7GMfFxcnJkyYIOrXry80Go0ICAgQ3bt3F++8845UxvrZWbt2rfjXv/4lAgIChE6nE/fff7/N59Rq8+bNokuXLsLFxUW4u7uLPn36iAMHDhQrt2/fPtG7d2/ps1/S976kz6derxePPPKIcHFxEVu3bi3zeFaV2WwWjRo1Kjb4eOHChaJ79+7C399fSkMxceJEm8kXQlT+PQpR+uetpO+d0WgUH374oWjXrp1wcXERHh4eokWLFuLZZ58tlm6hNHl5eeK5554Tbdu2FV5eXsLV1VU0b95cvPnmmzaJTs+cOSP69esnPD09hY+Pj3j00UelFCNFf1MqUn8hin/2K/K5Ky3xYHnOY0II8cUXXwiNRmOTDqQqFEIUaZMisqNly5Zh9uzZuHjxYqmDgu1l/Pjx+Pbbb5GVleXQ1yUi+1i4cCHeffddXL16Fa6urnJXp87YvXs3evXqhf/+97926RYu6v7770fDhg2LDUWoLI7hIYfZtWsX/vWvfzk82CEi5zNlyhR4e3uXmoGaare9e/fiyJEjePvtt6ttnxzDQw5T0swaIjmZzWaU1chdntQOVJwQQlrWpTQKhaJKx97FxQVr164t93IGNVHRFCOlUavr5s90SkoK1qxZUywVSFWwS4uI6qyoqCibae+3K29qB7Jl7fYoS3h4OC5fvlzq45GRkdKAdGcVHR19x8kGcXFxpU4koIphwENEddbZs2eRmZlZ6uM6nU62VAS1WWZmJs6ePVtmmezsbLi7u5f6uKenZ6WnbtcW165dk/L/lKZt27YOzWvmzBjwEBERkdPjoGUiIiJyenVzNNRtLBYLrl27Bk9PT4euB0NERESVJ4RAZmYmQkNDS1yLqygGPMjvRw0LC5O7GkRERFQJCQkJNsvQlIQBDwoXcUtISKj2ZSCIiIjIPjIyMhAWFlauxVgZ8KBw4TUvLy8GPERERLVMeYajcNAyEREROT0GPEREROT0GPAQERGR02PAQ0RERE6PAQ8RERE5PQY8RERE5PQY8BAREZHTY8BDRERETo8BDxERETk9BjxERETk9BjwEBERkdNjwENEREROj4uH2lGW3oS0HANcNCr4e+jkrg4REVGdxRYeO1rzazx6vL8L72/7W+6qEBER1WkMeOxIq8o/vAazReaaEBER1W0MeOxIq84/vEYGPERERLJiwGNHUguPiQEPERGRnBjw2JG1hcdgFjLXhIiIqG5jwGNHGqmFxyxzTYiIiOo2Bjx2JLXwsEuLiIhIVgx47Mg6hsfILi0iIiJZMeCxI7bwEBER1QwMeOxIo+K0dCIiopqAAY8dWVt49GzhISIikhUDHjtipmUiIqKagQGPHWnVCgDs0iIiIpKbrAHP8uXL0bZtW3h5ecHLywvdunXDtm3bpMfHjx8PhUJhc+vatavNPvR6PaZNmwZ/f3+4u7tjyJAhuHLliqPfSom0KhUADlomIiKSm6wBT4MGDfDee+/h6NGjOHr0KHr37o2hQ4fi9OnTUpmBAwciMTFRuv388882+5g+fTo2bdqEDRs2YP/+/cjKysLgwYNhNsuf7E/DFh4iIqIaQS3niz/00EM29999910sX74chw4dQuvWrQEAOp0OwcHBJT4/PT0dX3zxBdauXYu+ffsCANatW4ewsDDs3LkTAwYMsO8buIOieXgsFgGlUiFrfYiIiOqqGjOGx2w2Y8OGDcjOzka3bt2k7bt370ZgYCCaNWuGSZMmITk5WXrs2LFjMBqN6N+/v7QtNDQUbdq0wcGDB0t9Lb1ej4yMDJubPVhnaQEcuExERCQn2QOekydPwsPDAzqdDs899xw2bdqEVq1aAQAGDRqE9evX45dffsHChQtx5MgR9O7dG3q9HgCQlJQErVYLHx8fm30GBQUhKSmp1NecP38+vL29pVtYWJhd3ps1Dw/Abi0iIiI5ydqlBQDNmzfHiRMnkJaWhu+++w7jxo3Dnj170KpVK4waNUoq16ZNG3Tq1Anh4eHYunUrhg8fXuo+hRBQKErvPpozZw5mzJgh3c/IyLBL0KMtEvBw4DIREZF8ZA94tFotmjRpAgDo1KkTjhw5go8++ggrVqwoVjYkJATh4eE4f/48ACA4OBgGgwGpqak2rTzJycno3r17qa+p0+mg0+mq+Z0Up1QqoFYqYLIIrqdFREQkI9m7tG4nhJC6rG6XkpKChIQEhISEAAA6duwIjUaD2NhYqUxiYiJOnTpVZsDjSFxPi4iISH6ytvC8+uqrGDRoEMLCwpCZmYkNGzZg9+7diImJQVZWFqKjo/HII48gJCQE8fHxePXVV+Hv749hw4YBALy9vTFx4kTMnDkTfn5+8PX1xaxZsxARESHN2pKbVq1EjsEMQw2YJk9ERFRXyRrwXL9+HWPHjkViYiK8vb3Rtm1bxMTEoF+/fsjNzcXJkyexZs0apKWlISQkBL169cLGjRvh6ekp7WPx4sVQq9UYOXIkcnNz0adPH6xatQqqgqR/crMOXDaY2KVFREQkF4UQos7/EmdkZMDb2xvp6enw8vKq1n3f994vuJqWi81T7kP7sHrVum8iIqK6rCK/3zVuDI+zsY7h4bR0IiIi+TDgsTNpxXQOWiYiIpINAx474ywtIiIi+THgsTONKj8BIpeWICIikg8DHjtjCw8REZH8GPDYmUbFQctERERyY8BjZzq28BAREcmOAY+dSV1abOEhIiKSDQMeO9NwWjoREZHsGPDYmZSHhy08REREsmHAY2caa6ZlrqVFREQkGwY8dlbYwsPV0omIiOTCgMfOOEuLiIhIfgx47KwwDw+7tIiIiOTCgMfOrNPS9WzhISIikg0DHjtjpmUiIiL5MeCxM66lRUREJD8GPHbGgIeIiEh+DHjsTKtSAGCXFhERkZwY8NgZ19IiIiKSHwMeO+NaWkRERPJjwGNnXEuLiIhIfgx47IyDlomIiOTHgMfOtMzDQ0REJDsGPHbGFh4iIiL5MeCxM66lRUREJD8GPHbGtbSIiIjkx4DHzgq7tMwy14SIiKjuYsBjZ1p2aREREcmOAY+dMdMyERGR/Bjw2Jl10LLZImC2sJWHiIhIDgx47MzawgMwFw8REZFcGPDYmXUMD8BuLSIiIrkw4LEzjUoh/ZvJB4mIiOTBgMfOFApF4QKiDHiIiIhkIWvAs3z5crRt2xZeXl7w8vJCt27dsG3bNulxIQSio6MRGhoKV1dXREVF4fTp0zb70Ov1mDZtGvz9/eHu7o4hQ4bgypUrjn4rZbK28nAMDxERkTxkDXgaNGiA9957D0ePHsXRo0fRu3dvDB06VApqFixYgEWLFuGTTz7BkSNHEBwcjH79+iEzM1Pax/Tp07Fp0yZs2LAB+/fvR1ZWFgYPHgyzueYk+uN6WkRERPJSCCFq1FxpX19ffPDBB5gwYQJCQ0Mxffp0vPzyywDyW3OCgoLw/vvv49lnn0V6ejoCAgKwdu1ajBo1CgBw7do1hIWF4eeff8aAAQPK9ZoZGRnw9vZGeno6vLy8qv093fvuTiRn6rH1Xz3QOtS72vdPRERUF1Xk97vGjOExm83YsGEDsrOz0a1bN8TFxSEpKQn9+/eXyuh0OkRGRuLgwYMAgGPHjsFoNNqUCQ0NRZs2baQyJdHr9cjIyLC52RNbeIiIiOQle8Bz8uRJeHh4QKfT4bnnnsOmTZvQqlUrJCUlAQCCgoJsygcFBUmPJSUlQavVwsfHp9QyJZk/fz68vb2lW1hYWDW/K1sMeIiIiOQle8DTvHlznDhxAocOHcLkyZMxbtw4nDlzRnpcoVDYlBdCFNt2uzuVmTNnDtLT06VbQkJC1d7EHXA9LSIiInnJHvBotVo0adIEnTp1wvz589GuXTt89NFHCA4OBoBiLTXJyclSq09wcDAMBgNSU1NLLVMSnU4nzQyz3uypcD2tmjOQmoiIqC6RPeC5nRACer0ejRs3RnBwMGJjY6XHDAYD9uzZg+7duwMAOnbsCI1GY1MmMTERp06dksrUBBopDw9beIiIiOSglvPFX331VQwaNAhhYWHIzMzEhg0bsHv3bsTExEChUGD69OmYN28emjZtiqZNm2LevHlwc3PDmDFjAADe3t6YOHEiZs6cCT8/P/j6+mLWrFmIiIhA37595XxrNqTEg8zDQ0REJAtZA57r169j7NixSExMhLe3N9q2bYuYmBj069cPADB79mzk5ubi+eefR2pqKrp06YIdO3bA09NT2sfixYuhVqsxcuRI5Obmok+fPli1ahVUKpVcb6sYDlomIiKSV43LwyMHe+fheXr1Uez86zrmD4/A6HsbVvv+iYiI6qJamYfHmenYwkNERCQrBjwOwLW0iIiI5MWAxwGsY3j0bOEhIiKSBQMeB+CgZSIiInkx4HEAjZRpmQEPERGRHBjwOABbeIiIiOTFgMcBtGzhISIikhUDHgdgpmUiIiJ5MeBxAM7SIiIikhcDHgcoHLRc55NaExERyYIBjwMUDlo2y1wTIiKiuokBjwNo2cJDREQkKwY8DsBp6URERPJiwOMADHiIiIjkxYDHATSclk5ERCQrBjwOwBYeIiIieTHgcQCNSgGAmZaJiIjkwoDHAXRqdmkRERHJiQGPA2hVKgDs0iIiIpILAx4H0KjZpUVERCQnBjwOYE08yLW0iIiI5MGAxwEK19JiwENERCQHBjwOoOO0dKIaJcdgkrsKRORgDHgcwJqHxyIAE1t5iGS1/XQSWr+5Het/uyx3VYjIgRjwOIC1SwvgAqJEcjtw4SaEAP5MSJe7KkTkQAx4HMDawgOwW4tIbv/cygEA6E1mmWtCRI7EgMcB1EqF9G8mHySSV4IU8PC7SFSXMOBxAIVCUbieFgMeItlYLAIJqbkAGPAQ1TUMeBxEp+JMLSK5JWfqpe8gu7SI6hYGPA6iUTMXD5HcElJzpH/rjfwuEtUlDHgcRMsWHiLZ/ZNSJODhd5GoTmHA4yDW9bQ4hodIPtYZWgC7tIjqGgY8DsIWHiL52XRp8btIVKcw4HEQrVoFgAEPkZwSbnEMD1FdJWvAM3/+fHTu3Bmenp4IDAzEww8/jLNnz9qUGT9+PBQKhc2ta9euNmX0ej2mTZsGf39/uLu7Y8iQIbhy5Yoj38odaVX5XVoctEwkn6JdWuxeJqpbZA149uzZgylTpuDQoUOIjY2FyWRC//79kZ2dbVNu4MCBSExMlG4///yzzePTp0/Hpk2bsGHDBuzfvx9ZWVkYPHgwzOaa00ev5QKiRLLKM5pxPUMv3dcba875gYjsTy3ni8fExNjcX7lyJQIDA3Hs2DH07NlT2q7T6RAcHFziPtLT0/HFF19g7dq16Nu3LwBg3bp1CAsLw86dOzFgwAD7vYEKsK6nxatKInlcKUg4aMUxPER1S40aw5Oenr+Yn6+vr8323bt3IzAwEM2aNcOkSZOQnJwsPXbs2DEYjUb0799f2hYaGoo2bdrg4MGDjql4ObCFh0he1vE7Id4uAACTRcDECxCiOkPWFp6ihBCYMWMGevTogTZt2kjbBw0ahEcffRTh4eGIi4vD66+/jt69e+PYsWPQ6XRISkqCVquFj4+Pzf6CgoKQlJRU4mvp9Xro9YVN2xkZGfZ5U0WwhYdIXtYZWk0CPZCYngcg//uoVtWo6z4ispMaE/BMnToVf/75J/bv32+zfdSoUdK/27Rpg06dOiE8PBxbt27F8OHDS92fEAIKhaLEx+bPn4+5c+dWT8XLydrCY2QLD5EsrEkHmwR6YN/5mwDyZ2q5aeWsFRE5So24tJk2bRq2bNmCXbt2oUGDBmWWDQkJQXh4OM6fPw8ACA4OhsFgQGpqqk255ORkBAUFlbiPOXPmID09XbolJCRUzxspg44tPESysrbwNPJzh6Zg1iTH8RDVHbIGPEIITJ06Fd9//z1++eUXNG7c+I7PSUlJQUJCAkJCQgAAHTt2hEajQWxsrFQmMTERp06dQvfu3Uvch06ng5eXl83N3qxdWkazsPtrEVFx/9zKH7Tc0NcNuoK8WMy2TFR3yNqlNWXKFHz11Vf44Ycf4OnpKY258fb2hqurK7KyshAdHY1HHnkEISEhiI+Px6uvvgp/f38MGzZMKjtx4kTMnDkTfn5+8PX1xaxZsxARESHN2qoJrF1avKIkcjwhhDRoOczXNf/7qOf3kagukTXgWb58OQAgKirKZvvKlSsxfvx4qFQqnDx5EmvWrEFaWhpCQkLQq1cvbNy4EZ6enlL5xYsXQ61WY+TIkcjNzUWfPn2watUqqFQqR76dMmm4tASRbNJyjMjSmwAADXzcoLNegDDbMlGdIWvAI0TZ3Tuurq7Yvn37Hffj4uKCpUuXYunSpdVVtWonDVrmGB4ih7NmWA7y0sFFoyoMeNilRVRn1IhBy3UB8/AQycca8DT0dQMAaQwPv49EdQcDHgfhWlpE8rHO0ArzKQh4NBxTR1TXMOBxELbwEMmncMCytYWHXVpEdQ0DHgexDlrWs4WHyOFK69JiCw9R3cGAx0GYaZlIPgkFOXiKtfBwlhZRncGAx0G0zLRMJAuT2YKraYVJB4GiY3jYpUVUVzDgcRBOSyeSR2J6HswWAa1aiUBPHQB2aRHVRQx4HETLxINEsrAOWG7g4wqlMn+2pPX7yICHqO5gwOMgzLRMJI/bBywDRbq0jOzSIqorGPA4iDQtnYuHEjlUiQEP17YjqnMY8DhIYR4eXlESOVJCqu2AZYBjeIjqIgY8DmLt0jKyhYfIof6RxvCwhYeoLmPA4yA6ZlomkkVCWWN42OJKVGcw4HEQDfPwEDmcxSJwK9sAIH+ldCt2aRHVPQx4HISZlokcz2gp/L7pNKrCfzPTMlGdw4DHQawBD9fSInKcomPm1AU5eAB2aRHVRQx4HESjyj/ZGs0WCMGBy0SOULRF1dqtDLBLi6guYsDjIDpV/glWCMBkYcBD5AjWpVxUSgVURVp4mGmZqO5hwOMgGnXhyZbraRE5hnWSgLWF1YqZlonqHgY8DqIt0pzOqelEjmEqGMNTtDsLKOzS4neRqO5gwOMgapUS1hZ1nmSJHMMotfDcHvCwS4uormHA40DMxUPkWHfs0mLAQ1RnMOBxIC2zLRM5lPEOXVqclk5UdzDgcSAt19Micihrl5aWXVpEdR4DHgdiCw+RY1nz8JQ2hsdgYl4sorqCAY8DSQGPmc3oRI5gLMh5VTQtBGC7zARbeYjqBnVFnxAfH499+/YhPj4eOTk5CAgIwD333INu3brBxcXFHnV0GtKgZROvKIkcwdrCo1aW3MID5Ac8LkUCICJyTuUOeL766it8/PHHOHz4MAIDA1G/fn24urri1q1buHjxIlxcXPD444/j5ZdfRnh4uD3rXGtpOUuLyKFKG8OjViqgUORnPs8fuKyRoXZE5EjlCng6dOgApVKJ8ePH45tvvkHDhg1tHtfr9fj111+xYcMGdOrUCcuWLcOjjz5qlwrXZhqumE7kUNK09Nu6tBQKBXRqJfKMFq6YTlRHlCvgefvtt/Hggw+W+rhOp0NUVBSioqLwzjvvIC4urtoq6Ex0bOEhcqjSpqUD+VPT84wWjuEhqiPKFfA8+OCDuHHjBgICAu5Y1t/fH/7+/lWumDPiLC0ixyot0zJQdGo6JxEQ1QXlnqVVv359jBgxAtu2beM0zkqyZntlCw+RY5hKGcMDMNsyUV1T7oBn9erVyMjIwEMPPYSwsDC8/vrruHjxoj3r5nTYwkPkWIaCLi31bUtLAFxAlKiuKXfAM3r0aOzYsQNxcXGYNGkS1q9fj2bNmqFXr15Yv3498vLy7FlPp6CRMi3zBEvkCOXr0uL3kaguqHDiwbCwMLz55pu4dOkSduzYgfr16+OZZ55BSEgInn/+eXvU0WmwhYfIsUrLtAwUCXiMHMNDVBdUKdNynz59sG7dOqxZswZKpRIrVqyo0PPnz5+Pzp07w9PTE4GBgXj44Ydx9uxZmzJCCERHRyM0NBSurq6IiorC6dOnbcro9XpMmzYN/v7+cHd3x5AhQ3DlypWqvDW70DHgIXKowjw8pXdpsYWHqG6odMATHx+PN998E40aNcKoUaPQoUMHrF+/vkL72LNnD6ZMmYJDhw4hNjYWJpMJ/fv3R3Z2tlRmwYIFWLRoET755BMcOXIEwcHB6NevHzIzM6Uy06dPx6ZNm7Bhwwbs378fWVlZGDx4MMw1bAkHdmkROZahrGnpHLRMVKdUaGmJvLw8/Pe//8XKlSuxd+9e1K9fH+PHj8dTTz2FRo0aVfjFY2JibO6vXLkSgYGBOHbsGHr27AkhBJYsWYLXXnsNw4cPB5A/eDooKAhfffUVnn32WaSnp+OLL77A2rVr0bdvXwDAunXrEBYWhp07d2LAgAEVrpe9WGeK6BnwEDmEdZaWuoSAR/o+clo6UZ1Q7haeZ555BsHBwZg0aRICAgKwdetWxMfHY+7cuZUKdkqSnp4OAPD19QUAxMXFISkpCf3795fK6HQ6REZG4uDBgwCAY8eOwWg02pQJDQ1FmzZtpDK30+v1yMjIsLk5QmGmZU7rJ3KEMru0CtbPYqZlorqh3C08hw4dwty5czF27FgpIKlOQgjMmDEDPXr0QJs2bQAASUlJAICgoCCbskFBQbh8+bJURqvVwsfHp1gZ6/NvN3/+fMydO7e638IdFa6lxStKIkcos0uLs7SI6pRyt/D8+eefeOGFF0oNdhITE7FgwYJKV2Tq1Kn4888/8fXXXxd7TKGwvToTQhTbdruyysyZMwfp6enSLSEhodL1rgjO0iJyLGlaurqsgIcXIER1QYXG8ADAhAkTStx++fJlHD58GLNnz65wJaZNm4YtW7Zg7969aNCggbQ9ODgYQH4rTkhIiLQ9OTlZavUJDg6GwWBAamqqTStPcnIyunfvXuLr6XQ66HS6CtezqrTSoGV2aRE5Qtl5eDhLi6guqfAsrdTUVJvbzZs3cfjwYezevRsffvhhhfYlhMDUqVPx/fff45dffkHjxo1tHm/cuDGCg4MRGxsrbTMYDNizZ48UzHTs2BEajcamTGJiIk6dOlVqwCMXtvAQOVbZY3j4fSSqSyrcwrNp06YSt7/77rvYvHkznn322XLva8qUKfjqq6/www8/wNPTUxpz4+3tDVdXVygUCkyfPh3z5s1D06ZN0bRpU8ybNw9ubm4YM2aMVHbixImYOXMm/Pz84Ovri1mzZiEiIkKatVVTaLhaOpFDGaWlJdilRVTXVTjgKc3o0aPxzjvvVOg5y5cvBwBERUXZbF+5ciXGjx8PAJg9ezZyc3Px/PPPIzU1FV26dMGOHTvg6ekplV+8eDHUajVGjhyJ3Nxc9OnTB6tWrYJKparSe6pubOEhcqxydWlxlhZRnVBtAc8ff/yBe+65p0LPKc+q6wqFAtHR0YiOji61jIuLC5YuXYqlS5dW6PUdTVotnQEPkUMUBjwlZVrmLC2iuqTCAc+MGTOKbUtKSsKWLVvw4IMP2jy+aNGiqtXOyVhPsMy0TOQY1pxX2jIzLbNLi6guqHDAc/z48RK3d+7cGcnJyUhOTgZQfCo5FenSYsBD5BCGMrq0CjMt8/tIVBdUOODZtWuXPepRJ0iDlnmCJXIIk6WMPDzMtExUp1RptXSqGC1naRE5lLVLS6MsawwPu7SI6oJyBTwDBw4sdV2qojIzM/H+++/jP//5T5Ur5ow0nKVF5FDly7TM7yNRXVCuLq1HH30UI0eOhKenJ4YMGYJOnTohNDQULi4uSE1NxZkzZ7B//378/PPPGDx4MD744AN717tWKsy0zBMskSOUNYaHmZaJ6pZyBTwTJ07E2LFj8e2332Ljxo34v//7P6SlpQHIH5zcqlUrDBgwAMeOHUPz5s3tWd9aTccWHiKHKnNaOmdpEdUp5R60rNVqMWbMGCnDcXp6OnJzc+Hn5weNRmO3CjoTDdfSInIo63etxGnpvAAhqlMqnXjQ29sb3t7e1VkXp8dMy0SOZW3hKXlpCXZpEdUlnKXlQEXX0ipPlmkiqppyZVrmtHSiOoEBjwNpi8wUYbcWkf2V2aVVZAwPL0CInB8DHgfSFQl4mIuHyL7MFgGzpSAPT0kBT8HiwhYBmCwMeIicXbkDHpPJZM961AlFT7pGjhsgsqui6R9KzrRcuI3jeIicX7kDnpCQEMyaNQt//fWXPevj1FRKBVQFGV/ZwkNkXzYBTwljeIp2c+mNnJpO5OzKHfDMmDEDP/74I9q0aYNu3brhiy++QFZWlj3r5pSsJ17O1CKyL1ORcXIaZfFTnVKp4AKiRHVIuQOeOXPm4OzZs9i9ezdatGiB6dOnIyQkBE899RQOHDhgzzo6FdeCBQtzeUVJZFfWFh6VUgFlCWtpAVxegqguqfCg5fvvvx8rV65EUlISlixZggsXLuD+++9H8+bNsWDBAnvU0am46/JTH2XpOSaKyJ4MZUxJt2K2ZaK6o9KztNzd3TFx4kTs27cPP/74I27evIk5c+ZUZ92ckkdBwJPNgIfIrqxT0kuaoWVlTT7ILmYi51fpgCcnJwcrV65Ez549MWTIEPj5+eHdd9+tzro5JXcGPEQOYe3SKikHjxW7tIjqjgovLbFv3z6sXLkS3377LcxmM0aMGIF33nkHPXv2tEf9nE5hlxab0InsydpqU1YLj5bZlonqjHIHPPPmzcOqVatw8eJFdOrUCR988AFGjx4NLy8ve9bP6XhaA548o8w1IXJu1mSC6jLH8FjX0+IFCJGzK3fAs3jxYjzxxBOYOHEi2rRpY886OTV3Xf4JNtvAEyyRPZWrS4vT0onqjHIHPNeuXYNGoyn3jiMiIvDzzz8jLCysUhVzVpylReQYxnJ0aXGWFlHdUe5ByxUJdgAgPj4eRiO7bW7HWVpEjiFNS1eX0aXFMTxEdQYXD3UwtvAQOUZFpqWzS4vI+THgcTBOSydyDKO5HF1aanZpEdUVDHgczJMtPEQOYaxIpmV2aRE5PQY8DsY8PESOwS4tIiqKAY+DSdPS2cJDZFcV6dKyDnAmIudVrQHP1atXpX+vWLECQUFB1bl7p8BZWkSOUaGlJYxscSVydtUS8CQlJWHatGlo0qSJtG3MmDFwd3evjt07Fc7SInKMwqUlypNpmS08RM6u3AFPWloaHn/8cQQEBCA0NBQff/wxLBYL3njjDdx11104dOgQvvzyS3vW1SkUbeERQshcGyLnZR3Doy5rLS1mWiaqM8qdafnVV1/F3r17MW7cOMTExODFF19ETEwM8vLysG3bNkRGRtqznk7DGvBYBJBrNMNNW+H1W4moHEzlGcPDTMtEdUa5W3i2bt2KlStX4sMPP8SWLVsghECzZs3wyy+/MNipADetCoqCFnZ2axHZT+EYHmZaJqIKBDzXrl1Dq1atAAB33XUXXFxc8PTTT9utYs5KoVDAXWvt1uJVJZG9GDgtnYiKKHfAY7FYbNbTUqlUVR6UvHfvXjz00EMIDQ2FQqHA5s2bbR4fP348FAqFza1r1642ZfR6PaZNmwZ/f3+4u7tjyJAhuHLlSpXqZW+cmk5kf9K0dDUzLRNRBcbwCCEwfvx46HQ6AEBeXh6ee+65YkHP999/X+4Xz87ORrt27fDUU0/hkUceKbHMwIEDsXLlSum+Vqu1eXz69On48ccfsWHDBvj5+WHmzJkYPHgwjh07BpVKVe66OFL+TC09u7SI7KhceXg0HLRMVFeUO+AZN26czf0nnniiyi8+aNAgDBo0qMwyOp0OwcHBJT6Wnp6OL774AmvXrkXfvn0BAOvWrUNYWBh27tyJAQMGVLmO9uDJXDxEdidlWlaWNYanoEuLY3iInF65A56irSyOtHv3bgQGBqJevXqIjIzEu+++i8DAQADAsWPHYDQa0b9/f6l8aGgo2rRpg4MHD5Ya8Oj1euj1eul+RkaGfd/EbZiLh8j+KtKlxUzLRM6vRi8tMWjQIKxfvx6//PILFi5ciCNHjqB3795SsJKUlAStVgsfHx+b5wUFBSEpKanU/c6fPx/e3t7SLSwszK7v43YMeIjsr3xLS1hbeDiGh8jZ1egkMKNGjZL+3aZNG3Tq1Anh4eHYunUrhg8fXurzhBBQKEpvxp4zZw5mzJgh3c/IyHBo0MPlJYjsr1zT0jmGh6jOqNEtPLcLCQlBeHg4zp8/DwAIDg6GwWBAamqqTbnk5OQy1/HS6XTw8vKyuTmSdZYWV0wnsh+D6c7T0plpmajuqFUBT0pKChISEhASEgIA6NixIzQaDWJjY6UyiYmJOHXqFLp37y5XNe/InS08RHZXsVlavPggcnaydmllZWXhwoUL0v24uDicOHECvr6+8PX1RXR0NB555BGEhIQgPj4er776Kvz9/TFs2DAAgLe3NyZOnIiZM2fCz88Pvr6+mDVrFiIiIqRZWzURZ2kR2Z/Jkh/wqMvMtJzf2mo0C5gtAqoyZnQRUe0ma8Bz9OhR9OrVS7pvHVczbtw4LF++HCdPnsSaNWuQlpaGkJAQ9OrVCxs3boSnp6f0nMWLF0OtVmPkyJHIzc1Fnz59sGrVqhqbgwcobOHJZMBDZDfGgi4tbZmDlgsfM5gscNXW3PMGEVWNrAFPVFRUmSuGb9++/Y77cHFxwdKlS7F06dLqrJpdsUuLyP4M5ZqlVfiY3mRmwEPkxGrVGB5nwVlaRPZXnjw8apVS6sbiwGUi58aARwaFeXg4UJLIXgoHLZc9LocrphPVDQx4ZODBxUOJ7M5YjtXSAS4gSlRXMOCRgYcuf9V5Zlomsp/yTEsHimRbZpcWkVNjwCODwsSDDHiI7KXcXVrMtkxUJzDgkYF10LLBZJFOykRUvaxdWmVNSy/6OLu0iJwbAx4ZWActAxzHQ2QvRlM5u7TYwkNUJzDgkYFGpYS2YKAku7WI7MNQjmnpQNEV0xnwEDkzBjwyKczFw2Z0InuQxvDcYbkIztIiqhsY8MjEQ8rFY5S5JkTOx2wRsBQkcS//tHS28BA5MwY8MmHyQSL7KToZoNxdWgx4iJwaAx6ZMPkgkf3YBDzlnZZu5MUHkTNjwCOTwhYeBjxE1c06JR0ANEp2aRERAx7ZcMV0IvuxtvColQoo7zhomV1aRHUBAx6ZeGgZ8BDZi6EgeFHfoTsLKGzhMTDgIXJqDHhk4uGSH/BkMuAhqnYmS/kWDgUg5cTitHQi58aARybs0iKyH2uX1p2WlQDYpUVUVzDgkUnhLC1eVRJVN0M5l5UAis7SYsBD5MwY8MiEs7SI7EfKsqwu/xgedmkROTcGPDLxYJcWkd1Yp6XfaUo6wC4torqCAY9M3DlLi8hupBaeco3hYR4eorqAAY9MOEuLyH4q1KXFTMtEdQIDHpmwS4vIfqQuLc7SIqICDHhkUjgtnVeVRNWNXVpEdDsGPDJxt05LN5gghLhDaSKqiIrl4bFmWubFB5EzY8AjE2uXlhBAjoEnWqLqVJGlJbRs4SGqExjwyMRVo4J1TUPm4iGqXhzDQ0S3Y8AjE4VCweSDRHZislSgS4uztIjqBAY8MuJMLSL7KFxaoiKZltnCQ+TMGPDIiC08RPZR2S4tTiAgcl4MeGTEqelE9lGYeLD8XVoAYDCzlYfIWTHgkVHhiuls4SGqTlLAoyx/lxbAbi0iZ8aAR0bWMTxcXoKoelWkS6vowOY8DlwmcloMeGTkzkHLRHZRkS4thUIhXXxk5fG7SOSsZA149u7di4ceegihoaFQKBTYvHmzzeNCCERHRyM0NBSurq6IiorC6dOnbcro9XpMmzYN/v7+cHd3x5AhQ3DlyhUHvovK4ywtIvuoyNISAODjrgEApOYY7FYnIpKXrAFPdnY22rVrh08++aTExxcsWIBFixbhk08+wZEjRxAcHIx+/fohMzNTKjN9+nRs2rQJGzZswP79+5GVlYXBgwfDbK75TdOcpUVkH4VLS9x5DA8A+LhpAQCp2Ua71YmI5KWW88UHDRqEQYMGlfiYEAJLlizBa6+9huHDhwMAVq9ejaCgIHz11Vd49tlnkZ6eji+++AJr165F3759AQDr1q1DWFgYdu7ciQEDBjjsvVQGW3iI7MNgKv8YHqBIwMMWHiKnVWPH8MTFxSEpKQn9+/eXtul0OkRGRuLgwYMAgGPHjsFoNNqUCQ0NRZs2baQyNZm71jpLq+a3RhHVJtYWHnW5Ax52aRE5O1lbeMqSlJQEAAgKCrLZHhQUhMuXL0tltFotfHx8ipWxPr8ker0eer1eup+RkVFd1a4QD5f8kyxnaRFVr8KlJcrZpeVubeFhlxaRs6qxLTxWCoXtCUsIUWzb7e5UZv78+fD29pZuYWFh1VLXimIeHiL7qHSXVjZbeIicVY0NeIKDgwGgWEtNcnKy1OoTHBwMg8GA1NTUUsuUZM6cOUhPT5duCQkJ1Vz78uG0dCL7qPAsLXZpETm9GhvwNG7cGMHBwYiNjZW2GQwG7NmzB927dwcAdOzYERqNxqZMYmIiTp06JZUpiU6ng5eXl81NDpylRWQfFcnDA7BLi6gukHUMT1ZWFi5cuCDdj4uLw4kTJ+Dr64uGDRti+vTpmDdvHpo2bYqmTZti3rx5cHNzw5gxYwAA3t7emDhxImbOnAk/Pz/4+vpi1qxZiIiIkGZt1WScpUVkHxVZWgJglxZRXSBrwHP06FH06tVLuj9jxgwAwLhx47Bq1SrMnj0bubm5eP7555GamoouXbpgx44d8PT0lJ6zePFiqNVqjBw5Erm5uejTpw9WrVoFlUrl8PdTUVw8lMg+DBVYWgIoOi2dLTxEzkrWgCcqKgpCiFIfVygUiI6ORnR0dKllXFxcsHTpUixdutQONbQvawuPwWyB3mSGTl3zgzSi2sBU4S6t/DE8aTmGck2MIKLap8aO4akLrHl4ALbyEFWnwkHLFevSMlkE00QQOSkGPDJSq5Rw0eT/CTiOh6j6WFdL15azS8tFo4KrJv8ChON4iJwTAx6ZeXCmFlG1M5gqNi0dKDo1neN4iJwRAx6ZMRcPUfUrXFqi/GNxCqems4WHyBkx4JGZu5YtPETVrXC19Iq08HBqOpEzY8AjMw8XBjxE1c1UwWnpAJMPEjk7BjwyY/JBoupnqOC0dKDIGB628BA5JQY8MitcXoLT0omqS0WnpQNAPTeO4SFyZgx4ZMYV04mql9kiYCnIZ1qRMTy+btbkg+zSInJGDHhkZh20zICHqHpYW3eA/FxX5WUdw3OLXVpETokBj8ysXVrM7kpUPQxFAp6KdGn5sEuLyKkx4JGZZ8Esrcw8BjxE1cE6QwsANMpKTEtnwEPklBjwyCzAUwcAuJ6RJ3NNiJyDlHRQqYBSWZFBy4WZlsta1JiIaicGPDILrecKAEhKZ8BDVB0qs6wEAPgWjOExmCzINXLWJJGzYcAjs2AvFwD5AQ+vKomqrjLLSgCAm1YlzeriwGUi58OAR2ZBXi5QKPIHWqbwJEtUZRVdKd1KoVDAx51T04mcFQMemWnVSvh75I/jYbcWUdUVJh2s+OnNOnCZLTxEzocBTw0Q4p3frZXIgIeoyqSAR12xLi2AM7WInBkDnhqgMODJlbkmRLWfsRILh1qxS4vIeTHgqQFCvPNnarGFh6jqrC08FR3DAxSup8UuLSLnw4CnBgj2LpypRURVY6jkLC0A8C0IeNLYpUXkdBjw1ADWLq1raezSIqoqYyXz8ACFyQdvsUuLyOkw4KkBrF1aScy2TFRlJkvlx/BYkw+yhYfI+TDgqQGKztJi8kGiqqnKGB5OSydyXgx4aoCggmzLBpOFJ1qiKipcWqLiY3isXVqcpUXkfBjw1ABFkw9yphZR1VRlWrq1S4t5eIicDwOeGiKEM7WIqkVVMi1bp6XnGMzI4wKiRE6FAU8NweSDRNWjMOCpeJeWl4saKmX+89itReRcGPDUEFxegqh6VKVLS6FQwMc6NZ3j6YicCgOeGiLYOjWdAQ9RlRSupVW501s9Jh8kckoMeGqI0HoFyQfZpUVUJVWZlg4UZltOZZcWkVNhwFNDBHtx0DJRdTBUYQwPUDTbMlt4iJwJA54aougCokw+SFR5RlP+90dd2RYea7ZljuEhcioMeGqIIO/8PDx6k4VN6URVUJVp6UCRFdPZwkPkVBjw1BA6tQr+HvknWk5NJ6o8k8U6hqdyXVq+7sy2TOSManzAEx0dDYVCYXMLDg6WHhdCIDo6GqGhoXB1dUVUVBROnz4tY40rL5jJB4mqzGCq/LR0oLCFh9mWiZxLjQ94AKB169ZITEyUbidPnpQeW7BgARYtWoRPPvkER44cQXBwMPr164fMzEwZa1w51nE81xjwEFVaVbu0rAuIpnIMD5FTqRUBj1qtRnBwsHQLCAgAkN+6s2TJErz22msYPnw42rRpg9WrVyMnJwdfffWVzLWuuMLlJdilRVRZVcm0DBR2aXEsHZFzqRUBz/nz5xEaGorGjRvjsccew6VLlwAAcXFxSEpKQv/+/aWyOp0OkZGROHjwYKn70+v1yMjIsLnVBMHMtkxUZdU1aJktPETOpcYHPF26dMGaNWuwfft2/N///R+SkpLQvXt3pKSkICkpCQAQFBRk85ygoCDpsZLMnz8f3t7e0i0sLMyu76G8Qq1T09MY8BBVlqEKS0sAhYkHM/UmKXgiotqvxgc8gwYNwiOPPIKIiAj07dsXW7duBQCsXr1aKqNQ2DZdCyGKbStqzpw5SE9Pl24JCQn2qXwFSYOWMxjwEFWWqYpLS3i5amA9fXCmFpHzqPEBz+3c3d0RERGB8+fPS7O1bm/NSU5OLtbqU5ROp4OXl5fNrSawtvBcS8tl8kGiSipcWqJyY3hUSgW8Xa3jeNitReQsal3Ao9fr8ddffyEkJASNGzdGcHAwYmNjpccNBgP27NmD7t27y1jLygn0Kkw+yCtLosqpapcWUGQ9LY7jIXIaNT7gmTVrFvbs2YO4uDj89ttvGDFiBDIyMjBu3DgoFApMnz4d8+bNw6ZNm3Dq1CmMHz8ebm5uGDNmjNxVrzAXjQp+7tbkg+zWIqoMoym/haeyS0sAhetpsYWHyHmo5a7AnVy5cgWjR4/GzZs3ERAQgK5du+LQoUMIDw8HAMyePRu5ubl4/vnnkZqaii5dumDHjh3w9PSUueaVE1LPBSnZBiSm56JVaM3oaiOqTao6LR0oXE+LU9OJnEeND3g2bNhQ5uMKhQLR0dGIjo52TIXsLNjLFaeuZrCFh6iSCsfwVKWFp2A9LXZpETmNGt+lVdeEcHkJoioxVscYHuuK6ezSInIaDHhqmJB6+QHPNWZbJqqUqiYeBCCNpbueoa+WOhGR/Bjw1DDV2cIz7+e/MGL5QWTpTVXeF1FtIXVpqSs/hueuAA8AwMUbWdVSJyKSHwOeGibYKz8XT1UDHiEE1vwaj6OXU7Hr7+TqqBpRrWDt0lIrK396axqYH/BcSM6C2cKcWETOgAFPDRNapEurKskHr2fokWfMv9I9eDGlWupGVBsYqphpGQDCfN2gVSuhN1lwNZXdy0TOgAFPDRPklR/w5BktSM+t/JTY+JRs6d8HL96scr2IaovqmJauUipwd0G31vnkzGqpFxHJiwFPDeOiUSHAMz/j8rnrlR8/cLlIwHM5JQdXUnOqXDeims5sEbA2jFZlWjpQ2K11PpnjeIicAQOeGujexr4AgAMXKt8yE59iG+CwW4vqgqKrm1dllhZQJOCpwoUHEdUcDHhqoPub+AOoYsBzM7+Fx6cgRf7BKuyLqLYwFAl41FXo0gKApkHs0iJyJgx4aqD7CgKe4wlpyMyr3DgeawvPiI4NAAAHLqZwBXZyetZ1tABAU4VZWgDQJDB/eZoLyVmwcKYWUa3HgKcGCvN1Q7ifG8wWgd8u3arw84UQ0hieYfc0gE6txI1MPS5wLAI5ucIp6QoolVVr4Qn3c4NGpUCOwcxEoEROgAFPDWVt5dlfia6oG1l65BjMUCqAuwPd0blR/pggjuMhZ1cdWZatNColGvu7A+DAZSJnwICnhupRhXE8lwu6s0LruUKnVqF7E79K74uoNqmOKelFNbV2a3HgMlGtx4Cnhup+tx8Uivwry+sZFcu6HFcwYLmRn3vBvvKDp0OXUpg1lpyatUtLW4Wkg0U1CeTAZSJnwYCnhqrnpkVEfW8AwP7zFWuZsY7faeTvBgCIqO8NTxc1MvJMOH0tvXorSlSDWFt4qrKsRFGFM7XYwkNU2zHgqcHuq2S3lnWGlrWFR6VUoOtd1m4tjuMh51W4rET1d2lxliNR7caApwbrUWTgckVOttYWnvCCgAfI7yIDuMwEOTfrtPTqGLQM5LeSqpQKZOpNuJ6hr5Z9EpE8GPDUYB3DfaBTK5FcgSnlQghcvmlt4XGTtltbi47E34LeZK7+yhLVAKaCMWpVXVbCSqdWIbzge8RxPES1GwOeGsxFo5KWmSjv9PSUbAMy9SYoFPn5fKyaBnrA30OHPKMFx/9Js0d1iWRnqMZp6VZcYoLIOTDgqeGkfDzlHLhs7c4K9XaFi0YlbVcoFIXdWpyeTk6qsEuresbwAIXjeDhwmah2Y8BTw1nH8Ry6lGKzMGJp4gu6s8KLdGfdvq9fziZXYw2Jag4p03J1tvAUzNS6wC4tcmIGkwWPLD+IcV8edtqlVBjw1HCtQrzg46ZBtsGMPxLS7li+pAHLVn1bBUGlVODU1QwpVw+RM7FeFFTXGB6gMBfPOc7UIid27HIqjl1OxZ5zN7D3/A25q2MXDHhqOKVSge4FLTN7y9GtFZdSfMCyla+7Vuoi++mPa9VYS6KawVDNmZYB4O4ADygUQHquETezDNW2X6Ka5NdLhSlL1vx6Wcaa2A8DnlqgV/NAAMDKA3FIvMMihoVJB4u38ADA4LYhAICf/kysxhoS1Qymgi6t6hy07KJRoaEvZ2qRcztUZK3FXWeTpd8SZ8KApxZ4uH0o2jXwRmaeCS9/d7LUZnUhRLFlJW43oHUwNCoFzl7PxLnrPHmTc5HW0qqmpSWsrDO1ypsegqg2yTWYcTwhFQDQLMgDQgBrnbCVhwFPLaBWKbFwZHvo1ErsPXcDXx9OKLFcWo4RmXkmAJCuSG/n7apBZLMAAOzWIucjBTzK6uvSAoAm1planJpOTujY5VQYzQLBXi54ZVALAMA3RxOQYzDJXLPqxYCnlmgS6IGXBjQHALyz9QwSbuUUKxNf0AQZ7OUCV62q2ONWg9uGAgB+/DORgzDJqdgjDw9QJBcPu7TICf16KX98aLe7/RDVLBANfd2QkWfCDyec66KYAU8t8tR9jXFvI1/kGMyY9d8/ik0djL9t0dDS9G0VBJ1aibib2Th9LcNu9SVytGx9/hVptXdpBZWvSyv+ZjaO/5Nara9NZG+/Fozf6Xa3H5RKBZ7sFg4AWH0w3qkuihnw1CIqpQIfPNoWbloVfou7hVUH420ej79pu2hoaTx0avRukT8QmoOXyRnkGc14b9vfWL77IoD8rtvqdHdAfsBzM8uA30sJaP68koZBH+3DsGUH8d62v2F20lwm5Fyy9Sb8eSUdANCtYJHpRzuGwVWjwt9JmTgcd0vO6lUrBjy1TLifO159oCUA4P2Yv3GiSG6esnLw3M7arfXTn9ecKoKnuufY5VQ8+PE+fLrnIiwCGNIuFM9F3l2tr+GuU6NfqyAAwMRVR4olIfwnJQcTVh1BrjF/nbpP91zEs2uPIkvvXGMgyPkcib8Fk0WggY+rtByRt5sGD99TH4BzTVFnwFMLPd6lIXq3CITeZMGEVUekmVnxZeTguV3vFoFw06pwJTXXJmgiqi1uZOoRveU0Rnx6EBdvZCPAU4fPxnbEx6PvqfYWHgBYPKo92jXwRmqOEU98fhhXUvO/bylZeoxbeRg3swxoHeqF9x+JgFatxM6/kvHIsoMljrcjqimk7qyC1h2rcd3zu7ViTichKT3P4fWyBwY8tZBCocDHo+9BRH1v3Mo24Mkvf0NyZp40hqc8LTyuWhX6tsy/Yv3xD3ZrUe1xM0uPd7eewf0LfsGqg/EQAnikQwPEvtgT/VsH2+11PXRqrHrqXjQJ9EBSRh6e/OIwEm7lYOLqo4i7mY369VyxcnxnjOrcEN882w0BnjqcvZ6JIZ/sx47TSWxJpRrJmnCw2922AU+LYC90aewLs0XgtU0ny7W0UU3HgKeW8tCp8eX4zgj3c0PCrVw88flvSMsxArjzoGWrh9rld2ttPXkNeQVN8UQ1VWaeEfN//gv3v78L/7cvDnlGC9qH1cO6iV2wcGQ71HPT2r0OPu5arJ14L+rXc8Wlm9nos2gPTiSkoZ6bBqsn3ItALxcAQPuwetgy9T5E1M9vEXpm7TGM/r9DOHU13e51JCqvjDyj9Jm8PeABgJcHtYBOrcT//k7GSyVMlKltGPDUYgGeOqyZcC/83LU4V5AfJNBTBzetulzP79nMH54ualzP0OP+BbuwYs9Fjjmgaqc3mXH6WjqS0vMqfcJMyzHg8c9/w4q9l5BrNKNdA2+sfKozNj3fHT2a+ldzjcsW4u2KtRPzv3cGkwU6tRKfP9lJWnOraLlvnu2GyVF3Q6tW4tClWxi8dD9mbDyBa2llZ0wncoTDl27BIoDG/u4I8XYt9niHhj5Y/kQHqJUKbD5xDW9uOV2rWyoVojbXvppkZGTA29sb6enp8PLykrs6FfbnlTQ89tkh5BjMuLeRL755rlu5n/vL39fx702ncK2gj9bbVYNx3Rth4n2N4e1W/eMgqG7IM5qx59wNxJxKws4z15FZEEhr1Uo0qJc/OLJtA28M79AAjUtZBsXqZpYeT3z+G/5OyoSvuxYfjGiL3i0CoVBUb3LBijpzLQNLfzmP0fc2RM+CZJ6luZKagw+2n5XymrhpVYh+qDUe7dSg0u8jNduAtFzjHY8fUWne/ukMvtgfh9H3NsT84RGlltvyxzW8sOE4hACm9LobLw1o4cBalq0iv99OE/AsW7YMH3zwARITE9G6dWssWbIE999/f7meW9sDHgDYd/4G5nx/Es9HNcGYLg0r9FyDyYIfTlzF8j0XcelG/jggfw8t5g5pgwcigmX/YSH7yDWYy0xQaS0D5KdEUCkVUCqALL0JSel5SEzPQ1J6Hq5n5CEjz4iMXBMy8oxIzzXiREIacgyF3aSeOjVyjOYSp2p3buSDRzuF4cGIELjrbFsnr2fk4fHPf8OF5CwEeOqw/ukuaBbkWQ3vXh5/JKTh7Z/O4Ojl/KntD7YNwbxhERUaZJ1jMOHzfXFYsecisg1m9G4RiBf6NEW7sHp2qjU5qwc+2ocziRn4ePQ9GFIwxKE063+7jNc2nQIAjO/eCP1aBaF1qJdDupLLUucCno0bN2Ls2LFYtmwZ7rvvPqxYsQKff/45zpw5g4YN7/zj7wwBT3UwWwS2n07Cwh1ncbEg8OnXKgjvPNwGQQVjE0qTZzQjI9cIpVIBlUIBlUoBtVIBV42KAZOd5RnNUCsVUN8hu7DRbMGR+Fv431/J+OXvZMTdzEaQlw4R9b3Rpr432oR6w2Sx4PS1jIJbOq5n6Ctdr1BvFwyKCMGgNsHo0NAHFiGQmJ6HhFs5iE/JQeyZJOw5dwPWGMhVo0JEfW+0CvVCq1AvhPm44ZXv/8TllByEeLtg/dNdcFeAR9kvWguYLQIr9l7Eoh3nYLII1K/niiWPtUfnRr4wmi1Iz80PGi0WgQBPHbxdNVAoFDBbBL49loCFO84hObP43yWqeQBe6NMU9zT0keFdUW2TlmPAPW/HQgjg8Gt9EOhZ9jkeyE+38N62v222hfm6ok2oN1qHeqF1aP73N9BTZ3PeF0JIKRvKO+SivOpcwNOlSxd06NABy5cvl7a1bNkSDz/8MObPn3/H5zPgsaU3mfGfXy5g2e6LMFkEPHVqPH3/XdBplMjRm5BtMCNbb0Jypr7gKj8XqQUDpm/n46ZB0yBPNA/yRLMgDzTwdYOq6BcBQI7eJLUQZOYZkWeyQKNSQKtSQatWQqtWQggBo1nAZLbkzxZQKODlokY9Ny28XTXwdtVAp1ZCoQCUCoX0f2vLhKrg37fHXhYLkGs0I8dgQq7RjDyjGUqFAm5aNVw1KrhqVdCplTCaLTBZRP7/zQImi4C5yM1osSBHb0a2wWRzjHKK/F9vMkOrVsJFrYJOo4KLJj9Ase7TaBYQEPBy0UjvKf/HLr+OuYb8W0aeEdfS8nAlNQdX03JxM8sAjUqBcD933B3gjiaBHgit54rMPBNuZRtwK9uAm1l6HLucKq21VlVeLmqEeLsi2NsFQV461HPTwstFDU8XDbxc1bg7wAMR9b3vGOwmpefh++NX8N+jV6T0CrcL83XFV093lXKEOIsTCWl4YcNxXE7JgUKRH/AVbRWz0qqUCPDUQQghdT038HHF7IEt0DrUC//ZdQGbj1+VAketWglPnRoeLmp46NRw16nhplVJn2cXTX6rnsWS/zm2WAQEIAXNGlX+dyXXYEZmXsF3M88Eo8kCj9v2C0D6ThotAgpA+gx4uWjg5aKGi0ZV5KaESqHI/zwbzcgx5H/nVEoFdOr8x13UKigUkAI/602I/O+0WqXI/78y/98alRJqZf7/dRplkfeqhlalhMlSUD+zgMkspHODWll4TrAIAbMFMFvyv+dqpSL/3FNwDlIpFdCbzNAbLdCbzMgzFi5hkl+H/DoV7if/vJD/2gXnrYJjrVEppfOaVpX//TCaC8uW1AqqVhack7RKuGrU0GmUyP/lFrAIlDg2ziwE9EaLdJxzjWZACOm1LyZn45NdF9A00AOxMyLL/bndfPwqdpxJwqmrGfinlJQL/h5a+LprkZVnQpY+/2YRwLTeTTCzf/Nyv1Z51KmAx2AwwM3NDf/9738xbNgwafsLL7yAEydOYM+ePcWeo9frodcXXiFlZGQgLCyMAc9t/k7KwMvf/ok/rpRvZolCAdTuT5Pz83PXoleLQPRpEYiOjXzwT0oOTl5Nx6mr+S06KqVCulJrHeqFpoGeUKsUMAsBc0Gg56ZVFet6qiohBM5dz8Lpa+lS69KZaxkIreeKL8d3Rmi94gMqnUGW3oQ3fjiF73+/arPd00UNBYCM2wJUb1cNpvVugrHdwqFTF3ZHxt/M//HadPwqMzxThTzZLRxvDW1Tqeem5xhx+lo6Tl5Nx5nEDJy5loGLN7JQ2kdwfPdGiB7Sugq1La5OBTzXrl1D/fr1ceDAAXTv3l3aPm/ePKxevRpnz54t9pzo6GjMnTu32HYGPMWZLQLrf7uMQ5dS4KpRw12ngptWDXetCgGeOgR7uyDY2wUhXq7wcs3/EbQIwGSxwGCy4HJKDs5dz8S561k4dz0TiSUksHLXquDlqpFaCFw0ShjNAgZz/j4MJguUCkhXn2qlEhYhkJFnKrwCzDHkt5CI/CsegfwrLYvIv7qy1un2T3t+a07+1af1/2aLQF6RqyKDyZJ/BakuvJJUqwpbjVQFV5rW4+KmK/i/Nv9K2E2ngrtWDa1aCYOp8ArRmgpArcq/0rN2SWXcdmULQLo6d9Pm7yuknisa+Liifr38W47RjIvJWbiQnIWLN7KQlJ4Hb1cNfN218PXQws9diyaBnmgfVg+qal5JnKou4VYOzBaBem4aeLpopL+R3mTGjUw9bmTqkZ5rxD1hPmVOJsjWm5CaY8i/qs4zIVNvQrbehNyClhTrZ1oB25YSADBaClovC1ojXDUqeLmo4eWaXyeNSoEcg1nab1aeCQoF8ls4lPnfCSEgtQplFrTaWltO80wW6AvGcbkWaXFytX7nCh7PM1kghIC3qwZerhrUK/i/WqmQWqSsLayFraP5dc4zFnmfBjMMZovNd1ajzP+OmSwWmEV+i47FUjhGTa1UQKlUSPu2nn9MFgGdWim1UlmDTYPZAlNB66/JLApblAtala0tUJqC/ysVCpvzWuFit4UtVSql0qYlWhScu6ytYbkGM/JM+X9DZUFrFfL/s6FQ5A8pKGzZU0IB29fXaZSIHtJaWjqlOuQazDh7PRNZeSZ4uhS2CHoUtDRW9xCHOhnwHDx4EN26Fc5Oevfdd7F27Vr8/fffxZ7DFh4iIqLaryIBT/W2S8vA398fKpUKSUlJNtuTk5MRFBRU4nN0Oh10Op0jqkdEREQ1QK1PPKjVatGxY0fExsbabI+NjbXp4iIiIqK6q9a38ADAjBkzMHbsWHTq1AndunXDZ599hn/++QfPPfec3FUjIiKiGsApAp5Ro0YhJSUFb731FhITE9GmTRv8/PPPCA8Pl7tqREREVAPU+kHL1YF5eIiIiGqfivx+1/oxPERERER3woCHiIiInB4DHiIiInJ6DHiIiIjI6THgISIiIqfHgIeIiIicHgMeIiIicnoMeIiIiMjpMeAhIiIip+cUS0tUlTXZdEZGhsw1ISIiovKy/m6XZ9EIBjwAMjMzAQBhYWEy14SIiIgqKjMzE97e3mWW4VpaACwWC65duwZPT08oFAq5qyO7jIwMhIWFISEhgWuL2RGPs2PwODsGj7Nj8DjbEkIgMzMToaGhUCrLHqXDFh4ASqUSDRo0kLsaNY6Xlxe/UA7A4+wYPM6OwePsGDzOhe7UsmPFQctERETk9BjwEBERkdNjwEPF6HQ6vPnmm9DpdHJXxanxODsGj7Nj8Dg7Bo9z5XHQMhERETk9tvAQERGR02PAQ0RERE6PAQ8RERE5PQY8RERE5PQY8NRR8+fPR+fOneHp6YnAwEA8/PDDOHv2bLFyf/31F4YMGQJvb294enqia9eu+Oeff2Soce1UnuOclZWFqVOnokGDBnB1dUXLli2xfPlymWpcOy1fvhxt27aVkrF169YN27Ztkx4XQiA6OhqhoaFwdXVFVFQUTp8+LWONa6eyjrPRaMTLL7+MiIgIuLu7IzQ0FE8++SSuXbsmc61rpzt9pot69tlnoVAosGTJEsdWspZhwFNH7dmzB1OmTMGhQ4cQGxsLk8mE/v37Izs7Wypz8eJF9OjRAy1atMDu3bvxxx9/4PXXX4eLi4uMNa9dynOcX3zxRcTExGDdunX466+/8OKLL2LatGn44YcfZKx57dKgQQO89957OHr0KI4ePYrevXtj6NChUlCzYMECLFq0CJ988gmOHDmC4OBg9OvXT1pHj8qnrOOck5OD33//Ha+//jp+//13fP/99zh37hyGDBkid7VrpTt9pq02b96M3377DaGhoTLVtBYRREKI5ORkAUDs2bNH2jZq1CjxxBNPyFgr51PScW7durV46623bMp16NBB/Pvf/3Z09ZyKj4+P+Pzzz4XFYhHBwcHivffekx7Ly8sT3t7e4tNPP5Wxhs7BepxLcvjwYQFAXL582cG1ck63H+srV66I+vXri1OnTonw8HCxePFi+SpXC7CFhwAA6enpAABfX18A+Quqbt26Fc2aNcOAAQMQGBiILl26YPPmzTLWsva7/TgDQI8ePbBlyxZcvXoVQgjs2rUL586dw4ABA+SqZq1mNpuxYcMGZGdno1u3boiLi0NSUhL69+8vldHpdIiMjMTBgwdlrGntdvtxLkl6ejoUCgXq1avn2Mo5mZKOtcViwdixY/HSSy+hdevWMtewlpA74iL5WSwW8dBDD4kePXpI2xITEwUA4ebmJhYtWiSOHz8u5s+fLxQKhdi9e7eMta29SjrOQgih1+vFk08+KQAItVottFqtWLNmjUy1rL3+/PNP4e7uLlQqlfD29hZbt24VQghx4MABAUBcvXrVpvykSZNE//795ahqrVbacb5dbm6u6Nixo3j88ccdXEPnUdaxnjdvnujXr5+wWCxCCMEWnnLgaumEqVOn4s8//8T+/fulbRaLBQAwdOhQvPjiiwCA9u3b4+DBg/j0008RGRkpS11rs5KOMwB8/PHHOHToELZs2YLw8HDs3bsXzz//PEJCQtC3b1+Zalv7NG/eHCdOnEBaWhq+++47jBs3Dnv27JEeVygUNuWFEMW20Z2VdpxbtWollTEajXjsscdgsViwbNkyGWtbu5V2rHNzc/HRRx/h999/52e4IuSOuEheU6dOFQ0aNBCXLl2y2a7X64VarRZvv/22zfbZs2eL7t27O7KKTqG045yTkyM0Go346aefbLZPnDhRDBgwwJFVdDp9+vQRzzzzjLh48aIAIH7//Xebx4cMGSKefPJJmWrnPKzH2cpgMIiHH35YtG3bVty8eVPGmjkf67FevHixUCgUQqVSSTcAQqlUivDwcLmrWWNxDE8dJYTA1KlT8f333+OXX35B48aNbR7XarXo3LlzsSnU586dQ3h4uCOrWqvd6TgbjUYYjUYolbZfRZVKJbWyUeUIIaDX69G4cWMEBwcjNjZWesxgMGDPnj3o3r27jDV0DtbjDOR/nkeOHInz589j586d8PPzk7l2zsV6rMeOHYs///wTJ06ckG6hoaF46aWXsH37drmrWWOxS6uOmjJlCr766iv88MMP8PT0RFJSEgDA29sbrq6uAICXXnoJo0aNQs+ePdGrVy/ExMTgxx9/xO7du2Wsee1yp+Ps5eWFyMhIvPTSS3B1dUV4eDj27NmDNWvWYNGiRTLXvvZ49dVXMWjQIISFhSEzMxMbNmzA7t27ERMTA4VCgenTp2PevHlo2rQpmjZtinnz5sHNzQ1jxoyRu+q1SlnH2WQyYcSIEfj999/x008/wWw2S593X19faLVamWtfu5R1rP38/IoFkxqNBsHBwWjevLlMNa4FZG1fItkAKPG2cuVKm3JffPGFaNKkiXBxcRHt2rUTmzdvlqfCtVR5jnNiYqIYP368CA0NFS4uLqJ58+Zi4cKF0mBEurMJEyaI8PBwodVqRUBAgOjTp4/YsWOH9LjFYhFvvvmmCA4OFjqdTvTs2VOcPHlSxhrXTmUd57i4uFI/77t27ZK34rXQnT7Tt+Og5TtTCCGEo4MsIiIiIkfiGB4iIiJyegx4iIiIyOkx4CEiIiKnx4CHiIiInB4DHiIiInJ6DHiIiIjI6THgISIiIqfHgIeIqJIMBgOaNGmCAwcOAADi4+OhUChw4sQJu77uyZMn0aBBA2RnZ9v1dYicCQMeIgIAjB8/HgqFotjtwoULcletxvrss88QHh6O++67r9zPadSoEZYsWVJse3R0NNq3b1+ufURERODee+/F4sWLy/26RHUdAx4ikgwcOBCJiYk2t9sXPAXyWzYIWLp0KZ5++mlZXvupp57C8uXLYTabZXl9otqGAQ8RSXQ6HYKDg21uKpUKUVFRmDp1KmbMmAF/f3/069cPAHDmzBk88MAD8PDwQFBQEMaOHYubN29K+8vOzsaTTz4JDw8PhISEYOHChYiKisL06dOlMgqFAps3b7apR7169bBq1Srp/tWrVzFq1Cj4+PjAz88PQ4cORXx8vPT4+PHj8fDDD+PDDz9ESEgI/Pz8MGXKFBiNRqmMXq/H7NmzERYWBp1Oh6ZNm+KLL76AEAJNmjTBhx9+aFOHU6dOQalU4uLFiyUeq99//x0XLlzAgw8+WOrxtFgsmDRpEpo1a4bLly+XWq4kJbW2NWrUSHp8wIABSElJwZ49eyq0X6K6igEPEZXL6tWroVarceDAAaxYsQKJiYmIjIxE+/btcfToUcTExOD69esYOXKk9JyXXnoJu3btwqZNm7Bjxw7s3r0bx44dq9Dr5uTkoFevXvDw8MDevXuxf/9+eHh4YODAgTYtTbt27cLFixexa9curF69GqtWrbIJmp588kls2LABH3/8Mf766y98+umn8PDwgEKhwIQJE7By5Uqb1/3yyy9x//334+677y6xXnv37kWzZs3g5eVV4uMGgwEjR47E0aNHsX//foSHh1fofRdtZbtw4QKaNGmCnj17So9rtVq0a9cO+/btq9B+ieosmRcvJaIaYty4cUKlUgl3d3fpNmLECCGEEJGRkaJ9+/Y25V9//XXRv39/m20JCQkCgDh79qzIzMwUWq1WbNiwQXo8JSVFuLq6ihdeeEHaBkBs2rTJZj/e3t7SivJffPGFaN68uc3q8Xq9Xri6uort27dLdQ8PDxcmk0kq8+ijj4pRo0YJIYQ4e/asACBiY2NLfO/Xrl0TKpVK/Pbbb0IIIQwGgwgICBCrVq0q9Xi98MILonfv3jbbrCuG79u3T/Tt21fcd999Ii0tzaaMdQXsosfZ3d1daDQa0a5du2KvY7FYxLBhw0THjh1FTk6OzWPDhg0T48ePL7WORFRILW+4RUQ1Sa9evbB8+XLpvru7u/TvTp062ZQ9duwYdu3aBQ8Pj2L7uXjxInJzc2EwGNCtWzdpu6+vL5o3b16hOh07dgwXLlyAp6enzfa8vDyb7qbWrVtDpVJJ90NCQnDy5EkAwIkTJ6BSqRAZGVnia4SEhODBBx/El19+iXvvvRc//fQT8vLy8Oijj5Zar9zcXLi4uJT42OjRo9GgQQP873//g5ubW7HHX3rpJYwfP95m28cff4y9e/cWK/vqq6/i119/xZEjR+Dq6mrzmKurK3JyckqtIxEVYsBDRBJ3d3c0adKk1MeKslgseOihh/D+++8XKxsSEoLz58+X6zUVCgWEEDbbio69sVgs6NixI9avX1/suQEBAdK/NRpNsf1aLBYAKBYolOTpp5/G2LFjsXjxYqxcuRKjRo0qMVix8vf3lwKq2z3wwANYt24dDh06hN69e5f43NuPs6+vb7Fy69atw+LFi7F79240aNCg2OO3bt0qtcuNiGxxDA8RVUqHDh1w+vRpNGrUCE2aNLG5WQMnjUaDQ4cOSc9JTU3FuXPnbPYTEBCAxMRE6f758+dtWi06dOiA8+fPIzAwsNjreHt7l6uuERERsFgsZQ7wfeCBB+Du7o7ly5dj27ZtmDBhQpn7vOeee/D3338XC9YAYPLkyXjvvfcwZMiQSg8q/vXXX/H0009jxYoV6Nq1a4llTp06hXvuuadS+yeqaxjwEFGlTJkyBbdu3cLo0aNx+PBhXLp0CTt27MCECRNgNpvh4eGBiRMn4qWXXsL//vc/nDp1CuPHj4dSaXva6d27Nz755BP8/vvvOHr0KJ577jmb1prHH38c/v7+GDp0KPbt24e4uDjs2bMHL7zwAq5cuVKuujZq1Ajjxo3DhAkTsHnzZsTFxWH37t345ptvpDIqlQrjx4/HnDlz0KRJE5uuuJL06tUL2dnZOH36dImPT5s2De+88w4GDx6M/fv3l6ueVklJSRg2bBgee+wxDBgwAElJSUhKSsKNGzekMvHx8bh69Sr69u1boX0T1VUMeIioUkJDQ3HgwAGYzWYMGDAAbdq0wQsvvABvb28pqPnggw/Qs2dPDBkyBH379kWPHj3QsWNHm/0sXLgQYWFh6NmzJ8aMGYNZs2bZdCW5ublh7969aNiwIYYPH46WLVtiwoQJyM3NLXWGVEmWL1+OESNG4Pnnn0eLFi0wadKkYpmKJ06cCIPBcMfWHQDw8/PD8OHDS+xqs5o+fTrmzp2LBx54AAcPHix3Xf/++29cv34dq1evRkhIiHTr3LmzVObrr79G//79Kzz7i6iuUoiS2mOJiOwkKioK7du3LzHbsNwOHDiAqKgoXLlyBUFBQXcsf/LkSfTt27fEQdX2pNfr0bRpU3z99dcVyvJMVJexhYeI6jy9Xo8LFy7g9ddfx8iRI8sV7AD5Y4MWLFhgkwTRES5fvozXXnuNwQ5RBXCWFhHVeV9//TUmTpyI9u3bY+3atRV67rhx4+xUq9I1a9YMzZo1c/jrEtVm7NIiIiIip8cuLSIiInJ6DHiIiIjI6THgISIiIqfHgIeIiIicHgMeIiIicnoMeIiIiMjpMeAhIiIip8eAh4iIiJweAx4iIiJyev8Pa/L6V+6LCboAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "do1d(lockin1.frequency, 25000, 35000, 101, 0.05, lockin1.R_V, do_plot=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting experimental run with id: 565. Using 'qcodes.dataset.do2d'\n" + ] + }, + { + "data": { + "text/plain": [ + "(results #565@C:\\Users\\Farzad\\experiments.db\n", + " -------------------------------------------\n", + " lockin_frequency - numeric\n", + " lockin_aux_out1 - numeric\n", + " lockin_X - numeric\n", + " lockin_R_V - numeric,\n", + " (,\n", + " ),\n", + " (,\n", + " ))" + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHFCAYAAAAaD0bAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABw0UlEQVR4nO3deVwU9f8H8NdyLTdyyCUIpniCF5aiJniBmnllmJZ3Zt7kVea3pEvN8ihMyzJv0w41O0SxFMUTUfPMK1Q0EDNERM7dz+8Pf0zOHsCyrKzyej4e89CZ+cxn3jM7s/vmM5+ZUQghBIiIiIiqEYuqDoCIiIjoYWMCRERERNUOEyAiIiKqdpgAERERUbXDBIiIiIiqHSZAREREVO0wASIiIqJqhwkQERERVTtMgIiIiKjaMWkCtHLlSigUCmmwsrKCj48PXnjhBVy4cMGUqy6327dvw8LCAtu3bwcAbN68GUqlEgUFBbJyu3fvlm3Lg8PBgwe16i0qKsKCBQsQEhICOzs71KhRA23btsX+/ftl5fTVOXfu3ApvU2BgoN56IyIiKlzvwxIREWH2cd67dw+xsbHYvXt3uZdJS0vD2LFjUb9+fdjZ2cHNzQ0hISEYNWoU0tLSpHKxsbGyz8za2hq1a9fGqFGjkJGRoVVvQUEBPvroIwQHB8PBwQFeXl7o3r271rGmaefOndI6/vnnn1LLvvTSS1AoFOjZs2e5t9dUKrLvNZWcz99//33lBVZOJd+LR44ceejrftCIESPQrVu3Ko2B9Cv5HqiIt956Cy1btoRara7kqB4vVg9jJStWrEDDhg2Rn5+Pffv24YMPPsCuXbvw559/wtXV9WGEoNeRI0cghMCTTz4JADh48CCaNWsGpVKps/zs2bPRsWNH2bTg4GDZuEqlQt++fZGUlITp06ejbdu2yM3NRUpKCnJzc7Xq7N+/P6ZMmSKbVrt2bWM2C+3atcPHH3+sNd3Z2dmoeh+GJUuWVHUIZbp37x7eeecdAChXsnbt2jW0bNkSNWrUwJQpU9CgQQNkZ2fjzJkz+Pbbb/HXX3/B399ftkx8fDxcXFxw9+5d7NixA/Pnz8f+/ftx/PhxWFtbS+VGjRqFdevWYcaMGejUqRP+/fdfzJ07F+Hh4di3bx+eeuoprXju3r2LUaNGwdfXF3///Xepsf/yyy/YsmWL2Rw7hu570nbs2DGsWrUKhw4dqupQyASmTp2KxYsXY9WqVRg+fHhVh2O2HkoCFBwcjFatWgG4/4WlUqkwa9YsbNmypco/nOTkZNSvXx9ubm4A7idAun4wSgQFBaFNmzal1hkXF4dt27Zh3759srLPPPOMzvJeXl5l1mmoGjVqVHqdpnbv3j3Y29ujcePGVR1Kpfvyyy/xzz//4PDhw6hTp440vU+fPnjzzTd1/qUWGhoKDw8PAECXLl3wzz//YMWKFUhKSpKS8IKCAqxfvx6DBg3C+++/Ly3brl07+Pr6Yt26dTqP5zfeeAOurq545plnZMtpys7OxujRo/Hee+/hk08+qfD2k3mZO3cunnrqKel7mR4vLi4ueOmllzB37lwMGzaswi1Jj7sq6QNUctLduHFDmqbvssewYcMQGBgojV++fBkKhQIff/wxFixYgDp16sDR0RFhYWE6L0WVJTk5WfqBUKlUSElJKTUBKo9PPvkEHTp0MOsEJD8/Hy1atEC9evWQnZ0tTc/IyIC3t7eUqAL3PwNHR0ecPn0anTt3hoODA2rWrInx48fj3r17snqFEFiyZAmaN28OOzs7uLq6on///vjrr79k5SIiIhAcHIw9e/agbdu2sLe3x4gRI6R5Dx4LJZ/5Rx99hA8//BCBgYGws7NDREQEzp8/j6KiIrzxxhvw9fWFi4sL+vbti8zMTK1t3rhxI8LCwuDg4ABHR0dERUXh2LFjsjIl23rx4kX06NEDjo6O8Pf3x5QpU6TLopcvX0bNmjUBAO+88450GWnYsGF69/etW7dgYWEBT09PnfMtLMo+FXWdNxYWFrCwsICLi4usrLOzMywsLGBra6tVz969e7Fs2TJ89dVXsLS0LHWdU6ZMgY+PDyZOnFhmfPqUfNbJycl4+umnYW9vjyeeeAJz587VSvyuXr2Kl156CZ6enlAqlWjUqBHmz58vlSvPvr9w4QIGDRokq+Ozzz7TGVt+fj4mT54Mb29v2NnZITw8XOuYAICtW7ciLCwM9vb2cHJyQteuXXHgwAGtcklJSejcuTOcnJxgb2+Ptm3b4pdffilzH6WnpyM0NBRBQUEm7x5w48YNbN68GYMHD5ZNV6vVeP/999GgQQPpsn3Tpk21Et/ybGPJZb7ff/8do0aNgru7O5ydnTFkyBDk5uYiIyMD0dHRqFGjBnx8fDB16lQUFRXJ6igsLMT777+Phg0bQqlUombNmhg+fDhu3rxp0PbevHkTr7zyCvz9/aV62rVrh507d0plEhIS0Lt3b/j5+cHW1hb16tXD6NGjtS4Nl1yWOnHiBJ5//nm4uLjAzc0NkydPRnFxMc6dO4du3brByckJgYGBmDdvnmz5kkuva9euLddxp0t5vscAYPDgwTh//jx27dpl0P6qVoQJrVixQgAQycnJsumLFy8WAMQPP/wgTQsPDxfh4eFadQwdOlQEBARI46mpqQKACAwMFN26dRNbtmwRW7ZsESEhIcLV1VXcvn27zLjCw8MFgDKHB+PZtWuXACA8PT2FpaWlcHJyEpGRkWLv3r2yuq9evSoAiAkTJogZM2ZI5Rs3bixWrlypFQsA4erqKmxtbYWNjY1o2bKl+Prrr8vchtIEBASIHj16iKKiIq1BrVZL5c6fPy+cnJxEv379hBBCqFQq0alTJ+Hp6Sn+/vtvqdzQoUOFjY2NqF27tvjggw/Ejh07RGxsrLCyshI9e/aUrXvUqFHC2tpaTJkyRcTHx4v169eLhg0bCi8vL5GRkSH7DNzc3IS/v7+Ii4sTu3btEomJidK8B/d9yWceEBAgnn32WfHzzz+LtWvXCi8vL1G/fn0xePBgMWLECLFt2zbx+eefC0dHR/Hss8/K4vrggw+EQqEQI0aMED///LPYtGmTCAsLEw4ODuL06dNa29qoUSPx8ccfi507d4q3335bKBQK8c477wghhMjPzxfx8fECgBg5cqQ4cOCAOHDggLh48aLez2Tt2rUCgIiMjBTx8fEiOztbb9lZs2YJAOLmzZuy6VOnThUAREpKimz6pEmThKOjo9i8ebPIzs4WqampYuDAgcLV1VVcuHBBVvbevXsiKChITJs2rdR1CSFEQkKCsLa2FsePHxdC3D+unnnmGb1x6xMeHi7c3d1FUFCQ+Pzzz0VCQoIYO3asACBWrVollcvMzBS1atUSNWvWFJ9//rmIj48X48ePFwDEmDFjhBBl7/vTp08LFxcXERISIlavXi127NghpkyZIiwsLERsbKy0rpLz2d/fX/Tu3Vv89NNPYu3ataJevXrC2dlZXLp0SSq7bt066bPbsmWL2LhxowgNDRU2Njay83/37t3C2tpahIaGio0bN4otW7aIyMhIoVAoxIYNG6Rymt+LJ0+eFP7+/iIsLEzn51DZVq9eLQCIM2fOyKbPmTNHWFpailmzZonffvtNxMfHi0WLFsn2m6HbWKdOHTFlyhSxY8cO8eGHHwpLS0sxcOBA0bJlS/H++++LhIQE8frrrwsAYv78+dLyKpVKdOvWTTg4OIh33nlHJCQkiK+++krUqlVLNG7cWNy7d6/c2xsVFSVq1qwpli1bJnbv3i22bNki3n77bVm8S5cuFXPmzBFbt24ViYmJYtWqVaJZs2aiQYMGorCwUCpXcr40aNBAvPfeeyIhIUFMnz5dABDjx48XDRs2FJ9++qlISEgQw4cP1/qdM+S4K1nXg8r7PSaEEMXFxcLR0VFMnjy53PuqunkoCdDBgwdFUVGRyMnJEfHx8cLb21t06NBBFBUVSWUNTYBCQkJEcXGxNP3w4cMCgPjmm2/KjOvChQvi2LFj0o/Stm3bxLFjx8TYsWNFnTp1xLFjx8SxY8dkPx5Hjx4VkyZNEps3bxZ79uwRX3/9tWjUqJGwtLQU8fHxUrkDBw4IAMLZ2Vk0btxYfPvtt2L79u2if//+AoBYtmyZLJZBgwaJdevWiT179ojvv/9edO/eXQAQ//vf/8qzi3UKCAjQm9S99957srIbN24UAMSiRYvE22+/LSwsLMSOHTtkZYYOHSoAiE8++UQ2/YMPPhAARFJSkmzbH/wiE0KItLQ0YWdnJ6ZPny5NK0lCf/vtN6349SVAzZo1EyqVSpq+aNEiAUD06tVLtnxMTIwAICUZV69eFVZWVmLChAmycjk5OcLb21tER0drbeu3334rK9ujRw/RoEEDafzmzZsCgJg1a5ZW/Lqo1WoxevRoYWFhIQAIhUIhGjVqJF577TWRmpoqK1vyxZeRkSGKiopEVlaW+Pbbb4WDg4MYOHCgzrpLPruSz7l27dri2LFjWmWnTJkinnjiCekHRF8ClJOTIwIDA8WMGTOkacYkQADEoUOHZNMbN24soqKipPE33nhDZ7kxY8YIhUIhzp07J4Qofd9HRUUJPz8/rQRz/PjxwtbWVvz7779CiP9+iFq2bCn7o+Dy5cvC2tpavPzyy0KI+z/Evr6+IiQkRHbs5eTkCE9PT9G2bVtpWps2bYSnp6fIycmRphUXF4vg4GDh5+cnrefBBCghIUE4OzuL/v37i7y8vLJ3ZiUYM2aMsLOzk223EEL07NlTNG/evNRlDd1GzXOuT58+AoBYsGCBbHrz5s1Fy5YtpfFvvvlGK3kQQojk5GQBQCxZsqTc2+vo6ChiYmLKXV6tVouioiJx5coVAUD8+OOP0ryS80XzO6558+YCgNi0aZM0raioSNSsWVP6A1OI8h93D66rhCHfYyXatWsnWrduXe5tr24eSgKkOTRq1EhkZWXJyhqaAL3xxhuycvn5+QKAmDt3brnjW7RokahVq5Y03qNHDzFs2LByL5+VlSX8/PxE06ZNpWn79u0TAISNjY24fPmyNF2tVouWLVsKPz+/Muvt2bOnsLKyEpmZmeWO5UEBAQGiffv2Ijk5WWt4sGWnxJgxY4S1tbWwsLDQmXiVJAX//POPbHrJZ1GSVM2cOVMoFApx48YNrZanNm3aiKeeekpaNjw8XLi6uuqMX18C9OCPsRBCbN++XQAQX3zxhWz6F198IQCIkydPCiGE+PLLL6UfHM24BgwYIDw9PWXbqlAotH6M3njjDWFrayuNG5oAlbh8+bJYsmSJGDFihKhXr54AIOzt7cXu3bulMiVffJpDhw4dZH+NlnjvvfeEvb29ePfdd8WuXbvEjz/+KLp27So8PDzE0aNHpXKHDh0SlpaWIiEhQWtdmgnQuHHjRFBQkGw/GJMAeXt7a01/4YUXRMOGDaXxp556SjRu3Fir3KFDhwQAsXTpUiGE/n2fl5cn/UBofs6//vqrACB+/fVXIcR/P0Qff/yxznjr1q0rhBDizJkzAoCYN2+eVrkxY8YICwsLkZubK+7evSsUCoUYO3asVrkPP/xQABBnz54VQvz3vTh+/HhhbW0tJk+erJWMmFLv3r1F7dq1taa/++67QqFQiDFjxuhspazINm7fvl1WbsaMGQKAlMyWGDhwoHB3d5fGX3zxRVGjRg1RWFio9Vnq+7HXp1OnTqJGjRrivffeEwcOHNB5Dt24cUOMHj1a+Pn5yf6Q0PxNKTlfdMWv63sjLCxMhIaGSuPlPe4eXFcJQ77HSvTt27dcvznV1UPpA7R69WokJyfj999/x+jRo3H27FkMHDjQqDrd3d1l4yV3beXl5ZW6nFqtRnFxMYqLi5GYmIinn34axcXFKCwsxL59+9CuXTsUFxdL/V9KU6NGDfTs2RMnTpyQ1lsSV8OGDREQECCVVSgUiIqKwrVr13T2T3nQSy+9hOLiYqNuk3VxcUGrVq20Bh8fH62yI0aMQFFREaysrPT29bCystLa597e3gDu928B7vctEELAy8sL1tbWsuHgwYNa19N1xVKako7qJWxsbEqdnp+fL8UFAE8++aRWXBs3btSKy97eXqvvjFKplOozRkBAAMaMGYPly5fjwoUL2LhxI/Lz8zFt2jStsjt37kRycjK2b9+O5557Dnv27MGECRNkZc6ePYu3334b77zzDt566y1ERESgV69e+OWXX1CjRg1MnjxZKjtixAj069cPrVq1wu3bt3H79m1pm+7cuYOcnBwAwOHDh7FkyRLMmzcP+fn5UtmSc+f27dtaj4koi+axA9zfpw+er7du3dJ5TPj6+krzS3Pr1i0UFxcjLi5O63Pu0aMHAGh91iXHsOa0knWV/KsvLrVajaysLGRlZUEIYVD8GzZsgJ2dHV5++eWH2kk1Ly9PZ9+wGTNm4OOPP8bBgwfRvXt3uLu7o3PnztL3UEW20ZBz9sHz68aNG7h9+zZsbGy0PsuMjIwyH9vwoI0bN2Lo0KH46quvEBYWBjc3NwwZMkR6pIRarUZkZCQ2bdqE6dOn47fffsPhw4elPqW6flN0xa/re0Nzu0qUddzpYuj3GADY2tqW+ZtYnT2Uu8AaNWokdeDs2LEjVCoVvvrqK3z//ffo378/gPsf1IOdcUsYcqCXx4gRI7Bq1SrZtA0bNkj/HzVqFEaNGoWAgABcvny5zPqEEAAgfYHVrVsX9vb2pZYtq8NrectVhtzcXAwePBj169fHjRs38PLLL+PHH3/UKldcXIxbt27JfshKvkBKpnl4eEChUGDv3r06HyOgOe1hfemX3En1/fffy5JScxAdHY05c+bg1KlTWvOaNWsmxd61a1dERUVh2bJlGDlypPTYhj/++EP2GIcS1tbWaNasGRITE6Vpp0+fxunTp/Hdd99pratu3bpo1qwZjh8/jjNnzkAIgb59+2qVS0tLg6urKxYuXIiYmBhjNl2Lu7s70tPTtaaX3KZfsi/0cXV1haWlJQYPHoxx48bpLPPgHXgAdD5XKSMjQzqmS/7VF5eFhQVcXV0hhICFhYVB8a9btw5vvfUWwsPDsWPHDjRv3rzU7assHh4eOHr0qNZ0KysrTJ48GZMnT8bt27exc+dOvPnmm4iKipI+d0O30ZgY3d3dER8fr3O+k5OTQXUtWrQIixYtwtWrV7F161a88cYbyMzMRHx8PE6dOoU//vgDK1euxNChQ6XlLl68aPR26FPWcadLRb7H/v3330r7TB5HVXIX2Lx58+Dq6oq3335bursjMDAQ58+fl/1leevWrTIf5mao2NhYJCcnY8WKFQCAbdu2ITk5Ga+88gqCgoKQnJyM5ORk/PTTT2XWlZWVhZ9//hnNmzeXMn8rKyv07t0bZ8+elSVQQgjEx8ejbt26ZR6Qa9asgbW1NUJDQyu+oeX06quv4urVq9i0aROWL1+OrVu3YuHChTrLrlu3Tja+fv16AP89i6Vnz54QQuD69es6W59CQkJMui36REVFwcrKCpcuXdIZV0VuBS5vi2MJXT8awP3n8aSlpUl/QeujUCjw2WefwdLSEv/73/+k6SXLad4BWVBQgKNHj8LPz0+atmvXLq2h5At/y5Yt+OqrrwAA3bp101m25HENu3btkv5wqUydO3fGmTNntH6cV69eDYVCId36r2/f29vbo2PHjjh27BiaNm2q83PW/IH55ptvpD84AODKlSvYv3+/dEw3aNAAtWrVwvr162XlcnNz8cMPP0h3hjk4OKB169bYtGmTLC61Wo21a9fCz88P9evXl63bzc0NO3fuRKNGjdCxY8cK3cVaEQ0bNsStW7d0/sFZokaNGujfvz/GjRuHf//9F5cvX67QNlZUz549cevWLahUKp2fY4MGDSpUb+3atTF+/Hh07dpVOs5K/hDT/APtiy++MG4jSlHWcadLRb7H/vrrr8fysSKV5aG0AGlydXXFjBkzMH36dKxfvx4vvfQSBg8ejC+++AIvvfQSRo0ahVu3bmHevHmV/vC1wMBABAYG4tdff0VwcLD0JNSYmBj07t1b74/hoEGDULt2bbRq1QoeHh64cOEC5s+fjxs3bmDlypWysu+99x62bduGbt26ITY2Fs7Ozvjqq6/wxx9/4Ntvv5XKffTRRzhz5gw6d+4MPz8/ZGZmYvny5dixYwdiY2NlidLly5dRp04dDB06VGt9uty+fVvnF6pSqUSLFi0AAF999RXWrl2LFStWoEmTJmjSpAnGjx+P119/He3atZM9DsDGxgbz58/H3bt38eSTT2L//v14//330b17d7Rv3x7A/WfPvPLKKxg+fDiOHDmCDh06wMHBAenp6UhKSkJISAjGjBlTZuyVLTAwEO+++y5mzpyJv/76C926dYOrqytu3LiBw4cPw8HBQXqwXnk5OTkhICAAP/74Izp37gw3Nzd4eHjIHtnwoA8++AD79u3DgAEDpEcEpKamYvHixbh16xY++uijMtcZFBSEV155BUuWLEFSUhLat2+P9u3b48knn0RsbCzu3buHDh06IDs7G3FxcUhNTcWaNWuk5XV9uZY8Tbldu3bS8ebt7a2zid7W1hbu7u4me/jga6+9htWrV+OZZ57Bu+++i4CAAPzyyy9YsmQJxowZI/24lrbvP/nkE7Rv3x5PP/00xowZg8DAQOTk5ODixYv46aef8Pvvv8vWmZmZib59+2LUqFHIzs7GrFmzYGtrixkzZgC43wo7b948vPjii+jZsydGjx4tPXn79u3bsie2z5kzB127dkXHjh0xdepU2NjYYMmSJTh16hS++eYbnS2eTk5OiI+PR79+/dC1a1ds3bpV60GrlS0iIgJCCBw6dAiRkZHS9GeffVZ6ZlvNmjVx5coVLFq0CAEBAQgKCqrwNlbECy+8gHXr1qFHjx6YNGkSnnrqKVhbW+PatWvYtWsXevfurbOFUlN2djY6duyIQYMGoWHDhnByckJycrK0z4H7CWHdunXxxhtvQAgBNzc3/PTTT0hISKiUbdGlrONOF0O/x27duoULFy5oXTanB5iyg5G+2+CFuN9hsXbt2iIoKEi6m2vVqlWiUaNGwtbWVjRu3Fhs3LhRbyfojz76SKtOGNAptWXLllKn2ps3bwoLCwvpNmxd5syZI5o3by5cXFyEpaWlqFmzpujbt684fPiwzvInT54UzzzzjHBychK2traiTZs24qeffpKV2bp1q2jfvr2oWbOmsLKyEk5OTuLpp5/WeSfbyZMndXb+1qW0u8BKOn2fOHFC2NnZiaFDh8qWzc/PF6GhoSIwMFDqqD506FDh4OAgTpw4ISIiIoSdnZ1wc3MTY8aMEXfv3tVa/9dffy1at24tHBwchJ2dnahbt64YMmSIOHLkiFQmPDxcNGnSRGf8+jpBa37mJR0Kv/vuO9l0fcfdli1bRMeOHYWzs7NQKpUiICBA9O/fX+zcuVMqU7KtmnTdkrpz507RokULoVQqBQCtffmggwcPinHjxolmzZoJNzc36Rjq1q2b1DFXc126bom+ceOGcHR0FB07dpSm3b59W8ycOVM0atRI2NvbC09PTxEREaFVry6lrUuTMZ2gdX3Wmue2EEJcuXJFDBo0SLi7uwtra2vRoEED8dFHH8nuwBKi9H2fmpoqRowYIWrVqiWsra1FzZo1Rdu2bcX7778vlSk5dtasWSMmTpwoatasKZRKpXj66adlx2mJLVu2iNatWwtbW1vh4OAgOnfuLPbt26dVbu/evaJTp07Ssa/rvNd1fBYUFIjnnntO2Nrail9++aXU/WkslUolAgMDtTozz58/X7Rt21Z4eHhIj70YOXKk7GYOISq+jULoP950nXdFRUXi448/Fs2aNRO2trbC0dFRNGzYUIwePVrr8Q765Ofni1dffVU0bdpUODs7Czs7O9GgQQMxa9YskZubK5U7c+aM6Nq1q3BychKurq7i+eeflx5p8uBviiHxC6F97Bty3On6zhGifN9jQgixfPlyYW1tLXv8CMkphHigHY7M1pIlSzB9+nRcunQJXl5eD3Xdw4YNw/fff4+7d+8+1PUSkWnMnz8fH3zwAa5fvw47O7uqDqfa2L17Nzp27IjvvvvOJJeRH/T000+jdu3aWl0X6D98G/wjYteuXZg4ceJDT36I6PEzbtw4uLi46H1CNj3a9uzZg+TkZLz33ntVHYpZq5I+QGQ4XXfuEFUllUqF0hqQFQpFma/aIG1CiDIfw6FQKIza97a2tlizZk25X79gjtRqdZlvO7eyqp4/cbdu3cLq1avxxBNPVHUoZo2XwIioQiIiImS32Wsq76MkSK7kMklpAgICcOXKFb3zw8PDpQ7uj6vY2Ngyb15ITU3Ve2MCERMgIqqQc+fOSQ9P1EWpVFbZow8eZTk5OTh37lypZXJzc+Hg4KB3vpOTU4VvFX9U/P3339Lzh/Rp2rSp9PBFIk1MgIiIiKjaYSdoIiIiqnaqZw8xDWq1Gn///TecnJwe6jt5iIjo0SOEQE5ODnx9fU36yqL8/HwUFhYaXY+NjY3O979Vd0yAcP9asr+/f1WHQUREj5C0tDTZ62YqU35+PuoEOCIjs+wXc5fF29sbqampTII0MAHCfy/WqzP5bVgo7x8gajt51yi1Rj86oZDPt/lX/ldAgU+x9P8ap+S72TpXvqzQ+AOi0FHeClVQQz7folg+rtJ476hC43xRa7+XVD7fWh6PRbFGK1hpd5pq9iAr465nzW1VlH4Xq+HK6tGm2cBXyvqFxrZYaP4hprGuYhdR6nxNahv5yhUa+11YyStwPi8PqMBVXl9BoPwN7Z6/yw9aZfZ/B0ZmC/kx6Tf3kGx88/mTsvH9Gi+0XjDwOdl42pvy2Gp86ygbz3eXf/CF8tmw1Ni3+fKXbWuxypWP3/P/b9vsMuSxqDW+5YqdDPucNOcrNMeLNA4qzfo0jznN4mU0IGiur1KVFatmcc1Yy4hN8/zWWr6U9SmK9c/TtW5hozFBLa9ccz+qNc4vyzx5eZXGb8CD3wfq/HykvfueQS9lNVRhYSEyMlW4khIIZ6eKtzLdyVEjIPQyCgsLmQBpYAKE/16GZ6G0hWXJAWKrcbZoJkAWGiePUn6AWtj9d/Za2sh3s2VR6QmQpVKhMS6fb6GZZGgc01pfHGUd82UkQKUmKZpfQo9YAlTa+tUa22JZxpe/WvOYKSsWpWEJkKXSUmNcXp2FnXx5K2sbjfH/kgRLpfyYtFJYy8adneTrcpDPhpXGyi3t5eWtrOUHnaWNfOdpxm6p8blYlnHMWmoc4xZ2D26bPBaFxrecwZ9TGQmQhWbwZSQVgglQudan+YeedjDyUbWBCRA0zy+ND0bY6k+ApDofQpcJRycFHJ0qvh51WR9qNcYEiIiIyEyphBoqI5JglajsvzIfH0yAiIiIzJQaAuoymylLX550423wREREVO2wBYiIiMhMqaEu9T6U8ixPujEBIiIiMlMqIaAy4oUNxiz7uOMlMCIiIqp22AJERERkptgJ2nTYAkRERGSm1BBQGTFUJAG6fv06XnrpJbi7u8Pe3h7NmzdHSkqKNF8IgdjYWPj6+sLOzg4RERE4ffq0rI6CggJMmDABHh4ecHBwQK9evXDt2jWj90dlYgJEREREAICsrCy0a9cO1tbW2LZtG86cOYP58+ejRo0aUpl58+ZhwYIFWLx4MZKTk+Ht7Y2uXbsiJydHKhMTE4PNmzdjw4YNSEpKwt27d9GzZ0+oVMa/2qOy8BIYERGRmXrYl8A+/PBD+Pv7Y8WKFdK0wMBA6f9CCCxatAgzZ85Ev379AACrVq2Cl5cX1q9fj9GjRyM7OxvLly/HmjVr0KVLFwDA2rVr4e/vj507dyIqKqrC21OZ2AJERERkpkruAjNmAIA7d+7IhoKCAp3r27p1K1q1aoXnn38enp6eaNGiBb788ktpfmpqKjIyMhAZGSlNUyqVCA8Px/79+wEAKSkpKCoqkpXx9fVFcHCwVMYcMAEiIiJ6zPn7+8PFxUUa5syZo7PcX3/9haVLlyIoKAjbt2/Hq6++iokTJ2L16tUAgIyMDACAl5eXbDkvLy9pXkZGBmxsbODq6qq3jDngJTAiIiIzpf7/wZjlASAtLQ3Ozs7SdKVSqbu8Wo1WrVph9uzZAIAWLVrg9OnTWLp0KYYMGSKV03wRrBCizJfDlqfMw8QWICIiIjNlzB1gJQMAODs7ywZ9CZCPjw8aN24sm9aoUSNcvXoVAODt7Q0AWi05mZmZUquQt7c3CgsLkZWVpbeMOWACREREZKZUwvjBEO3atcO5c+dk086fP4+AgAAAQJ06deDt7Y2EhARpfmFhIRITE9G2bVsAQGhoKKytrWVl0tPTcerUKamMOeAlMCIiIgIAvPbaa2jbti1mz56N6OhoHD58GMuWLcOyZcsA3L/0FRMTg9mzZyMoKAhBQUGYPXs27O3tMWjQIACAi4sLRo4ciSlTpsDd3R1ubm6YOnUqQkJCpLvCzAETICIiIjNVWX2AyuvJJ5/E5s2bMWPGDLz77ruoU6cOFi1ahBdffFEqM336dOTl5WHs2LHIyspC69atsWPHDjg5OUllFi5cCCsrK0RHRyMvLw+dO3fGypUrYWlpacTWVC4mQERERGZKDQVUqHjHYXUFlu3Zsyd69uypd75CoUBsbCxiY2P1lrG1tUVcXBzi4uIMXv/Dwj5AREREVO2wBYiIiMhMqcX9wZjlSTcmQERERGZKZeQlMGOWfdzxEhgRERFVO2wBIiIiMlNsATIdJkBERERmSi0UUAsj7gIzYtnHHS+BERERUbXDFiAiIiIzxUtgpsMEiIiIyEypYAGVERdrVJUYy+OGCRAREZGZEkb2ARLsA6QX+wARERFRtcMWICIiIjPFPkCmU6UtQEuXLkXTpk3h7OwMZ2dnhIWFYdu2bdJ8IQRiY2Ph6+sLOzs7RERE4PTp07I6CgoKMGHCBHh4eMDBwQG9evXCtWvXHvamEBERVTqVsDB6IN2qdM/4+flh7ty5OHLkCI4cOYJOnTqhd+/eUpIzb948LFiwAIsXL0ZycjK8vb3RtWtX5OTkSHXExMRg8+bN2LBhA5KSknD37l307NkTKhW7fhEREZFuVZoAPfvss+jRowfq16+P+vXr44MPPoCjoyMOHjwIIQQWLVqEmTNnol+/fggODsaqVatw7949rF+/HgCQnZ2N5cuXY/78+ejSpQtatGiBtWvX4uTJk9i5c2dVbhoREZHR1FBADQsjBl4C08ds2sZUKhU2bNiA3NxchIWFITU1FRkZGYiMjJTKKJVKhIeHY//+/QCAlJQUFBUVycr4+voiODhYKqNLQUEB7ty5IxuIiIjMTUkfIGMG0q3KE6CTJ0/C0dERSqUSr776KjZv3ozGjRsjIyMDAODl5SUr7+XlJc3LyMiAjY0NXF1d9ZbRZc6cOXBxcZEGf3//St4qIiIiMmdVngA1aNAAx48fx8GDBzFmzBgMHToUZ86ckeYrFPLsVQihNU1TWWVmzJiB7OxsaUhLSzNuI4iIiEyAnaBNp8pvg7exsUG9evUAAK1atUJycjI++eQTvP766wDut/L4+PhI5TMzM6VWIW9vbxQWFiIrK0vWCpSZmYm2bdvqXadSqYRSqTTF5hAREVWa+32AjHgZKi+B6WV2qaEQAgUFBahTpw68vb2RkJAgzSssLERiYqKU3ISGhsLa2lpWJj09HadOnSo1ASIiIqLqrUpbgN588010794d/v7+yMnJwYYNG7B7927Ex8dDoVAgJiYGs2fPRlBQEIKCgjB79mzY29tj0KBBAAAXFxeMHDkSU6ZMgbu7O9zc3DB16lSEhISgS5cuVblpRERERlMb+S4wNUQlRvN4qdIE6MaNGxg8eDDS09Ph4uKCpk2bIj4+Hl27dgUATJ8+HXl5eRg7diyysrLQunVr7NixA05OTlIdCxcuhJWVFaKjo5GXl4fOnTtj5cqVsLS0rKrNIiIiqhTG9uNRCSZA+lRpArR8+fJS5ysUCsTGxiI2NlZvGVtbW8TFxSEuLq6SoyMiIqpaJc/zqfjyTID0Mbs+QERERESmVuV3gREREZFuKqGAShjxMlQjln3cMQEiIiIyUyojO0GreAlML14CIyIiomqHLUBERERmSi0soDbiLjA17wLTiwkQERGRmeIlMNPhJTAiIiKqdtgCREREZKbUMO5OLnXlhfLYYQJERERkpox/ECIv9OjDPUNERETVDluAiIiIzJTx7wJjO4c+TICIiIjMlBoKqGFMHyA+CVofJkBERERmii1ApsM9Q0RERNUOW4CIiIjMlPEPQmQ7hz5MgIiIiMyUWiigNuY5QHwbvF5MDYmIiKjaYQsQERGRmVIbeQmMD0LUjwkQERGRmTL+bfBMgPThniEiIqJqhy1AREREZkoFBVRGPMzQmGUfd0yAiIiIzBQvgZkO9wwRERFVO2wBIiIiMlMqGHcZS1V5oTx2mAARERGZKV4CMx0mQERERGaKL0M1He4ZIiIiqnaYABEREZkpAQXURgzCiP5Dc+bMgUKhQExMzH/xCIHY2Fj4+vrCzs4OEREROH36tGy5goICTJgwAR4eHnBwcECvXr1w7dq1CsdhKkyAiIiIzFTJJTBjhopITk7GsmXL0LRpU9n0efPmYcGCBVi8eDGSk5Ph7e2Nrl27IicnRyoTExODzZs3Y8OGDUhKSsLdu3fRs2dPqFTm1SWbCRARERFJ7t69ixdffBFffvklXF1dpelCCCxatAgzZ85Ev379EBwcjFWrVuHevXtYv349ACA7OxvLly/H/Pnz0aVLF7Ro0QJr167FyZMnsXPnzqraJJ3YCfoBKnsBYSsAAJYF8mZDiwJ5WYsi+fx8H3lm63z2v12b3T5PNs/yip1s3PWskI1nNymWjdv8I/+YLIo04rYVGvPlsSnUKJVCvjiEpXyCQi2vTzw4qpFCizJaWxWafwBU9kNKNevT2DbN9as1z4AHlhcWQv9MACqlfK71Hfn8Ihf5jre5Jd9Zhe7y8sqbpf89kusnj6fYRb4xyivygG62kJdX2f+3Ppt/5XWrI1rKxpMLjsjGZ/cdIhvPiKghGw9wuywbv/qSvH67n5xl44U1NLb9H3l56zvycZX8lEG+p3zb7K9bSv/X/IO3sIbG8Sw/vbTO9bLOJ81jTG2teZxoFFdpLKB5TGqenw/zwb2aoWnsO83Yyvou0ape87ullPNT83tNbV1GLBpVWWh8jkLj3Nb8XrPML+V7DdrHRbF96Z+zqaiFAuqyvljLWB4A7tyRn1RKpRJKpVLXIhg3bhyeeeYZdOnSBe+//740PTU1FRkZGYiMjJTVEx4ejv3792P06NFISUlBUVGRrIyvry+Cg4Oxf/9+REVFVXhbKhtbgIiIiMyU6v/fBm/MAAD+/v5wcXGRhjlz5uhc34YNG3D06FGd8zMyMgAAXl5esuleXl7SvIyMDNjY2MhajjTLmAu2ABERET3m0tLS4Oz8X0usrtaftLQ0TJo0CTt27ICtra3euhQKjdYzIbSmaSpPmYeNLUBERERmquQSmDEDADg7O8sGXQlQSkoKMjMzERoaCisrK1hZWSExMRGffvoprKyspJYfzZaczMxMaZ63tzcKCwuRlZWlt4y5YAJERERkptSwMHoor86dO+PkyZM4fvy4NLRq1Qovvvgijh8/jieeeALe3t5ISEiQliksLERiYiLatm0LAAgNDYW1tbWsTHp6Ok6dOiWVMRe8BEZERERwcnJCcHCwbJqDgwPc3d2l6TExMZg9ezaCgoIQFBSE2bNnw97eHoMGDQIAuLi4YOTIkZgyZQrc3d3h5uaGqVOnIiQkBF26dHno21QaJkBERERmSiUUUBlxF5gxy+oyffp05OXlYezYscjKykLr1q2xY8cOODk5SWUWLlwIKysrREdHIy8vD507d8bKlSthaWlZSs0PHxMgIiIiM1VZt8FX1O7du2XjCoUCsbGxiI2N1buMra0t4uLiEBcXZ9S6Ta1K+wDNmTMHTz75JJycnODp6Yk+ffrg3LlzsjLDhg2DQqGQDW3atJGVeVQeu01ERGQI8f9vg6/oIPgyVL2qdM8kJiZi3LhxOHjwIBISElBcXIzIyEjk5ubKynXr1g3p6enS8Ouvv8rmPyqP3SYiIiLzUKWXwOLj42XjK1asgKenJ1JSUtChQwdpulKphLe3t846Sh67vWbNGqmD1dq1a+Hv74+dO3ea1VMniYiIDKGCAiojHg9uzLKPO7NqG8vOzgYAuLm5yabv3r0bnp6eqF+/PkaNGoXMzExpXlmP3SYiInpUqYWxzwKq6i0wX2bTCVoIgcmTJ6N9+/ay2/C6d++O559/HgEBAUhNTcVbb72FTp06ISUlBUqlskKP3S4oKEBBwX8v99J8RwoRERE93swmARo/fjxOnDiBpKQk2fQBAwZI/w8ODkarVq0QEBCAX375Bf369dNbX2mP3Z4zZw7eeeedygmciIjIREo6MxuzPOlmFntmwoQJ2Lp1K3bt2gU/P79Sy/r4+CAgIAAXLlwAULHHbs+YMQPZ2dnSkJaWVjkbQkREVInUUBg9kG5VmgAJITB+/Hhs2rQJv//+O+rUqVPmMrdu3UJaWhp8fHwAVOyx20qlUuu9KERERFR9VOklsHHjxmH9+vX48ccf4eTkJPXZcXFxgZ2dHe7evYvY2Fg899xz8PHxweXLl/Hmm2/Cw8MDffv2lco+Ko/dJiIiMoS5PQn6cVKlCdDSpUsBABEREbLpK1aswLBhw2BpaYmTJ09i9erVuH37Nnx8fNCxY0ds3LjxkXzsNhERkSHYB8h0qjQBEqL0+/Ps7Oywffv2Mut5VB67TURERObBbO4CIyIiIjk1jHwXGDtB68UEiIiIyEwJI+/kEkyA9GICREREZKaq+m3wjzP2jiIiIqJqhy1AREREZop3gZkOEyAiIiIzxUtgpsPUkIiIiKodtgARERGZKWPf58Xb4PVjAkRERGSmeAnMdHgJjIiIiKodtgARERGZKbYAmQ4TICIiIjPFBMh0eAmMiIiIqh22ABEREZkptgCZDhMgIiIiMyVg3K3sovJCeewwASIiIjJTbAEyHfYBIiIiomqHLUBERERmii1ApsMEiIiIyEwxATIdXgIjIiKiaoctQERERGaKLUCmwwSIiIjITAmhgDAiiTFm2ccdL4ERERFRtcMWICIiIjOlhsKoByEas+zjjgkQERGRmWIfINPhJTAiIiKqdtgCREREZKbYCdp0mAARERGZKV4CMx0mQERERGaKLUCmY1QfoIKCgsqKg4iIiOihMSgB2r59O4YNG4a6devC2toa9vb2cHJyQnh4OD744AP8/fffpoqTiIio2hH/fwmsogNbgPQrVwK0ZcsWNGjQAEOHDoWFhQWmTZuGTZs2Yfv27Vi+fDnCw8Oxc+dOPPHEE3j11Vdx8+ZNU8dNRET02BMAhDBiqOoNMGPl6gM0e/ZsfPzxx3jmmWdgYaGdM0VHRwMArl+/jk8++QSrV6/GlClTKjdSIiIiokpSrgTo8OHD5aqsVq1amDdvnlEBERER0X1qKKDgk6BNotx9gGJiYnDq1ClTxkJEREQPKLkLzJiBdCt3AhQfH49mzZrhqaeewrJly3Dnzh1TxkVERERkMuVOgP7880/s2bMHISEhmDp1Knx9fTFkyBDs2bPHlPERERFVW8bcAWbsQxQfdwbdBt+uXTssX74cGRkZiIuLw+XLlxEREYGgoCDMnTuXt8ETERFVIqPuAPv/gXSr0IMQ7e3tMXz4cOzZswcXLlxAdHQ05s2bh8DAwEoOj4iIiKjyGfUk6NzcXCQmJiIxMRG3b99G3bp1DVp+zpw5ePLJJ+Hk5ARPT0/06dMH586dk5URQiA2Nha+vr6ws7NDREQETp8+LStTUFCACRMmwMPDAw4ODujVqxeuXbtmzKYRERFVOXaCNp0KJUB79uzB8OHD4e3tjUmTJqF+/frYu3cvzp49a1A9iYmJGDduHA4ePIiEhAQUFxcjMjISubm5Upl58+ZhwYIFWLx4MZKTk+Ht7Y2uXbsiJydHKhMTE4PNmzdjw4YNSEpKwt27d9GzZ0+oVKqKbB4REZFZeNgJUHVqmCh3AnTt2jV88MEHCAoKQkREBP78808sXLgQ6enp+Prrr9GuXTuDVx4fH49hw4ahSZMmaNasGVasWIGrV68iJSUFwP2dvGjRIsycORP9+vVDcHAwVq1ahXv37mH9+vUAgOzsbCxfvhzz589Hly5d0KJFC6xduxYnT57Ezp07DY6JiIjIXDzsTtDVqWGi3G+DDwwMhLu7OwYPHoyRI0eiUaNGlR5MdnY2AMDNzQ0AkJqaioyMDERGRkpllEolwsPDsX//fowePRopKSkoKiqSlfH19UVwcDD279+PqKgorfUUFBTIXuTKW/qJiIjuN0w8aMWKFfD09ERKSgo6dOig1TABAKtWrYKXlxfWr1+P0aNHSw0Ta9asQZcuXQAAa9euhb+/P3bu3Knzd7kqlLsF6Ntvv8X169fx8ccfmyT5EUJg8uTJaN++PYKDgwEAGRkZAAAvLy9ZWS8vL2leRkYGbGxs4OrqqreMpjlz5sDFxUUa/P39K3tziIiIjFZZd4HduXNHNjzYCFAaQxsmAJTZMGEuyt0CVJLplcjMzERmZibUarVsetOmTSsUyPjx43HixAkkJSVpzVMo5E14QgitaZpKKzNjxgxMnjxZGr9z5w6TICIiMjv3k5iKd2QuSYA0f+NmzZqF2NjYMpY1rGHiypUrUhlDGyaqQrkToBIpKSkYOnQozp49C/H/e1ahUEgJR0Wu702YMAFbt27Fnj174OfnJ0339vYGcH9n+vj4SNMzMzOlne/t7Y3CwkJkZWXJdnZmZibatm2rc31KpRJKpdLgOImIiB5FaWlpcHZ2lsbL8xv4MBsmqoLBd4ENHz4c9evXx/79+/HXX38hNTVV9q8hhBAYP348Nm3ahN9//x116tSRza9Tpw68vb2RkJAgTSssLERiYqKU3ISGhsLa2lpWJj09HadOndKbABERET0KKusuMGdnZ9lQVgJU0jCxa9cuvQ0TD9LXMKGvjDkwuAUoNTUVmzZtQr169Yxe+bhx47B+/Xr8+OOPcHJyknaoi4sL7OzsoFAoEBMTg9mzZyMoKAhBQUGYPXs27O3tMWjQIKnsyJEjMWXKFLi7u8PNzQ1Tp05FSEiI1PmKiIjoUST+fzBmeYPKC4EJEyZg8+bN2L17d6kNEy1atADwX8PEhx9+CEDeMBEdHQ3gv4aJefPmGbE1lcvgBKhz5874448/KiUBWrp0KQAgIiJCNn3FihUYNmwYAGD69OnIy8vD2LFjkZWVhdatW2PHjh1wcnKSyi9cuBBWVlaIjo5GXl4eOnfujJUrV8LS0tLoGImIiKqL6tQwYXAC9NVXX2Ho0KE4deoUgoODYW1tLZvfq1evctdV0oeoNAqFArGxsaV21rK1tUVcXBzi4uLKvW4iIiJzZ+zTnA1dtjo1TBicAO3fvx9JSUnYtm2b1ryKdoImIiIiHR7yNbDq1DBhcCfoiRMnYvDgwUhPT4darZYNTH6IiIgqkbEdoPkuML0MToBu3bqF1157zax6chMREREZwuAEqF+/fti1a5cpYiEiIqIHVNaToEmbwX2A6tevjxkzZiApKQkhISFanaAnTpxYacERERFVZw+7E3R1UqG7wBwdHZGYmIjExETZPIVC8UgnQBbFClgU3z9YVLbytNkyT34QFdaQz3e4Iu/Zfqd5ofR/t912snnqXv/KxjN9HWTjyivyB1QVeMj7VhU5y2OxKJSPF1trpPwao1a5GssXaZwg8rebABqzhaX+eRbFKJUwuM3RMFrnemmxA7AohF7CUmO/Osh3pOZ+LHKUz7fOlm9sQU35jrXIly+v0PicLO/Jx21y5OXzCuWnr90NeXnb2/LxezX/23jXi/IPquBN+QPL5l7rIRtX28v/0HHrfU02bqWQb5vTt06ycbV8cdhoxCY0vonya8p3RrGzvH57jfPtnt9/54hCJd9PylsaB10ZvwfFGsXVSnksCo3zRXN9muebxq6B2qr0+Q9VGbGWRbO85vmn1jzfijQreHCmRlnNLqUasWruR6HxOVlqnF9a5TXHNWLX2hcKPf+nR1aFHoRIRERED4GxHZnZAqSXwQkQERERPRzG9uNhHyD9ynVBYu7cubh3717ZBQEcOnQIv/zyi1FBEREREZlSuRKgM2fOoHbt2hgzZgy2bduGmzdvSvOKi4tx4sQJLFmyBG3btsULL7wge+MsERERVZCohIF0KtclsNWrV+PEiRP47LPP8OKLLyI7OxuWlpZQKpVSy1CLFi3wyiuvYOjQoWW+ZZaIiIjKxrvATKfcfYCaNm2KL774Ap9//jlOnDiBy5cvIy8vDx4eHmjevDk8PDxMGScRERFRpTG4E7RCoUCzZs3QrFkzU8RDRERED+JlLJPgXWBERERmipfATIcJEBERkbl6yG+Dr05M/FxeIiIiIvPDFiAiIiKzpYBx797gJTB9mAARERGZK14CM5lKuwR26dIldOrUqbKqIyIiIjKZSmsBunv3rtbb4YmIiMgIbAEymXInQJ9++mmp869fv250MERERPQAvg3eZMqdAMXExMDHxwc2NjY65xcWFlZaUERERESmVO4EKCAgAB9++CGio6N1zj9+/DhCQ0MrLTAiIqLqToj7gzHLk27lToBCQ0ORkpKiNwFSKBQQ3NNERESVh32AkJ2djc2bN2Pv3r24fPky7t27h5o1a6JFixaIiopC27ZtK1Rvue8Ce/fdd/H888/rnd+4cWOkpqZWKAgiIiKiB6Wnp2PUqFHw8fHBu+++i9zcXDRv3hydO3eGn58fdu3aha5du6Jx48bYuHGjwfWXuwWocePGpc63trZGQECAwQEQERGRHtW4E3SzZs0wZMgQHD58GMHBwTrL5OXlYcuWLViwYAHS0tIwderUctfPByESERGZKYW4Pxiz/KPq9OnTqFmzZqll7OzsMHDgQAwcOBA3b940qH6+C4yIiMhciUoYHlE1a9bEli1boFKpyl3eEEyAiIiIyCz1798ftWrVwuuvv44///yzUutmAkRERGSuSvoAGTM8wq5evYoJEyZg8+bNaNKkCdq3b48VK1YgNzfX6LoNToBWr16NgoICremFhYVYvXq10QERERHR/6vGl8AAwNfXFzNnzsT58+fx+++/o27dupg4cSJ8fHzw8ssv48CBAxWu2+AEaPjw4cjOztaanpOTg+HDh1c4ECIiIiJ9wsPDsWrVKqSnp2PBggU4e/Ys2rdvjyZNmlSoPoPvAhNCQKHQblK7du0aXFxcKhQEERER6cAHIWpxdHREx44dcfnyZfz55584f/58heopdwLUokULKBQKKBQKdO7cGVZW/y2qUqmQmpqKbt26VSgIIiIi0oEJkOTevXv47rvv8PXXXyMpKQlPPPEEJk+ejGHDhlWovnInQH369AFw/51fUVFRcHR0lObZ2NggMDAQzz33XIWCICIiItJl3759+Prrr/Hdd9+huLgY/fr1w86dO9GxY0ej6i13AjRr1iwAQGBgIAYMGABbW1ujVkxERERlqMZPggaA+vXr49KlS2jRogU+/PBDDBo0qNK62xjcB2jo0KGVsmIiIiIqXXV+EjQAdOvWDSNHjkSzZs0qvW6D7wKzsLCApaWl3oGIiIioMnz66aelJj/nz59Hr169KlS3wS1AmzZtkt0FVlRUhGPHjmHVqlV45513DKprz549+Oijj5CSkoL09HRs3rxZ6msEAMOGDcOqVatky7Ru3RoHDx6UxgsKCjB16lR88803yMvLQ+fOnbFkyRL4+fkZumlERETmhZ2gAQB16tTReQd6VlYWbGxsKlSnwQnQgwlKif79+6NJkybYuHEjRo4cWe66cnNz0axZMwwfPlxvB+pu3bphxYoV0rjmhsbExOCnn37Chg0b4O7ujilTpqBnz55ISUlhixQREdFjICYmRjauUqlw6dIlrF27Fp999lmF6qy0t8G3bt0ao0aNMmiZ7t27o3v37qWWUSqV8Pb21jkvOzsby5cvx5o1a9ClSxcAwNq1a+Hv74+dO3ciKirKoHiIiIjMiQJG9gGqtEiq1qRJk3RO79SpE2bNmoX+/fsbXGelvAssLy8PcXFxJrnstHv3bnh6eqJ+/foYNWoUMjMzpXkpKSkoKipCZGSkNM3X1xfBwcHYv3+/3joLCgpw584d2UBERESPlpYtW+Kvv/6q0LIGtwC5urrKrsMJIZCTkwN7e3usXbu2QkHo0717dzz//PMICAhAamoq3nrrLXTq1AkpKSlQKpXIyMiAjY0NXF1dZct5eXkhIyNDb71z5swxuL8SERHRQ1fNb4Mvy7p16yrU+gNUIAFatGiRbNzCwgI1a9ZE69attRIRYw0YMED6f3BwMFq1aoWAgAD88ssv6Nevn97l9L2uo8SMGTMwefJkafzOnTvw9/evnKCJiIgqCztBA/jvbRQPunHjBjIyMhAcHIyWLVtK048ePVquOh+p5wD5+PggICAAFy5cAAB4e3ujsLAQWVlZsuQrMzMTbdu21VuPUqmEUqk0ebxERERkPF03YBmrQp2gs7KysHz5cpw9exYKhQKNGjXC8OHD4ebmVtnxydy6dQtpaWnw8fEBAISGhsLa2hoJCQmIjo4GAKSnp+PUqVOYN2+eSWMhIiIyObYAAfjvbRSVyeBO0ImJiQgMDMSnn36KrKws/Pvvv/j0009Rp04dJCYmGlTX3bt3cfz4cRw/fhwAkJqaiuPHj+Pq1au4e/cupk6digMHDuDy5cvYvXs3nn32WXh4eKBv374AABcXF4wcORJTpkzBb7/9hmPHjuGll15CSEiIdFcYERHRo6rkSdDGDI+q3Nxck5Y3OAEaN24cBgwYgNTUVGzatAmbNm3CX3/9hRdeeAHjxo0zqK4jR46gRYsWaNGiBQBg8uTJaNGiBd5++21YWlri5MmT6N27N+rXr4+hQ4eifv36OHDgAJycnKQ6Fi5ciD59+iA6Ohrt2rWDvb09fvrpJz4DiIiI6BFWr149zJ49G3///bfeMkIIJCQkoHv37vj0008Nqt/gS2CXLl3CDz/8IEswLC0tMXnyZKxevdqguiIiIiCE/vR0+/btZdZha2uLuLg4xMXFGbRuIiIis1eNL4Ht3r0b//vf//DOO++gefPmaNWqFXx9fWFra4usrCycOXMGBw4cgLW1NWbMmIFXXnnFoPoNToBatmyJs2fPokGDBrLpZ8+eRfPmzQ2tjoiIiPSpxglQgwYN8N133+HatWv47rvvsGfPHuzfvx95eXnw8PBAixYt8OWXX6JHjx6wsDD8sYYGJ0ATJ07EpEmTcPHiRbRp0wYAcPDgQXz22WeYO3cuTpw4IZVt2rSpwQERERERlfDz88Nrr72G1157rVLrNTgBGjhwIABg+vTpOucpFArpOTwqlcr4CImIiKopYzsyV3TZJUuW4KOPPkJ6ejqaNGmCRYsW4emnn654IGbI4AQoNTXVFHEQERGRpip4EvTGjRsRExODJUuWoF27dvjiiy/QvXt3nDlzBrVr1654LGbG4ItmV65cQa1atRAQECAbatWqhStXrsimERERkRFEJQwGWrBgAUaOHImXX34ZjRo1wqJFi+Dv74+lS5cavz1mxOAEqGPHjvj333+1pmdnZ6Njx46VEhQRERE9fIWFhUhJSZG9ZBwAIiMjS33J+KPI4Etg+t6zdevWLTg4OFRKUERERFR5fYDu3Lkjm67vlVD//PMPVCoVvLy8ZNPLesn4o6jcCVDJy0cVCgWGDRsm23EqlQonTpwo9f1bREREZKBKug1e84Xfs2bNQmxsrN7FNBs6ynrJuKm8/fbbePvtt2FlpTtduXr1KkaOHImEhASD6y53AuTi4gLg/k5wcnKCnZ2dNM/GxgZt2rTBqFGjDA6AiIiITCstLQ3Ozs7SuL4Xgnt4eMDS0lKrtSczM1OrVehhWLlyJX766SesXr0aISEhsnnLli3D1KlT0a5duwrVXe4EaMWKFQCAwMBATJ06lZe7iIiITM3Y93n9/7LOzs6yBEgfGxsbhIaGIiEhQXrvJgAkJCSgd+/eRgRSMadOncL48ePx5JNPYtasWXj99ddx7do1jBgxAkeOHMGCBQvw8ssvV6hug/sAmeKNrERERKRDFTwJevLkyRg8eDBatWqFsLAwLFu2DFevXsWrr75qRCAV4+zsjNWrV+O5557D6NGjsXHjRqSmpiIsLAwnT57UurRnCIMToDp16pR6HfCvv/6qcDBERERUtQYMGIBbt27h3XffRXp6OoKDg/Hrr79W6eNtWrdujZCQEPz2229wcHDA9OnTjUp+gAokQDExMbLxoqIiHDt2DPHx8Zg2bZpRwRAREdEDquhdYGPHjsXYsWONWHHl+eabbzB+/Hg0b94cZ8+exfLly9G9e3e8+uqrmDt3rqxPsiEMToAmTZqkc/pnn32GI0eOVCgIIiIi0lZVr8IwF/3798f27dsxe/ZsTJgwAQAwb9489O3bF8OGDcO2bduwatUqhIWFGVy34a9P1aN79+744YcfKqs6IiIiqubS09Nx7NgxKfkpERYWhj/++APdu3dHeHh4heo2uAVIn++//x5ubm6VVR0RERFVc3v37oWFhe62GltbW3zyySd47rnnKlS3wQlQixYtZJ2ghRDIyMjAzZs3sWTJkgoFQURERDpUUR8gc6Ev+XlQhw4dKlS3wQlQnz59ZOMWFhaoWbMmIiIi0LBhwwoFQURERNqqex8gU+JzgIiIiKjaqVAfIJVKhS1btuDs2bNQKBRo3LgxevXqBUtLy8qOj4iIqHpjK45JGJwAXbx4ET169MD169fRoEEDCCFw/vx5+Pv745dffkHdunVNEScREVH1U837AJmSwbfBT5w4EXXr1kVaWhqOHj2KY8eO4erVq6hTpw4mTpxoihiJiIiIKpXBLUCJiYk4ePCg7JZ3d3d3zJ07t8JvZCUiIiJt7ARtOgYnQEqlEjk5OVrT7969Cxsbm0oJioiIiMBLYCZk8CWwnj174pVXXsGhQ4cghIAQAgcPHsSrr76KXr16mSJGIiIiokplcAL06aefom7duggLC4OtrS1sbW3Rrl071KtXD5988okpYiQiIqqWSi6BGTOQbgZfAqtRowZ+/PFHXLx4EWfPnoUQAo0bN0a9evVMER8REVH1xUtgJlPhd4HVq1ePSQ8RERE9kirtZahERERUydgCZDJMgIiIiMwUb4M3HSZAD1DbCMDm/tFilauQzSty1jiKNEbv1VLLxp2P//dIgH/DCmXz3DSPSJW8L3p+rSLZuGWO/GOyyJfHZqGSV2chXxxCo6u7SqlRXh4e1BpPM9Cs78HwNc8toYBRNJcv6+Q1dH0WxRrLa54BD6xPoUapipzkwdnclgdT6CavwOZf+QehGcs9X/kHaXNb/moZa42nTzimaSwfKS9g+4ODbNz5mQzp/1fOe8rmea7xlo2fDpJvS8zXW2XjP74YLhs/84KzbFwVJT+onP6QH3R5LfNk4zZn7GTj9n/L13+nhsaBoHFMP7ivLOVVo8BD43PKktet1jgGLAs0zq8yzifNk0Dz/BEabwjSOgbLqA9GnlOyqjXr0jzfNI/5Mtat1nz7kWZ5za9NjfIPxqO5bq1zv6zYizU+V2uN+arSP1fN8pqfk2X2f8ur8ivxQykLW4BMxuC7wIiIiIgedQYnQG+99RZUKpXW9OzsbAwcOLBSgiIiIiL81wJkzEA6GZwArV69Gu3atcOlS5ekabt370ZISAguX75cmbERERFVa3wOkOkYnACdOHECgYGBaN68Ob788ktMmzYNkZGRGDZsGJKSkkwRIxEREVGlMrgTtIuLCzZs2ICZM2di9OjRsLKywrZt29C5c2dTxEdERFR9sRO0yVSoE3RcXBwWLlyIgQMH4oknnsDEiRPxxx9/VHZsRERE1RovgZmOwQlQ9+7d8c4772D16tVYt24djh07hg4dOqBNmzaYN2+eKWIkIiIiqlQGJ0DFxcU4ceIE+vfvDwCws7PD0qVL8f3332PhwoWVHiAREVG1xbvATMbgBCghIQG+vr5a05955hmcPHnSoLr27NmDZ599Fr6+vlAoFNiyZYtsvhACsbGx8PX1hZ2dHSIiInD69GlZmYKCAkyYMAEeHh5wcHBAr169cO3aNUM3i4iIyPwwATKZSn0QooeHh0Hlc3Nz0axZMyxevFjn/Hnz5mHBggVYvHgxkpOT4e3tja5duyIn578n3sbExGDz5s3YsGEDkpKScPfuXfTs2VPns4qIiIiIgArcBWZhYQGFQv9jwA1JPLp3747u3bvrnCeEwKJFizBz5kz069cPALBq1Sp4eXlh/fr1GD16NLKzs7F8+XKsWbMGXbp0AQCsXbsW/v7+2LlzJ6KiogzYMiIiIvOigHFvQ3mIL+145BicAG3evFk2XlRUhGPHjmHVqlV45513Ki2w1NRUZGRkIDIyUpqmVCoRHh6O/fv3Y/To0UhJSUFRUZGsjK+vL4KDg7F//369CVBBQQEKCgqk8Tt37lRa3ERERJWGt8GbjMEJUO/evbWm9e/fH02aNMHGjRsxcuTISgksI+P+ixu9vLxk0728vHDlyhWpjI2NDVxdXbXKlCyvy5w5cyo1WSMiIjIFvg3edCqtD1Dr1q2xc+fOyqpOonm5TQhR6iW48pSZMWMGsrOzpSEtLU1vWSIiInr8VEoClJeXh7i4OPj5+VVGdQAAb29vANBqycnMzJRahby9vVFYWIisrCy9ZXRRKpVwdnaWDURERGaHd4GZjMEJkKurK9zc3KTB1dUVTk5O+Prrr/HRRx9VWmB16tSBt7c3EhISpGmFhYVITExE27ZtAQChoaGwtraWlUlPT8epU6ekMkRERI80Jj8mYXAfoEWLFsnGLSwsULNmTbRu3VqrL05Z7t69i4sXL0rjqampOH78ONzc3FC7dm3ExMRg9uzZCAoKQlBQEGbPng17e3sMGjQIwP33ko0cORJTpkyBu7s73NzcMHXqVISEhEh3hRERERFpMjgBGjp0qN55x48fR/Pmzctd15EjR9CxY0dpfPLkydI6Vq5cienTpyMvLw9jx45FVlYWWrdujR07dsDJyUlaZuHChbCyskJ0dDTy8vLQuXNnrFy5EpaWloZuGhERkVlhJ2jTMTgB0pSdnY1169bhq6++wh9//GHQc4AiIiIghP5PR6FQIDY2FrGxsXrL2NraIi4uDnFxcYaETUREZP54G7zJVLgT9O+//46XXnoJPj4+iIuLQ48ePXDkyJHKjI2IiIjIJAxqAbp27RpWrlyJr7/+Grm5uYiOjkZRURF++OEHNG7c2FQxEhERVUu8BGY65W4B6tGjBxo3bowzZ84gLi4Of//9Ny87ERERmRJvgzeZcrcA7dixAxMnTsSYMWMQFBRkypiIiIiITKrcLUB79+5FTk4OWrVqhdatW2Px4sW4efOmKWMjIiKq1kougRkzkG7lToDCwsLw5ZdfIj09HaNHj8aGDRtQq1YtqNVqJCQkICcnx5RxEhERVT+8BGYyBt8FZm9vjxEjRiApKQknT57ElClTMHfuXHh6eqJXr16miJGIiKh6YgJkMka9C6xBgwaYN28erl27hm+++aayYiIiIiIyKaMfhAgAlpaW6NOnD/r06VMZ1RERERF4G7wpVUoCRERERCbAJ0GbjFGXwIiIiIgeRWwBIiIiMlMKIaAo5Z2Z5VmedGMCREREZK54CcxkeAmMiIiIqh0mQERERGaqKp8EXVRUhNdffx0hISFwcHCAr68vhgwZgr///ltWrqCgABMmTICHhwccHBzQq1cvXLt2TVYmKysLgwcPhouLC1xcXDB48GDcvn274sFVAiZARERE5qoKH4R47949HD16FG+99RaOHj2KTZs24fz581oPPY6JicHmzZuxYcMGJCUl4e7du+jZsydUKpVUZtCgQTh+/Dji4+MRHx+P48ePY/DgwRUPrhKwDxARERFpcXFxQUJCgmxaXFwcnnrqKVy9ehW1a9dGdnY2li9fjjVr1qBLly4AgLVr18Lf3x87d+5EVFQUzp49i/j4eBw8eBCtW7cGAHz55ZcICwvDuXPn0KBBg4e+bQBbgIiIiMxWZV0Cu3PnjmwoKCioUDzZ2dlQKBSoUaMGACAlJQVFRUWIjIyUyvj6+iI4OBj79+8HABw4cAAuLi5S8gMAbdq0gYuLi1SmKjABIiIiMleVdAnM399f6n/j4uKCOXPmGBxKfn4+3njjDQwaNAjOzs4AgIyMDNjY2MDV1VVW1svLCxkZGVIZT09Prfo8PT2lMlWBl8CIiIjMVGW9CiMtLU1KWgBAqVRqlV23bh1Gjx4tjW/btg1PP/00gPsdol944QWo1WosWbKkzPUKIaBQKP6L44H/6yvzsDEBIiIiesw5OzvLEiBdevXqJbtMVatWLQD3k5/o6Gikpqbi999/l9Xj7e2NwsJCZGVlyVqBMjMz0bZtW6nMjRs3tNZ38+ZNeHl5GbVdxuAlMCIiInP1EO8Cc3JyQr169aTBzs5OSn4uXLiAnTt3wt3dXbZMaGgorK2tZZ2l09PTcerUKSkBCgsLQ3Z2Ng4fPiyVOXToELKzs6UyVYEtQERERGasqt7oXlxcjP79++Po0aP4+eefoVKppD47bm5usLGxgYuLC0aOHIkpU6bA3d0dbm5umDp1KkJCQqS7who1aoRu3bph1KhR+OKLLwAAr7zyCnr27Flld4ABTICIiIhIh2vXrmHr1q0AgObNm8vm7dq1CxEREQCAhQsXwsrKCtHR0cjLy0Pnzp2xcuVKWFpaSuXXrVuHiRMnSneL9erVC4sXL34o26EPEyAiIiJzJcT9wZjlKygwMBCiHMvb2toiLi4OcXFxesu4ublh7dq1FY7FFJgAERERmanKuguMtLETNBEREVU7bAEiIiIyV0a+z8uoZR9zTICIiIjMlEJ9fzBmedKNl8CIiIio2mELEBERkbniJTCTYQJERERkpngXmOkwASIiIjJXVfgcoMcd+wARERFRtcMWICIiIjPFS2CmwwSIiIjIXLETtMnwEhgRERFVO2wBIiIiMlO8BGY6Zt0CFBsbC4VCIRu8vb2l+UIIxMbGwtfXF3Z2doiIiMDp06erMGIiIqJKVHIXmDED6WTWCRAANGnSBOnp6dJw8uRJad68efOwYMECLF68GMnJyfD29kbXrl2Rk5NThRETERGRuTP7S2BWVlayVp8SQggsWrQIM2fORL9+/QAAq1atgpeXF9avX4/Ro0c/7FCJiIgqFS+BmY7ZtwBduHABvr6+qFOnDl544QX89ddfAIDU1FRkZGQgMjJSKqtUKhEeHo79+/eXWmdBQQHu3LkjG4iIiMyOqISBdDLrBKh169ZYvXo1tm/fji+//BIZGRlo27Ytbt26hYyMDACAl5eXbBkvLy9pnj5z5syBi4uLNPj7+5tsG4iIiMj8mPUlsO7du0v/DwkJQVhYGOrWrYtVq1ahTZs2AACFQiFbRgihNU3TjBkzMHnyZGn8zp07TIKIiMjs8BKY6Zh1C5AmBwcHhISE4MKFC1K/IM3WnszMTK1WIU1KpRLOzs6ygYiIyOyohfED6fRIJUAFBQU4e/YsfHx8UKdOHXh7eyMhIUGaX1hYiMTERLRt27YKoyQiIqok7ANkMmZ9CWzq1Kl49tlnUbt2bWRmZuL999/HnTt3MHToUCgUCsTExGD27NkICgpCUFAQZs+eDXt7ewwaNKiqQyciIiIzZtYJ0LVr1zBw4ED8888/qFmzJtq0aYODBw8iICAAADB9+nTk5eVh7NixyMrKQuvWrbFjxw44OTlVceRERETGU8DIPkCVFsnjx6wToA0bNpQ6X6FQIDY2FrGxsQ8nICIioofJ2Kc580nQej1SfYCIiIiIKoNZtwARERFVZ7wN3nSYABEREZkrY+/kYgKkFy+BERERUbXDFiAiIiIzpRACCiM6Mhuz7OOOCdADLO4pYKm+f9NgkZP8oLG6K7+Z0KJIvmx+TXn5O80Lpf8r7sh3820be9l4jaPWpcZ1p668bstC+fwiF7VsXFGk8XoQS3l5yzz5fLXG6hXy6rTmP3hRWVFcxk2WBt6Daej16jLLa8wXGm2ewlJewKLwv4A194PmMVAW5U35ytQ28vmax5CmYnt5bHYZ8vVntc+XjbvukD/+waJYvgG3En2k/z+xv0A2b+GKz2Tj4ydNko03fOlv+bpXHZGNXzrdRjbu9puDbPx2RJ5sXJ0nPycsNI7pnCc0dr7GcZbnLZ9vlfPAvtb4mISFfD8KS3mBYkf5fIVKvrzm56Z5TGmeT5rLl3kOlHGMVmYfDq26yqhbaMauMW5RLB9Xa/yiaK5P85wShvwCaSyrecxo1qXQiE3ze1CllI9byk8Jre+9B89Xzc/IpNTQ2naDlyedeAmMiIiIqh22ABEREZkpXgIzHSZARERE5op3gZkMEyAiIiJzxSdBmwz7ABEREVG1wxYgIiIiM8UnQZsOEyAiIiJzxUtgJsNLYERERFTtsAWIiIjITCnU2g+QNHR50o0JEBERkbniJTCT4SUwIiIiqnbYAkRERGSu+CBEk2ECREREZKb4KgzT4SUwIiIiqnbYAkRERGSu2AnaZJgAERERmSsBwJhb2Zn/6MUEiIiIyEyxD5DpsA8QERERVTtsASIiIjJXAkb2Aaq0SB47TICIiIjMFTtBmwwvgREREVGZRo8eDYVCgUWLFsmmFxQUYMKECfDw8ICDgwN69eqFa9euycpkZWVh8ODBcHFxgYuLCwYPHozbt28/vOB1YAJERERkrtSVMFSCLVu24NChQ/D19dWaFxMTg82bN2PDhg1ISkrC3bt30bNnT6hUKqnMoEGDcPz4ccTHxyM+Ph7Hjx/H4MGDKye4CuIlMCIiIjNlDneBXb9+HePHj8f27dvxzDPPyOZlZ2dj+fLlWLNmDbp06QIAWLt2Lfz9/bFz505ERUXh7NmziI+Px8GDB9G6dWsAwJdffomwsDCcO3cODRo0MDrGimALEBEREemkVqsxePBgTJs2DU2aNNGan5KSgqKiIkRGRkrTfH19ERwcjP379wMADhw4ABcXFyn5AYA2bdrAxcVFKlMV2AJERERkriqpE/SdO3dkk5VKJZRKZZmLf/jhh7CyssLEiRN1zs/IyICNjQ1cXV1l0728vJCRkSGV8fT01FrW09NTKlMV2AJERERkrkoSIGMGAP7+/lIHZBcXF8yZM0drVevWrYOjo6M0JCYm4pNPPsHKlSuhUCgMDFvIltG1vGaZh40tQERERI+5tLQ0ODs7S+O6Wn969eolu0z13XffITMzE7Vr15amqVQqTJkyBYsWLcLly5fh7e2NwsJCZGVlyVqBMjMz0bZtWwCAt7c3bty4obW+mzdvwsvLq1K2ryKYABEREZmrSroE5uzsLEuAdHFycoKTk5M0/sorr+DZZ5+VlYmKisLgwYMxfPhwAEBoaCisra2RkJCA6OhoAEB6ejpOnTqFefPmAQDCwsKQnZ2Nw4cP46mnngIAHDp0CNnZ2VKSVBWYABEREZkrNQBjrhIZcRu8u7s73N3dZdOsra3h7e0t3bnl4uKCkSNHYsqUKXB3d4ebmxumTp2KkJAQ6a6wRo0aoVu3bhg1ahS++OILAPeTq549e1bZHWAAEyAiIiKzZQ63wZdl4cKFsLKyQnR0NPLy8tC5c2esXLkSlpaWUpl169Zh4sSJ0t1ivXr1wuLFi00eW2mYABEREVG5XL58WWuara0t4uLiEBcXp3c5Nzc3rF271oSRGY4JEBERkbniu8BM5rG5DX7JkiWoU6cObG1tERoair1791Z1SERERMZRC+MH0umxSIA2btyImJgYzJw5E8eOHcPTTz+N7t274+rVq1UdGhEREZmhxyIBWrBgAUaOHImXX34ZjRo1wqJFi+Dv74+lS5dWdWhEREQVV0kPQiRtj3wCVFhYiJSUFNl7SAAgMjKySt8xQkREZDxjkx8mQPo88p2g//nnH6hUKq2nST74HhJNBQUFKCgokMY135FCREREj7dHvgWohOb7REp7x8icOXNk70Tx9/d/GCESEREZhpfATOaRT4A8PDxgaWmp1dqTmZmp9x0jM2bMQHZ2tjSkpaU9jFCJiIgMw7vATOaRT4BsbGwQGhqKhIQE2fSEhAS97xhRKpXSe1HK834UIiIierw88n2AAGDy5MkYPHgwWrVqhbCwMCxbtgxXr17Fq6++WtWhERERVZxQ3x+MWZ50eiwSoAEDBuDWrVt49913kZ6ejuDgYPz6668ICAio6tCIiIgqjk+CNpnHIgECgLFjx2Ls2LFVHQYREVHlURt5Kzv7AOn1yPcBIiIiIjLUY9MCRERE9NjhJTCTYQJERERkrgSMTIAqLZLHDi+BERERUbXDFiAiIiJzxUtgJsMEiIiIyFyp1QCMeJaPms8B0oeXwIiIiKjaYQsQERGRueIlMJNhAkRERGSumACZDC+BERERUbXDFiAiIiJzxVdhmAwTICIiIjMlhBrCiDe6G7Ps444JEBERkbkSwrhWHPYB0ot9gIiIiKjaYQsQERGRuRJG9gFiC5BeTICIiIjMlVoNKIzox8M+QHrxEhgRERFVO2wBIiIiMle8BGYyTICIiIjMlFCrIYy4BMbb4PXjJTAiIiKqdtgCREREZK54CcxkmAARERGZK7UAFEyATIGXwIiIiKjaYQsQERGRuRICgDHPAWILkD5MgIiIiMyUUAsIIy6BCSZAejEBIiIiMldCDeNagHgbvD7sA0RERETVDluAiIiIzBQvgZkOEyAiIiJzxUtgJsMECP9lyOqCfGma2kqeNavyFfJliuV1qPM0DjLL/woo8uS7WXGvQF53obxuTer80mNRK+XrVhRpxGopr0+huS0aF0I1/9jQnP9gAUVx6bGjjNkmp/nHj0Y8wlJeQDzwWWg9fb6MP6Q095tCJR9Xa9SnKNCYn6exQJF8x2seJ+q8fI358sWLi+QrVBX8V19xsXzld3PkZYuL5HXn5shjy79XJI/lnmYslqXOVxfIzwlVgbx+zfNJaJyPCpXGvsj/b9tUWvtVYz/ky/er2lqzbvnyWsew5nGgcT5B43zTWl7zuNI8Jss4HytVGXVrn/sa8zW+B4XGL4rWOaQx/mB5rf2uGVtZv+Oav2aa9Wl8LlrbpnHcCI3lxQOHfMlvxcNoXSlGkVHPQSxGUdmFqimFYPsYrl27Bn9//6oOg4iIHiFpaWnw8/MzSd35+fmoU6cOMjIyjK7L29sbqampsLW1rYTIHh9MgACo1Wr8/fffcHJygkJR1U0Wut25cwf+/v5IS0uDs7NzVYfzSOG+qxjut4rjvquYR2W/CSGQk5MDX19fWFiY7l6i/Px8FBYWll2wDDY2Nkx+dOAlMAAWFhYmy+Irm7Ozs1l/MZgz7ruK4X6rOO67inkU9puLi4vJ12Fra8vExYR4GzwRERFVO0yAiIiIqNphAvSIUCqVmDVrFpRKZVWH8sjhvqsY7reK476rGO43epjYCZqIiIiqHbYAERERUbXDBIiIiIiqHSZAREREVO0wASIiIqJqhwmQGZkzZw6efPJJODk5wdPTE3369MG5c+e0yp09exa9evWCi4sLnJyc0KZNG1y9erUKIjYf5dl3d+/exfjx4+Hn5wc7Ozs0atQIS5curaKIzcPSpUvRtGlT6cFzYWFh2LZtmzRfCIHY2Fj4+vrCzs4OEREROH36dBVGbD5K23dFRUV4/fXXERISAgcHB/j6+mLIkCH4+++/qzhq81DWcfeg0aNHQ6FQYNGiRQ83SHrsMQEyI4mJiRg3bhwOHjyIhIQEFBcXIzIyErm5uVKZS5cuoX379mjYsCF2796NP/74A2+99Va1f1poefbda6+9hvj4eKxduxZnz57Fa6+9hgkTJuDHH3+swsirlp+fH+bOnYsjR47gyJEj6NSpE3r37i0lOfPmzcOCBQuwePFiJCcnw9vbG127dkVOTk4VR171Stt39+7dw9GjR/HWW2/h6NGj2LRpE86fP49evXpVddhmoazjrsSWLVtw6NAh+Pr6VlGk9FgTZLYyMzMFAJGYmChNGzBggHjppZeqMKpHg65916RJE/Huu+/KyrVs2VL873//e9jhmTVXV1fx1VdfCbVaLby9vcXcuXOlefn5+cLFxUV8/vnnVRih+SrZd7ocPnxYABBXrlx5yFE9GjT33bVr10StWrXEqVOnREBAgFi4cGHVBUePJbYAmbHs7GwAgJubG4D7L2395ZdfUL9+fURFRcHT0xOtW7fGli1bqjBK86S57wCgffv22Lp1K65fvw4hBHbt2oXz588jKiqqqsI0KyqVChs2bEBubi7CwsKQmpqKjIwMREZGSmWUSiXCw8Oxf//+KozU/GjuO12ys7OhUChQo0aNhxucmdO179RqNQYPHoxp06ahSZMmVRwhPbaqOgMj3dRqtXj22WdF+/btpWnp6ekCgLC3txcLFiwQx44dE3PmzBEKhULs3r27CqM1L7r2nRBCFBQUiCFDhggAwsrKStjY2IjVq1dXUZTm48SJE8LBwUFYWloKFxcX8csvvwghhNi3b58AIK5fvy4rP2rUKBEZGVkVoZodfftOU15enggNDRUvvvjiQ47QfJW272bPni26du0q1Gq1EEKwBYhMgm+DN1Pjx4/HiRMnkJSUJE1Tq9UAgN69e+O1114DADRv3hz79+/H559/jvDw8CqJ1dzo2ncA8Omnn+LgwYPYunUrAgICsGfPHowdOxY+Pj7o0qVLFUVb9Ro0aIDjx4/j9u3b+OGHHzB06FAkJiZK8xUKhay8EEJrWnWlb981btxYKlNUVIQXXngBarUaS5YsqcJozYu+fZeXl4dPPvkER48e5XFGplXVGRhpGz9+vPDz8xN//fWXbHpBQYGwsrIS7733nmz69OnTRdu2bR9miGZL3767d++esLa2Fj///LNs+siRI0VUVNTDDNHsde7cWbzyyivi0qVLAoA4evSobH6vXr3EkCFDqig681ay70oUFhaKPn36iKZNm4p//vmnCiMzfyX7buHChUKhUAhLS0tpACAsLCxEQEBAVYdJjxH2ATIjQgiMHz8emzZtwu+//446derI5tvY2ODJJ5/Uur37/PnzCAgIeJihmp2y9l1RURGKiopgYSE/5C0tLaWWNbpPCIGCggLUqVMH3t7eSEhIkOYVFhYiMTERbdu2rcIIzVfJvgPuH3PR0dG4cOECdu7cCXd39yqOzryV7LvBgwfjxIkTOH78uDT4+vpi2rRp2L59e1WHSY8RXgIzI+PGjcP69evx448/wsnJCRkZGQAAFxcX2NnZAQCmTZuGAQMGoEOHDujYsSPi4+Px008/Yffu3VUYedUra985OzsjPDwc06ZNg52dHQICApCYmIjVq1djwYIFVRx91XnzzTfRvXt3+Pv7IycnBxs2bMDu3bsRHx8PhUKBmJgYzJ49G0FBQQgKCsLs2bNhb2+PQYMGVXXoVa60fVdcXIz+/fvj6NGj+Pnnn6FSqaRj0s3NDTY2NlUcfdUqbd+5u7trJYvW1tbw9vZGgwYNqihieixVafsTyQDQOaxYsUJWbvny5aJevXrC1tZWNGvWTGzZsqVqAjYj5dl36enpYtiwYcLX11fY2tqKBg0aiPnz50sdLaujESNGiICAAGFjYyNq1qwpOnfuLHbs2CHNV6vVYtasWcLb21solUrRoUMHcfLkySqM2HyUtu9SU1P1HpO7du2q2sDNQFnHnSZ2giZTUAghxMNOuoiIiIiqEvsAERERUbXDBIiIiIiqHSZAREREVO0wASIiIqJqhwkQERERVTtMgIiIiKjaYQJERERE1Q4TICJ66AoLC1GvXj3s27cPAHD58mUoFAocP37cpOs9efIk/Pz8kJuba9L1EJH5YwJEZKRhw4ZBoVBoDRcvXqzq0MzWsmXLEBAQgHbt2pV7mcDAQCxatEhremxsLJo3b16uOkJCQvDUU09h4cKF5V4vET2emAARVYJu3bohPT1dNmi+kBW43/JBQFxcHF5++eUqWffw4cOxdOlSqFSqKlk/EZkHJkBElUCpVMLb21s2WFpaIiIiAuPHj8fkyZPh4eGBrl27AgDOnDmDHj16wNHREV5eXhg8eDD++ecfqb7c3FwMGTIEjo6O8PHxwfz58xEREYGYmBipjEKhwJYtW2Rx1KhRAytXrpTGr1+/jgEDBsDV1RXu7u7o3bs3Ll++LM0fNmwY+vTpg48//hg+Pj5wd3fHuHHjUFRUJJUpKCjA9OnT4e/vD6VSiaCgICxfvhxCCNSrVw8ff/yxLIZTp07BwsICly5d0rmvjh49iosXL+KZZ57Ruz/VajVGjRqF+vXr48qVK3rL6aKrNS4wMFCaHxUVhVu3biExMdGgeono8cIEiMjEVq1aBSsrK+zbtw9ffPEF0tPTER4ejubNm+PIkSOIj4/HjRs3EB0dLS0zbdo07Nq1C5s3b8aOHTuwe/dupKSkGLTee/fuoWPHjnB0dMSePXuQlJQER0dHdOvWTdYStWvXLly6dAm7du3CqlWrsHLlSlkSNWTIEGzYsAGffvopzp49i88//xyOjo5QKBQYMWIEVqxYIVvv119/jaeffhp169bVGdeePXtQv359ODs765xfWFiI6OhoHDlyBElJSQgICDBoux9shbt48SLq1auHDh06SPNtbGzQrFkz7N2716B6iegxU8UvYyV65A0dOlRYWloKBwcHaejfv78QQojw8HDRvHlzWfm33npLREZGyqalpaUJAOLcuXMiJydH2NjYiA0bNkjzb926Jezs7MSkSZOkaQDE5s2bZfW4uLiIFStWCCGEWL58uWjQoIHsbfcFBQXCzs5ObN++XYo9ICBAFBcXS2Wef/55MWDAACGEEOfOnRMAREJCgs5t//vvv4WlpaU4dOiQEEKIwsJCUbNmTbFy5Uq9+2vSpEmiU6dOsmklb0/fu3ev6NKli2jXrp24ffu2rEzJ28Mf3M8ODg7C2tpaNGvWTGs9arVa9O3bV4SGhop79+7J5vXt21cMGzZMb4xE9Pizqtr0i+jx0LFjRyxdulQad3BwkP7fqlUrWdmUlBTs2rULjo6OWvVcunQJeXl5KCwsRFhYmDTdzc0NDRo0MCimlJQUXLx4EU5OTrLp+fn5sstTTZo0gaWlpTTu4+ODkydPAgCOHz8OS0tLhIeH61yHj48PnnnmGXz99dd46qmn8PPPPyM/Px/PP/+83rjy8vJga2urc97AgQPh5+eH3377Dfb29lrzp02bhmHDhsmmffrpp9izZ49W2TfffBMHDhxAcnIy7OzsZPPs7Oxw7949vTES0eOPCRBRJXBwcEC9evX0znuQWq3Gs88+iw8//FCrrI+PDy5cuFCudSoUCgghZNMe7LujVqsRGhqKdevWaS1bs2ZN6f/W1tZa9arVagDQShx0efnllzF48GAsXLgQK1aswIABA3QmLyU8PDykBEtTjx49sHbtWhw8eBCdOnXSuazmfnZzc9Mqt3btWixcuBC7d++Gn5+f1vx///1X7yU6Iqoe2AeI6CFr2bIlTp8+jcDAQNSrV082lCRS1tbWOHjwoLRMVlYWzp8/L6unZs2aSE9Pl8YvXLgga9Vo2bIlLly4AE9PT631uLi4lCvWkJAQqNXqUjsM9+jRAw4ODli6dCm2bduGESNGlFpnixYt8Oeff2olbwAwZswYzJ07F7169apwJ+UDBw7g5ZdfxhdffIE2bdroLHPq1Cm0aNGiQvUT0eOBCRDRQzZu3Dj8+++/GDhwIA4fPoy//voLO3bswIgRI6BSqeDo6IiRI0di2rRp+O2333Dq1CkMGzYMFhby07VTp05YvHgxjh49iiNHjuDVV1+Vtea8+OKL8PDwQO/evbF3716kpqYiMTERkyZNwrVr18oVa2BgIIYOHYoRI0Zgy5YtSE1Nxe7du/Htt99KZSwtLTFs2DDMmDED9erVk12606Vjx47Izc3F6dOndc6fMGEC3n//ffTs2RNJSUnlirNERkYG+vbtixdeeAFRUVHIyMhARkYGbt68KZW5fPkyrl+/ji5duhhUNxE9XpgAET1kvr6+2LdvH1QqFaKiohAcHIxJkybBxcVFSnI++ugjdOjQAb169UKXLl3Qvn17hIaGyuqZP38+/P390aFDBwwaNAhTp06VXXqyt7fHnj17ULt2bfTr1w+NGjXCiBEjkJeXp/cOLF2WLl2K/v37Y+zYsWjYsCFGjRql9STlkSNHorCwsMzWHwBwd3dHv379dF6aKxETE4N33nkHPXr0wP79+8sd659//okbN25g1apV8PHxkYYnn3xSKvPNN98gMjLS4LvLiOjxohC62qGJyOxERESgefPmOp+GXNX27duHiIgIXLt2DV5eXmWWP3nyJLp06aKzk7YpFRQUICgoCN98841BT6EmoscPW4CIqMIKCgpw8eJFvPXWW4iOji5X8gPc71s0b9482UMZH4YrV65g5syZTH6IiHeBEVHFffPNNxg5ciSaN2+ONWvWGLTs0KFDTRSVfvXr10f9+vUf+nqJyPzwEhgRERFVO7wERkRERNUOEyAiIiKqdpgAERERUbXDBIiIiIiqHSZAREREVO0wASIiIqJqhwkQERERVTtMgIiIiKjaYQJERERE1c7/AUUPK/yfhnc6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHFCAYAAAD2eiPWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwp0lEQVR4nO3deVwV5f4H8M+wHXZkUQ4oAilugbu5Jrjhvl7TNA2VzFwjNW/mryuWolkuhWmbKWqG3VKzvKJYiqJZSJrrNRc0LZAyRFBkO8/vDy+TM4ftcA5wwM/79ZqXzswzzzwzZ+acL88yIwkhBIiIiIhqMYvqLgARERFRZWPAQ0RERLUeAx4iIiKq9RjwEBERUa3HgIeIiIhqPQY8REREVOsx4CEiIqJajwEPERER1XoMeIiIiKjWq9SAZ+PGjZAkSZ6srKzg5eWFp59+GhcvXqzMXZfb7du3YWFhgb179wIAduzYAY1Gg9zcXEW6gwcPKo7l4enYsWN6+ebn52PlypUICgqCnZ0d6tSpgy5duuDo0aOKdCXluWzZsgofk5+fX4n5hoSEVDjfqhISEmL25bx37x4iIyNx8ODBcm9z/fp1TJs2DU2aNIGdnR3c3NwQFBSEyZMn4/r163K6yMhIxWdmbW2Nhg0bYvLkyUhLS9PLNzc3F2+99RYCAwPh4OAAT09P9O/fX+9aU9u/f7+8jz///LPUtOPGjYMkSRg0aFC5j7eyVOTcqxXdz1988YXpClZORd+Lx48fr/J9P2zSpEno169ftZaBSlb0PVARr732Gtq2bQudTmfiUtVsVlWxkw0bNqBZs2a4f/8+jhw5giVLluDAgQP473//C1dX16ooQomOHz8OIQQ6dOgAADh27BhatWoFjUZTbPqoqCj06NFDsSwwMFAxX1hYiOHDhyMxMRHz5s1Dly5dcPfuXSQnJ+Pu3bt6eY4cORJz5sxRLGvYsKExh4WuXbvi7bff1lvu7OxsVL5VYe3atdVdhDLdu3cPixYtAoByBWc3btxA27ZtUadOHcyZMwdNmzZFZmYmzp07h88//xxXrlyBj4+PYpu4uDi4uLggOzsb+/btw4oVK3D06FGcPHkS1tbWcrrJkyfj008/xfz589GzZ0/89ddfWLZsGYKDg3HkyBE88cQTeuXJzs7G5MmT4e3tjd9//73Usu/evRs7d+40m2vH0HNP+k6cOIGYmBj88MMP1V0UqgRz587FmjVrEBMTg4kTJ1Z3ccxGlQQ8gYGBaN++PYAHX1CFhYVYuHAhdu7cWe0fRlJSEpo0aQI3NzcADwKe4n4gigQEBKBTp06l5hkdHY09e/bgyJEjirQDBw4sNr2np2eZeRqqTp06Js+zst27dw/29vZo0aJFdRfF5D766CP8+eef+PHHH+Hv7y8vHzZsGF599dVi/xJr164dPDw8AAC9e/fGn3/+iQ0bNiAxMVEOunNzc7F161aMHTsWixcvlrft2rUrvL298emnnxZ7Pb/yyitwdXXFwIEDFdupZWZmYsqUKXjjjTfwzjvvVPj4ybwsW7YMTzzxhPy9TLWLi4sLxo0bh2XLlmHChAkVrimqbaqlD0/RTXbz5k15WUnNGBMmTICfn588f/XqVUiShLfffhsrV66Ev78/HB0d0blz52KblsqSlJQk/yAUFhYiOTm51ICnPN555x10797drAOO+/fvo02bNmjcuDEyMzPl5WlpadBqtXJgCjz4DBwdHXH27Fn06tULDg4OqFu3LmbMmIF79+4p8hVCYO3atWjdujXs7Ozg6uqKkSNH4sqVK4p0ISEhCAwMxKFDh9ClSxfY29tj0qRJ8rqHr4Wiz/ytt97Cm2++CT8/P9jZ2SEkJAS//PIL8vPz8corr8Db2xsuLi4YPnw40tPT9Y5527Zt6Ny5MxwcHODo6Ii+ffvixIkTijRFx3rp0iUMGDAAjo6O8PHxwZw5c+RmzqtXr6Ju3boAgEWLFsnNQhMmTCjxfN+6dQsWFhaoV69esestLMq+FYu7bywsLGBhYQEXFxdFWmdnZ1hYWMDW1lYvn8OHD+PDDz/Exx9/DEtLy1L3OWfOHHh5eWHWrFlllq8kRZ91UlISnnzySdjb2+Oxxx7DsmXL9AK9X3/9FePGjUO9evWg0WjQvHlzrFixQk5XnnN/8eJFjB07VpHHe++9V2zZ7t+/j9mzZ0Or1cLOzg7BwcF61wQA7Nq1C507d4a9vT2cnJzQp08ffP/993rpEhMT0atXLzg5OcHe3h5dunTB7t27yzxHqampaNeuHQICAiq9uf/mzZvYsWMHxo8fr1iu0+mwePFiNG3aVG6Gb9mypV6gW55jLGq2++677zB58mS4u7vD2dkZzz77LO7evYu0tDSMGjUKderUgZeXF+bOnYv8/HxFHnl5eVi8eDGaNWsGjUaDunXrYuLEifjjjz8MOt4//vgDzz//PHx8fOR8unbtiv3798tp4uPjMXToUDRo0AC2trZo3LgxpkyZotfUW9TMdOrUKTz11FNwcXGBm5sbZs+ejYKCAly4cAH9+vWDk5MT/Pz8sHz5csX2RU2pW7ZsKdd1V5zyfI8BwPjx4/HLL7/gwIEDBp2vWk1Uog0bNggAIikpSbF8zZo1AoD48ssv5WXBwcEiODhYL4+wsDDh6+srz6ekpAgAws/PT/Tr10/s3LlT7Ny5UwQFBQlXV1dx+/btMssVHBwsAJQ5PVyeAwcOCACiXr16wtLSUjg5OYnQ0FBx+PBhRd6//vqrACBmzpwp5s+fL6dv0aKF2Lhxo15ZAAhXV1dha2srbGxsRNu2bcUnn3xS5jGUxtfXVwwYMEDk5+frTTqdTk73yy+/CCcnJzFixAghhBCFhYWiZ8+eol69euL333+X04WFhQkbGxvRsGFDsWTJErFv3z4RGRkprKysxKBBgxT7njx5srC2thZz5swRcXFxYuvWraJZs2bC09NTpKWlKT4DNzc34ePjI6Kjo8WBAwdEQkKCvO7hc1/0mfv6+orBgweLb775RmzZskV4enqKJk2aiPHjx4tJkyaJPXv2iPfff184OjqKwYMHK8q1ZMkSIUmSmDRpkvjmm2/E9u3bRefOnYWDg4M4e/as3rE2b95cvP3222L//v3iX//6l5AkSSxatEgIIcT9+/dFXFycACDCw8PF999/L77//ntx6dKlEj+TLVu2CAAiNDRUxMXFiczMzBLTLly4UAAQf/zxh2L53LlzBQCRnJysWP7iiy8KR0dHsWPHDpGZmSlSUlLEmDFjhKurq7h48aIi7b1790RAQIB4+eWXS92XEELEx8cLa2trcfLkSSHEg+tq4MCBJZa7JMHBwcLd3V0EBASI999/X8THx4tp06YJACImJkZOl56eLurXry/q1q0r3n//fREXFydmzJghAIipU6cKIco+92fPnhUuLi4iKChIbNq0Sezbt0/MmTNHWFhYiMjISHlfRfezj4+PGDp0qPj666/Fli1bROPGjYWzs7O4fPmynPbTTz+VP7udO3eKbdu2iXbt2gkbGxvF/X/w4EFhbW0t2rVrJ7Zt2yZ27twpQkNDhSRJIjY2Vk6n/l48ffq08PHxEZ07dy72czC1TZs2CQDi3LlziuVLly4VlpaWYuHCheLbb78VcXFxYvXq1YrzZugx+vv7izlz5oh9+/aJN998U1haWooxY8aItm3bisWLF4v4+Hjxz3/+UwAQK1askLcvLCwU/fr1Ew4ODmLRokUiPj5efPzxx6J+/fqiRYsW4t69e+U+3r59+4q6deuKDz/8UBw8eFDs3LlT/Otf/1KUd926dWLp0qVi165dIiEhQcTExIhWrVqJpk2biry8PDld0f3StGlT8cYbb4j4+Hgxb948AUDMmDFDNGvWTLz77rsiPj5eTJw4Ue93zpDrrmhfDyvv95gQQhQUFAhHR0cxe/bscp+r2q5KAp5jx46J/Px8kZWVJeLi4oRWqxXdu3cX+fn5clpDA56goCBRUFAgL//xxx8FAPHZZ5+VWa6LFy+KEydOyD9Ce/bsESdOnBDTpk0T/v7+4sSJE+LEiROKH4uffvpJvPjii2LHjh3i0KFD4pNPPhHNmzcXlpaWIi4uTk73/fffCwDC2dlZtGjRQnz++edi7969YuTIkQKA+PDDDxVlGTt2rPj000/FoUOHxBdffCH69+8vAIj/+7//K88pLpavr2+JQdwbb7yhSLtt2zYBQKxevVr861//EhYWFmLfvn2KNGFhYQKAeOeddxTLlyxZIgCIxMRExbE//MUlhBDXr18XdnZ2Yt68efKyoqDz22+/1St/SQFPq1atRGFhobx89erVAoAYMmSIYvuIiAgBQA4qfv31V2FlZSVmzpypSJeVlSW0Wq0YNWqU3rF+/vnnirQDBgwQTZs2lef/+OMPAUAsXLhQr/zF0el0YsqUKcLCwkIAEJIkiebNm4uXXnpJpKSkKNIWfdGlpaWJ/Px8kZGRIT7//HPh4OAgxowZU2zeRZ9d0efcsGFDceLECb20c+bMEY899pj8g1FSwJOVlSX8/PzE/Pnz5WXGBDwAxA8//KBY3qJFC9G3b195/pVXXik23dSpU4UkSeLChQtCiNLPfd++fUWDBg30AsoZM2YIW1tb8ddffwkh/v7hadu2reKPgKtXrwpra2vx3HPPCSEe/PB6e3uLoKAgxbWXlZUl6tWrJ7p06SIv69Spk6hXr57IysqSlxUUFIjAwEDRoEEDeT8PBzzx8fHC2dlZjBw5UuTk5JR9Mk1g6tSpws7OTnHcQggxaNAg0bp161K3NfQY1ffcsGHDBACxcuVKxfLWrVuLtm3byvOfffaZXrAghBBJSUkCgFi7dm25j9fR0VFERESUO71OpxP5+fni2rVrAoD46quv5HVF94v6O65169YCgNi+fbu8LD8/X9StW1f+g1KI8l93D++riCHfY0W6du0qOnbsWO5jr+2qJOBRT82bNxcZGRmKtIYGPK+88ooi3f379wUAsWzZsnKXb/Xq1aJ+/fry/IABA8SECRPKvX1GRoZo0KCBaNmypbzsyJEjAoCwsbERV69elZfrdDrRtm1b0aBBgzLzHTRokLCyshLp6enlLsvDfH19Rbdu3URSUpLe9HDNTZGpU6cKa2trYWFhUWygVRQE/Pnnn4rlRZ9FURC1YMECIUmSuHnzpl7NUqdOncQTTzwhbxscHCxcXV2LLX9JAc/DP75CCLF3714BQHzwwQeK5R988IEAIE6fPi2EEOKjjz6Sf2DU5Ro9erSoV6+e4lglSdL78XnllVeEra2tPG9owFPk6tWrYu3atWLSpEmicePGAoCwt7cXBw8elNMUfdGpp+7duyv+2izyxhtvCHt7e/H666+LAwcOiK+++kr06dNHeHh4iJ9++klO98MPPwhLS0sRHx+vty91wDN9+nQREBCgOA/GBDxarVZv+dNPPy2aNWsmzz/xxBOiRYsWeul++OEHAUCsW7dOCFHyuc/JyZF/ENSf83/+8x8BQPznP/8RQvz9w/P2228XW95GjRoJIYQ4d+6cACCWL1+ul27q1KnCwsJC3L17V2RnZwtJksS0adP00r355psCgDh//rwQ4u/vxRkzZghra2sxe/ZsveCjMg0dOlQ0bNhQb/nrr78uJEkSU6dOLbYWsiLHuHfvXkW6+fPnCwBy8FpkzJgxwt3dXZ5/5plnRJ06dUReXp7eZ1nSj3tJevbsKerUqSPeeOMN8f333xd7D928eVNMmTJFNGjQQPGHg/o3peh+Ka78xX1vdO7cWbRr106eL+919/C+ihjyPVZk+PDh5frNeVRUSR+eTZs2ISkpCd999x2mTJmC8+fPY8yYMUbl6e7urpgvGlWVk5NT6nY6nQ4FBQUoKChAQkICnnzySRQUFCAvLw9HjhxB165dUVBQIPdfKU2dOnUwaNAgnDp1St5vUbmaNWsGX19fOa0kSejbty9u3LhRbP+Sh40bNw4FBQVGDVt1cXFB+/bt9SYvLy+9tJMmTUJ+fj6srKxK7KthZWWld861Wi2AB/1TgAd9A4QQ8PT0hLW1tWI6duyYXnt4cWUpTVHH8iI2NjalLr9//75cLgDo0KGDXrm2bdumVy57e3u9vi8ajUbOzxi+vr6YOnUq1q9fj4sXL2Lbtm24f/8+Xn75Zb20+/fvR1JSEvbu3Yt//OMfOHToEGbOnKlIc/78efzrX//CokWL8NprryEkJARDhgzB7t27UadOHcyePVtOO2nSJIwYMQLt27fH7du3cfv2bfmY7ty5g6ysLADAjz/+iLVr12L58uW4f/++nLbo3rl9+7beYxvKor52gAfn9OH79datW8VeE97e3vL60ty6dQsFBQWIjo7W+5wHDBgAAHqfddE1rF5WtK+if0sql06nQ0ZGBjIyMiCEMKj8sbGxsLOzw3PPPVelnUpzcnKK7ds1f/58vP322zh27Bj69+8Pd3d39OrVS/4eqsgxGnLPPnx/3bx5E7dv34aNjY3eZ5mWllbmYxQetm3bNoSFheHjjz9G586d4ebmhmeffVZ+xINOp0NoaCi2b9+OefPm4dtvv8WPP/4o9wkt7jeluPIX972hPq4iZV13xTH0ewwAbG1ty/xNfJRUySit5s2byx0ue/TogcLCQnz88cf44osvMHLkSAAPPpiHO88WMeTCLo9JkyYhJiZGsSw2Nlb+/+TJkzF58mT4+vri6tWrZeYnhAAA+QurUaNGsLe3LzVtWR1Uy5vOFO7evYvx48ejSZMmuHnzJp577jl89dVXeukKCgpw69YtxQ9X0RdG0TIPDw9IkoTDhw8XO6xfvayqvuSLRjp98cUXiiDUHIwaNQpLly7FmTNn9Na1atVKLnufPn3Qt29ffPjhhwgPD5cfo/Dzzz8rHqtQxNraGq1atUJCQoK87OzZszh79iz+/e9/6+2rUaNGaNWqFU6ePIlz585BCIHhw4frpbt+/TpcXV2xatUqREREGHPoetzd3ZGamqq3vGjYfNG5KImrqyssLS0xfvx4TJ8+vdg0D4+QA1Dsc43S0tLka7ro35LKZWFhAVdXVwghYGFhYVD5P/30U7z22msIDg7Gvn370Lp161KPz1Q8PDzw008/6S23srLC7NmzMXv2bNy+fRv79+/Hq6++ir59+8qfu6HHaEwZ3d3dERcXV+x6Jycng/JavXo1Vq9ejV9//RW7du3CK6+8gvT0dMTFxeHMmTP4+eefsXHjRoSFhcnbXbp0yejjKElZ111xKvI99tdff5nsM6kNqmWU1vLly+Hq6op//etf8ugLPz8//PLLL4q/HG/dulXmw9MMFRkZiaSkJGzYsAEAsGfPHiQlJeH5559HQEAAkpKSkJSUhK+//rrMvDIyMvDNN9+gdevWcmRvZWWFoUOH4vz584qASQiBuLg4NGrUqMwLcPPmzbC2tka7du0qfqDl9MILL+DXX3/F9u3bsX79euzatQurVq0qNu2nn36qmN+6dSuAv5+FMmjQIAgh8NtvvxVbuxQUFFSpx1KSvn37wsrKCpcvXy62XBUZmlveGsUixf1IAA+eh3P9+nX5L+SSSJKE9957D5aWlvi///s/eXnRduoRirm5ufjpp5/QoEEDedmBAwf0pqIv+J07d+Ljjz8GAPTr16/YtEWPTzhw4ID8h4op9erVC+fOndP7Md60aRMkSZKH4pd07u3t7dGjRw+cOHECLVu2LPZzVv+gfPbZZ/IfGABw7do1HD16VL6mmzZtivr162Pr1q2KdHfv3sWXX34pj9xycHBAx44dsX37dkW5dDodtmzZggYNGqBJkyaKfbu5uWH//v1o3rw5evToUaFRphXRrFkz3Lp1q9g/MIvUqVMHI0eOxPTp0/HXX3/h6tWrFTrGiho0aBBu3bqFwsLCYj/Hpk2bVijfhg0bYsaMGejTp498nRX94aX+g+yDDz4w7iBKUdZ1V5yKfI9duXKlVj7mo6KqpIZHzdXVFfPnz8e8efOwdetWjBs3DuPHj8cHH3yAcePGYfLkybh16xaWL19u8oed+fn5wc/PD//5z38QGBgoP2k0IiICQ4cOLfHHb+zYsWjYsCHat28PDw8PXLx4EStWrMDNmzexceNGRdo33ngDe/bsQb9+/RAZGQlnZ2d8/PHH+Pnnn/H555/L6d566y2cO3cOvXr1QoMGDZCeno7169dj3759iIyMVARGV69ehb+/P8LCwvT2V5zbt28X+wWq0WjQpk0bAMDHH3+MLVu2YMOGDXj88cfx+OOPY8aMGfjnP/+Jrl27Kobn29jYYMWKFcjOzkaHDh1w9OhRLF68GP3790e3bt0APHj2y/PPP4+JEyfi+PHj6N69OxwcHJCamorExEQEBQVh6tSpZZbd1Pz8/PD6669jwYIFuHLlCvr16wdXV1fcvHkTP/74IxwcHOQH2ZWXk5MTfH198dVXX6FXr15wc3ODh4eH4hEKD1uyZAmOHDmC0aNHy0P2U1JSsGbNGty6dQtvvfVWmfsMCAjA888/j7Vr1yIxMRHdunVDt27d0KFDB0RGRuLevXvo3r07MjMzER0djZSUFGzevFnevrgv06KnFXft2lW+3rRabbFV7ra2tnB3d6+0h/299NJL2LRpEwYOHIjXX38dvr6+2L17N9auXYupU6fKP6alnft33nkH3bp1w5NPPompU6fCz88PWVlZuHTpEr7++mt89913in2mp6dj+PDhmDx5MjIzM7Fw4ULY2tpi/vz5AB7Usi5fvhzPPPMMBg0ahClTpshPtr59+7biiehLly5Fnz590KNHD8ydOxc2NjZYu3Ytzpw5g88++6zYGk0nJyfExcVhxIgR6NOnD3bt2qX3YFNTCwkJgRACP/zwA0JDQ+XlgwcPlp+ZVrduXVy7dg2rV6+Gr68vAgICKnyMFfH000/j008/xYABA/Diiy/iiSeegLW1NW7cuIEDBw5g6NChxdZAqmVmZqJHjx4YO3YsmjVrBicnJyQlJcnnHHgQADZq1AivvPIKhBBwc3PD119/jfj4eJMcS3HKuu6KY+j32K1bt3Dx4kW9ZvBHWmV2ECppWLoQDzoYNmzYUAQEBMijrWJiYkTz5s2Fra2taNGihdi2bVuJnZbfeustvTxhQCfStm3byp1g//jjD2FhYSEPiy7O0qVLRevWrYWLi4uwtLQUdevWFcOHDxc//vhjselPnz4tBg4cKJycnIStra3o1KmT+PrrrxVpdu3aJbp16ybq1q0rrKyshJOTk3jyySeLHWl2+vTpYjtrF6e0UVpFnbRPnTol7OzsRFhYmGLb+/fvi3bt2gk/Pz+5Y3lYWJhwcHAQp06dEiEhIcLOzk64ubmJqVOniuzsbL39f/LJJ6Jjx47CwcFB2NnZiUaNGolnn31WHD9+XE4THBwsHn/88WLLX1KnZfVnXtQB8N///rdieUnX3c6dO0WPHj2Es7Oz0Gg0wtfXV4wcOVLs379fTlN0rGrFDRHdv3+/aNOmjdBoNAKA3rl82LFjx8T06dNFq1athJubm3wN9evXT+5Iq95XcUOUb968KRwdHUWPHj3kZbdv3xYLFiwQzZs3F/b29qJevXoiJCREL9/ilLYvNWM6LRf3WavvbSGEuHbtmhg7dqxwd3cX1tbWomnTpuKtt95SjJASovRzn5KSIiZNmiTq168vrK2tRd26dUWXLl3E4sWL5TRF187mzZvFrFmzRN26dYVGoxFPPvmk4jotsnPnTtGxY0dha2srHBwcRK9evcSRI0f00h0+fFj07NlTvvaLu++Luz5zc3PFP/7xD2Frayt2795d6vk0VmFhofDz89PrfLxixQrRpUsX4eHhIT+GIjw8XDH4QoiKH6MQJV9vxd13+fn54u233xatWrUStra2wtHRUTRr1kxMmTJF73ELJbl//7544YUXRMuWLYWzs7Ows7MTTZs2FQsXLhR3796V0507d0706dNHODk5CVdXV/HUU0/Jjxh5+DfFkPILoX/tG3LdFfedI0T5vseEEGL9+vXC2tpa8TiQR50kxEP1amS21q5di3nz5uHy5cvw9PSs0n1PmDABX3zxBbKzs6t0v0RUOVasWIElS5bgt99+g52dXXUX55Fx8OBB9OjRA//+978rpVn4YU8++SQaNmyo1xXhUca3pdcQBw4cwKxZs6o82CGi2mf69OlwcXEp8QnUVLMdOnQISUlJeOONN6q7KGalWvrwkOGKG1lDVJ0KCwtRWgWxJEllvrqC9AkhynwshiRJRp17W1tbbN68udyvMzBHOp2uzLeBW1k9mj9xt27dwqZNm/DYY49Vd1HMCpu0iKhCQkJCFMPe1cr7aAdSKmr2KI2vry+uXbtW4vrg4GC5Q3ptFRkZWeZgg5SUlBIHEtCjhwEPEVXIhQsX5IcVFkej0VTbowhqsqysLFy4cKHUNHfv3oWDg0OJ652cnCo8dLum+P333+Xn/5SkZcuW8sMOiRjwEBERUa3HTstERERU6z2aPbpUdDodfv/9dzg5OVXpO22IiKjmEUIgKysL3t7elfoKoPv37yMvL8/ofGxsbIp9f9qjhgEPHrQF+/j4VHcxiIioBrl+/bri9S2mdP/+ffj7OiItvewXWZdFq9UiJSXlkQ96GPDg7xfRBTs8BSvJGgAgqS8Ma2vlvI1qXjUEtLDO3y8QzfZVdi68V0/5F4H9TeXQSrs/lRG9VbZy3uKvO8p9F6qGZuYq0wv1m63VQzXz85Xp1UM91flbPFQLplN1AVN1CdPlFyjmJQtlDZrQ2770YaZlkpTnVipjWLRkqUpv/dC5UW+r+ktOUp9Hde2gRnWNWCjzE7Ya1bwyP2Gl3F+hvTK/fEdl+jwnZf733ZTluffQS65tApTX0OQmiYr5cGdlZ9DPs10V86sv9Fbu6xcXxbzdTcUsbDOUn7N1lvJztr6n/FK3ylZekxb5yvVSbkHJ8zrVD0RBgWpefX2r0quuf737R0Woty8o4wdKdZ0I1f2ll5+x94Ri36raiDLy1rt/1PeX6n7WuwdUhPqzeCg/ycZKtUq5L6H6LlGTVPeT+nPUozo2Sf0dr+7e+tD6Al0eDt7cYNBLTA2Vl5eHtPRCXEv2g7NTxWuR7mTp4NvuKvLy8hjwVHcBzEFRM5aVZA0r6UGPfslC1bPfQv3jpVqvvnks/76wrKyVF5mlRnnxWlkrb0wr1Q+dlaXyS8TCQnVjq7+01N9pkurGtSj9h1pIqvz05h9Kr84byrQ6Vd7qJkO9ssHEAY9URsCjWi9JD50b9bbqgKeM86h3jagDHktVwGOpDnhUZbNSXoPCWpm+0EaZ3lKjum4eugwt7ZU/4naq4MlZFTzZqb4qLO2VZbewVV/jUM7bKD9n/WteFfCojt1CFcRIlvmq+YfTqwIGC/XnqA4o1AGKKgDRu0ZVm0uq7aXSf5jV16h6e6EOSoy9J0rZd1l5690/eveXOuAp/YdZlJJekpTXt6R3nkrPW5JU95v6e0tvA9X9pf6OVwc86vUo5vgrgaOTBEeniu9HB3bTKMKAh4iIyEwVCh0KjRhLXWjKGsIajgEPERGRmdJBQIeKRzzGbFvbcFg6ERER1Xqs4SEiIjJTOuiM6sVl3Na1CwMeIiIiM1UoBAqNeCGCMdvWNmzSIiIiolqPNTxERERmip2WTYcBDxERkZnSQaCQAY9JsEmLiIiIaj3W8BAREZkpNmmZDgMeIiIiM8VRWqbDJi0iIiKq9VjDQ0REZKZ0MO71sXzs4N8Y8BAREZmpQiNHaRmzbW3DgIeIiMhMFQoY+bZ005WlpmMfHiIiIqr1WMNDRERkptiHx3QY8BAREZkpHSQUQjJqe3qATVpERERU67GGh4iIyEzpxIPJmO3pAQY8REREZqrQyCYtY7atbdikRURERLUea3iIiIjMFGt4TIcBDxERkZnSCQk6YcQoLSO2rW3YpEVERES1Hmt4iIiIzBSbtEyHAQ8REZGZKoQFCo1ojCk0YVlqOgY8REREZkoY2YdHsA+PjH14iIiIqNZjwENERGSmivrwGDMZ6rfffsO4cePg7u4Oe3t7tG7dGsnJyfJ6IQQiIyPh7e0NOzs7hISE4OzZs4o8cnNzMXPmTHh4eMDBwQFDhgzBjRs3jD4fxqjWgGfdunVo2bIlnJ2d4ezsjM6dO2PPnj3y+pp6UomIiEyhUFgYPRkiIyMDXbt2hbW1Nfbs2YNz585hxYoVqFOnjpxm+fLlWLlyJdasWYOkpCRotVr06dMHWVlZcpqIiAjs2LEDsbGxSExMRHZ2NgYNGoTCwurrVVStAU+DBg2wbNkyHD9+HMePH0fPnj0xdOhQOaipqSeViIioJnrzzTfh4+ODDRs24IknnoCfnx969eqFRo0aAXhQEbF69WosWLAAI0aMQGBgIGJiYnDv3j1s3boVAJCZmYn169djxYoV6N27N9q0aYMtW7bg9OnT2L9/f7UdW7UGPIMHD8aAAQPQpEkTNGnSBEuWLIGjoyOOHTtWo08qERGRKeggQQcLIybDmrR27dqF9u3b46mnnkK9evXQpk0bfPTRR/L6lJQUpKWlITQ0VF6m0WgQHByMo0ePAgCSk5ORn5+vSOPt7Y3AwEA5TXUwmz48hYWFiI2Nxd27d9G5c+dKPam5ubm4c+eOYiIiIjI3purDo/7Ny83NLXZ/V65cwbp16xAQEIC9e/fihRdewKxZs7Bp0yYAQFpaGgDA09NTsZ2np6e8Li0tDTY2NnB1dS0xTXWo9oDn9OnTcHR0hEajwQsvvIAdO3agRYsWlXpSly5dChcXF3ny8fEx8VERERGZDx8fH8Xv3tKlS4tNp9Pp0LZtW0RFRaFNmzaYMmUKJk+ejHXr1inSSZKy5kgIobdMrTxpKlO1P4enadOmOHnyJG7fvo0vv/wSYWFhSEhIkNdXxkmdP38+Zs+eLc/fuXOHQQ8REZmdinQ8Vm4vAADXr1+Hs7OzvFyj0RSb3svLCy1atFAsa968Ob788ksAgFarBfCgwsHLy0tOk56eLldQaLVa5OXlISMjQ1EhkZ6eji5dulT4WIxV7TU8NjY2aNy4Mdq3b4+lS5eiVatWeOeddxQn9WElndSS0hRHo9HII8OKJiIiInPzoA+PcRMAvd+8kgKerl274sKFC4plv/zyC3x9fQEA/v7+0Gq1iI+Pl9fn5eUhISFBDmbatWsHa2trRZrU1FScOXPm0Q541IQQyM3NrdEnlYiIqCZ66aWXcOzYMURFReHSpUvYunUrPvzwQ0yfPh3Ag1aXiIgIREVFYceOHThz5gwmTJgAe3t7jB07FgDg4uKC8PBwzJkzB99++y1OnDiBcePGISgoCL179662Y6vWJq1XX30V/fv3h4+PD7KyshAbG4uDBw8iLi5OcVIDAgIQEBCAqKioEk+qu7s73NzcMHfu3Go/qURERKagM/JdWjoIg9J36NABO3bswPz58/H666/D398fq1evxjPPPCOnmTdvHnJycjBt2jRkZGSgY8eO2LdvH5ycnOQ0q1atgpWVFUaNGoWcnBz06tULGzduhKWlZYWPxVjVGvDcvHkT48ePR2pqKlxcXNCyZUvExcWhT58+AGruSSUiIjIFU/XhMcSgQYMwaNCgEtdLkoTIyEhERkaWmMbW1hbR0dGIjo42eP+VpVoDnvXr15e6vqaeVCIiIlMoep5Oxbc3POCprcyuDw8RERGRqVX7sHQiIiIqXqGQUCgq/uwaY7atbRjwEBERmalCIzstF7JJS8YmLSIiIqr1WMNDRERkpnTCAjojRmnpKjBKq7ZiwENERGSm2KRlOmzSIiIiolqPNTxERERmSgfjRlrpTFeUGo8BDxERkZky/sGDbMgpwjNBREREtR5reIiIiMyU8e/SYr1GEQY8REREZkoHCToY04eHT1ouwoCHiIjITLGGx3R4JoiIiKjWYw0PERGRmTL+wYOs1yjCgIeIiMhM6YQEnTHP4eHb0mUM/YiIiKjWYw0PERGRmdIZ2aTFBw/+jQEPERGRmTL+bekMeIrwTBAREVGtxxoeIiIiM1UICYVGPDzQmG1rGwY8REREZopNWqbDM0FERES1Hmt4iIiIzFQhjGuWKjRdUWo8BjxERERmik1apsOAh4iIyEzx5aGmwzNBREREtR5reIiIiMyUgASdEX14BIelyxjwEBERmSk2aZkOzwQRERHVeqzheZgkPZgAQCeU6wpVg/sKChSzwslOmZX4e3t1gC0slfP5DsoqR9sM5bzFvTzlBtbWqrLlKuctVDu0VO9QVXb1samIgnzFvGRjI/9fl6csm2RRevWpUJ9XNUl9snSlp9ffgWpeVR5D8lefF0v1tqpjsarc20lIqmMp41QaQqc+TyqWkgl3Vh56xypKX//wZ6NTfaZlXXMqQnV/6CcQpc+r7zf1/lXXnPr+U99DwphxxWVd7+r1Kvr3q7Iw6rLplV21vaQ6N5L1Q/eM+ju1jLJBvS/1d5FGo0yvyl9dFpGr3t5GMY+H1+tU38mVSCekMu/PsranBxjwEBERmalCI9+Wbsy2tQ3PBBEREdV6rOEhIiIyU2zSMh0GPERERGZKBwvojGiMMWbb2oZngoiIiGo91vAQERGZqUIhodCIZiljtq1tGPAQERGZKfbhMZ1qbdJaunQpOnToACcnJ9SrVw/Dhg3DhQsXFGkmTJgASZIUU6dOnRRpcnNzMXPmTHh4eMDBwQFDhgzBjRs3qvJQiIiITE78723pFZ0En7Qsq9YzkZCQgOnTp+PYsWOIj49HQUEBQkNDcffuXUW6fv36ITU1VZ7+85//KNZHRERgx44diI2NRWJiIrKzszFo0CAUlvFAPSIiIno0VGuTVlxcnGJ+w4YNqFevHpKTk9G9e3d5uUajgVarLTaPzMxMrF+/Hps3b0bv3r0BAFu2bIGPjw/279+Pvn37Vt4BEBERVaJCSCg04gWgxmxb25hVXVdmZiYAwM3NTbH84MGDqFevHpo0aYLJkycjPT1dXpecnIz8/HyEhobKy7y9vREYGIijR49WTcGJiIgqgU783Y+nYlN1H4H5MJtOy0IIzJ49G926dUNgYKC8vH///njqqafg6+uLlJQUvPbaa+jZsyeSk5Oh0WiQlpYGGxsbuLq6KvLz9PREWlpasfvKzc1Fbu7f75+6c+dO5RwUERERmQWzCXhmzJiBU6dOITExUbF89OjR8v8DAwPRvn17+Pr6Yvfu3RgxYkSJ+QkhIKlfMPg/S5cuxaJFi0xTcCIiokpS1PnYmO3pAbM4EzNnzsSuXbtw4MABNGjQoNS0Xl5e8PX1xcWLFwEAWq0WeXl5yMjIUKRLT0+Hp6dnsXnMnz8fmZmZ8nT9+nXTHAgREZEJ6SAZPRkiMjJSb2T0w31ohRCIjIyEt7c37OzsEBISgrNnzyryMNeR09Ua8AghMGPGDGzfvh3fffcd/P39y9zm1q1buH79Ory8vAAA7dq1g7W1NeLj4+U0qampOHPmDLp06VJsHhqNBs7OzoqJiIiIgMcff1wxMvr06dPyuuXLl2PlypVYs2YNkpKSoNVq0adPH2RlZclpzHXkdLU2aU2fPh1bt27FV199BScnJ7nPjYuLC+zs7JCdnY3IyEj84x//gJeXF65evYpXX30VHh4eGD58uJw2PDwcc+bMgbu7O9zc3DB37lwEBQXJo7aIiIhqoup40rKVlVWxI6OFEFi9ejUWLFggdymJiYmBp6cntm7diilTppj1yOlqreFZt24dMjMzERISAi8vL3natm0bAMDS0hKnT5/G0KFD0aRJE4SFhaFJkyb4/vvv4eTkJOezatUqDBs2DKNGjULXrl1hb2+Pr7/+GpaWltV1aEREREYz5qGDD/f/uXPnjmJ6eOCO2sWLF+Ht7Q1/f388/fTTuHLlCgAgJSUFaWlpilHRGo0GwcHB8qhocx45Xa01PEKUPl7Ozs4Oe/fuLTMfW1tbREdHIzo62lRFIyIiqjV8fHwU8wsXLkRkZKReuo4dO2LTpk1o0qQJbt68icWLF6NLly44e/as3Aqj7h/r6emJa9euAUCFRk5XFbMZpUVERERKOhj5Lq3/dVq+fv26or+qRqMpNn3//v3l/wcFBaFz585o1KgRYmJi5Nc6qUdAlzYq2pA0lc0sRmkRERGRPmHkCC3xv4BHPVCnpIBHzcHBAUFBQbh48aLcr0ddU/PwqOiKjJyuKgx4iIiIzJRxT1k2rnYIeDDE/Pz58/Dy8oK/vz+0Wq1iVHReXh4SEhLkUdEVGTldVdikRURERACAuXPnYvDgwWjYsCHS09OxePFi3LlzB2FhYZAkCREREYiKikJAQAACAgIQFRUFe3t7jB07FoB5j5xmwENERGSmqvpJyzdu3MCYMWPw559/om7duujUqROOHTsGX19fAMC8efOQk5ODadOmISMjAx07dsS+ffv0Rk5bWVlh1KhRyMnJQa9evbBx48ZqHznNgIeIiMhMGdssZei2sbGxpa6XJAmRkZHFjvAqYq4jp9mHh4iIiGo91vAQERGZqYq8D0u9PT3AgIeIiMhMVXWTVm3GJi0iIiKq9VjDQ0REZKZYw2M6DHiIiIjMFAMe02GTFhEREdV6rOEhIiIyU6zhMR0GPERERGZKwLih5cJ0RanxGPAQERGZKdbwmA778BAREVGtxxoeIiIiM8UaHtNhwENERGSmGPCYDpu0iIiIqNZjDQ8REZGZYg2P6TDgISIiMlNCSBBGBC3GbFvbsEmLiIiIaj3W8BAREZkpHSSjHjxozLa1DQMeIiIiM8U+PKbDJi0iIiKq9VjDQ0REZKbYadl0GPAQERGZKTZpmQ4DHiIiIjPFGh7TMaoPT25urqnKQURERFRpDAp49u7diwkTJqBRo0awtraGvb09nJycEBwcjCVLluD333+vrHISERE9csT/mrQqOrGG52/lCnh27tyJpk2bIiwsDBYWFnj55Zexfft27N27F+vXr0dwcDD279+Pxx57DC+88AL++OOPyi43ERFRrScACGHEVN0HYEbK1YcnKioKb7/9NgYOHAgLC/0YadSoUQCA3377De+88w42bdqEOXPmmLakRERERBVUroDnxx9/LFdm9evXx/Lly40qEBERET2ggwSJT1o2iXL34YmIiMCZM2cqsyxERET0kKJRWsZM9EC5A564uDi0atUKTzzxBD788EPcuXOnMstFREREZDLlDnj++9//4tChQwgKCsLcuXPh7e2NZ599FocOHarM8hERET2yjBmhZexDC2sbg4ald+3aFevXr0daWhqio6Nx9epVhISEICAgAMuWLeOwdCIiIhMyaoTW/yZ6oEIPHrS3t8fEiRNx6NAhXLx4EaNGjcLy5cvh5+dn4uIRERERGc+oJy3fvXsXCQkJSEhIwO3bt9GoUSODtl+6dCk6dOgAJycn1KtXD8OGDcOFCxcUaYQQiIyMhLe3N+zs7BASEoKzZ88q0uTm5mLmzJnw8PCAg4MDhgwZghs3bhhzaERERNWOnZZNp0IBz6FDhzBx4kRotVq8+OKLaNKkCQ4fPozz588blE9CQgKmT5+OY8eOIT4+HgUFBQgNDcXdu3flNMuXL8fKlSuxZs0aJCUlQavVok+fPsjKypLTREREYMeOHYiNjUViYiKys7MxaNAgFBYWVuTwiIiIzAIDHtMp98tDb9y4gZiYGGzcuBGXL19Gx44dsWrVKjz99NNwdHSs0M7j4uIU8xs2bEC9evWQnJyM7t27QwiB1atXY8GCBRgxYgQAICYmBp6enti6dSumTJmCzMxMrF+/Hps3b0bv3r0BAFu2bIGPjw/279+Pvn37VqhsRERE1U0nJEh8W7pJlDvg8fPzg7u7O8aPH4/w8HA0b97c5IXJzMwEALi5uQEAUlJSkJaWhtDQUDmNRqNBcHAwjh49iilTpiA5ORn5+fmKNN7e3ggMDMTRo0eLDXhyc3MVLz7lEHsiIqLardwBz+eff44hQ4bAyqrcmxhECIHZs2ejW7duCAwMBACkpaUBADw9PRVpPT09ce3aNTmNjY0NXF1d9dIUba+2dOlSLFq0yNSHQEREZFLGjrTiKK2/lTt6KWpSKpKeno709HTodDrF8pYtW1aoIDNmzMCpU6eQmJiot06SlFVyQgi9ZWqlpZk/fz5mz54tz9+5cwc+Pj4VKDUREVHleRDwVLxZigHP3wyurklOTkZYWBjOnz8P8b8zKUmSHGBUpKPwzJkzsWvXLhw6dAgNGjSQl2u1WgAPanG8vLzk5enp6XKtj1arRV5eHjIyMhS1POnp6ejSpUux+9NoNNBoNAaXk4iIiGomg0dpTZw4EU2aNMHRo0dx5coVpKSkKP41hBACM2bMwPbt2/Hdd9/B399fsd7f3x9arRbx8fHysry8PCQkJMjBTLt27WBtba1Ik5qaijNnzpQY8BAREdUEHKVlOgbX8KSkpGD79u1o3Lix0TufPn06tm7diq+++gpOTk5ynxsXFxfY2dlBkiREREQgKioKAQEBCAgIQFRUFOzt7TF27Fg5bXh4OObMmQN3d3e4ublh7ty5CAoKkkdtERER1UTif5Mx29MDBgc8vXr1ws8//2ySgGfdunUAgJCQEMXyDRs2YMKECQCAefPmIScnB9OmTUNGRgY6duyIffv2wcnJSU6/atUqWFlZYdSoUcjJyUGvXr2wceNGWFpaGl1GIiIiqvkMDng+/vhjhIWF4cyZMwgMDIS1tbVi/ZAhQ8qdlyhHbypJkhAZGYnIyMgS09ja2iI6OhrR0dHl3jcREZG5M7ZZik1afzO4D8/Ro0eRmJiIRYsW4amnnsKwYcPkafjw4ZVRRiIiokeTMMFUQUuXLpW7lsjFqcGvezI44Jk1axbGjx+P1NRU6HQ6xcRXORAREZmQsR2WK1jDk5SUhA8//FDvUTM1+XVPBgc8t27dwksvvaT3MEAiIiKq+bKzs/HMM8/go48+UjzuRf26p8DAQMTExODevXvYunUrAMive1qxYgV69+6NNm3aYMuWLTh9+jT2799fXYcEoAIBz4gRI3DgwIHKKAsRERE9pOhJy8ZMhpo+fToGDhyoN9K5rNc9ASjzdU/VyeBOy02aNMH8+fORmJiIoKAgvU7Ls2bNMlnhiIiIHmWm6rSsfmdkSQ/gjY2NxU8//YSkpCS9dZX1uqeqUqFRWo6OjkhISEBCQoJinSRJNTrgkaxtIFnYPJixUF1g6neIqealnDzFvLD6u/JMc1vZblloo8zbJlv5eg6psIyQPD9fOa8uq+p1H3rroRyuL6n+BBB5ymOBpKoI1P2d3sLGRrlOqPYtiVLXC1O36arLWhbVowseLo+kfqyBTnUsVgZ+CVkaVjZhoUyv/pyMYWxWxr6BWX1Z6FEXsIxXyZRKfd7V15ypn72vyl+orxsV9XVm0ntCfT+WtV51/0iq746yjkW9Xr29Xvr8gr/T2lirVqryUn3nioICKBOoyvrQC6KLWw/195xFGffnw+Ur4zyYI/XrkxYuXKg3+vn69et48cUXsW/fPtja2paYl6lf91RVKvTgQSIiIqoCRnQ8lrfHg2DG2dlZXlxc7U5ycjLS09PRrl07eVlhYSEOHTqENWvW4MKFCwBM/7qnqmJwHx4iIiKqGqbqw+Ps7KyYigt4evXqhdOnT+PkyZPy1L59ezzzzDM4efIkHnvssRr9uqdy1fAsW7YMs2bNgr29fZlpf/jhB/z5558YOHCg0YUjIiKiquHk5ITAwEDFMgcHB7i7u8vLa/LrnsoV8Jw7dw4NGzbEU089hSFDhqB9+/aoW7cuAKCgoADnzp1DYmIitmzZgtTUVGzatKlSC01ERPRIMLOXadXk1z2VK+DZtGkTTp06hffeew/PPPMMMjMzYWlpCY1Gg3v37gEA2rRpg+effx5hYWHFVpURERGRYar71RIHDx5UzNfk1z2Vu9Nyy5Yt8cEHH+D999/HqVOncPXqVeTk5MDDwwOtW7eGh4dHZZaTiIiIqMIMHqUlSRJatWqFVq1aVUZ5iIiI6GE1bxS8WTI44CEiIqKqUd1NWrUJAx4iIiJzZWadlqvC1atXcfjwYVy9ehX37t1D3bp10aZNG3Tu3LnUByKWhQEPERERVbutW7fi3XffxY8//oh69eqhfv36sLOzw19//YXLly/D1tYWzzzzDP75z3/C19fX4PwZ8BAREZkt6X+TMdubv7Zt28LCwgITJkzA559/joYNGyrW5+bm4vvvv0dsbCzat2+PtWvX4qmnnjJoHwx4iIiIzNUj0qT1xhtvlPrAYo1Gg5CQEISEhGDx4sUVes2VyV4tcfnyZfTs2dNU2REREdEjYuDAgfjjjz/KldbDwwMdOnQweB8mC3iys7P13p5ORERERhAmmGqI+vXrY+TIkdizZw+EMH3By92k9e6775a6/rfffjO6MERERPQQE70tvSaIiYnBhg0bMHjwYGi1WkycOBETJkxAo0aNTJJ/uQOeiIgIeHl5wcbGptj1eXl5JikQERERPXrGjBmDMWPG4Pr16/jkk08QExODqKgodO/eHc899xz+8Y9/GDUsvdxNWr6+vli1ahVSUlKKnXbv3l3hQhAREZE+IYyfahofHx8sXLgQV65cwb59+1C/fn08//zz8PLywrRp0yqcb7kDnnbt2iE5ObnE9ZIkVUqbGxER0SPrEerDU5xevXphy5Yt2LRpEywsLPDBBx9UOK9yN2m9/vrr8pvRi9OiRYsKDRMjIiIiUrt69So2bNiAmJgY3LhxAz169EB4eHiF8yt3wNOiRYtS11tbW1foyYdERERUgkeo0zIA3L9/H//+97+xYcMGHDp0CPXr18eECRMwceJE+Pn5GZU3HzxIRERkpiTxYDJm+5ri+eefx+eff4779+9j6NCh2L17N0JDQyFJpgnaGPAQERGZq0fkScsAcOzYMSxatAjjx4+Hm5ubyfNnwENERETV7tSpU6WuT01NxebNmzFv3rwK5c+Ah4iIyFw9Yn14AGDSpEnFLr927Rp+/PHHCgc8Br9aYtOmTcjNzdVbnpeXh02bNlWoEERERFSMR3BYekZGhmL6888/8eOPP+LgwYN4++23K5yvwTU8EydORL9+/VCvXj3F8qysLEycOBHPPvtshQtDREREj7YdO3YUu3zJkiXYuXMnpkyZUqF8Da7hEUIU22P6xo0bcHFxqVAhiIiIqBiPYA1PScaMGYODBw9WePty1/C0adMGkiRBkiT06tULVlZ/b1pYWIiUlBT069evwgUhIiIilUdolFZZfv75Z7Rp06bC25c74Bk2bBgA4OTJk+jbty8cHR3ldTY2NvDz88M//vGPCheEiIiIaPbs2XrL0tLSsGvXLgwcOFCxfuXKleXOt9wBz8KFCwEAfn5+GD16tFFvLCUiIqJyeARHaZ04caLY5R06dEB6ejrS09MBwOAHEhrcaTksLMzQTYiIiKgCHqUnLRc5cOBApeRrcMBjYWFRalRVWFhoVIGIiIiITM3gUVrbt29XTNu2bcMrr7wCLy8vfPjhhwbldejQIQwePBje3t6QJAk7d+5UrJ8wYYLcUbpo6tSpkyJNbm4uZs6cCQ8PDzg4OGDIkCG4ceOGoYdFRERkfh6RUVr9+vXD0aNHy0yXlZWFN998E++9957B+zC4hqeo8/LDRo4ciccffxzbtm0z6NXtd+/eRatWrTBx4sQSOzz369cPGzZskOdtbGwU6yMiIvD1118jNjYW7u7umDNnDgYNGoTk5GRYWlqWuyxERERUPZ566imMGjUKTk5OGDJkCNq3bw9vb2/Y2toiIyMD586dQ2JiIv7zn/9g0KBBeOuttwzeh8leLdGxY0dMnjzZoG369++P/v37l5pGo9FAq9UWuy4zMxPr16/H5s2b0bt3bwDAli1b4OPjg/3796Nv374GlYeIiMicSDCyD4/JSlK5wsPDMX78eHzxxRfYtm0bPvroI9y+fRvAg87JLVq0QN++fZGcnIymTZtWaB8mCXhycnIQHR2NBg0amCI7hYMHD6JevXqoU6cOgoODsWTJEvkpz8nJycjPz0doaKic3tvbG4GBgTh69GiJAU9ubq7i9Rh37twxebmJiIio/GxsbDB27FiMHTsWwINKjZycHLi7u8Pa2tro/A0OeFxdXRWdloUQyMrKgr29PbZs2WJ0gR7Wv39/PPXUU/D19UVKSgpee+019OzZE8nJydBoNEhLS4ONjQ1cXV0V23l6eiItLa3EfJcuXYpFixaZtKxEREQm9wgOSy/i4uJi0jc4GBzwrF69WjFvYWGBunXromPHjnqBh7FGjx4t/z8wMBDt27eHr68vdu/ejREjRpS4XUmvvygyf/58xYOL7ty5Ax8fH9MUmoiIyFT4pGWTqVHP4fHy8oKvry8uXrwIANBqtcjLy0NGRoYi2EpPT0eXLl1KzEej0UCj0VR6eYmIiMg8VKgPT0ZGBtavX4/z589DkiQ0b94cEydOhJubm6nLp3Dr1i1cv34dXl5eAIB27drB2toa8fHxGDVqFAAgNTUVZ86cwfLlyyu1LERERJWONTwmY/BzeBISEuDn54d3330XGRkZ+Ouvv/Duu+/C398fCQkJBuWVnZ2NkydP4uTJkwCAlJQUnDx5Er/++iuys7Mxd+5cfP/997h69SoOHjyIwYMHw8PDA8OHDwfwoH0vPDwcc+bMwbfffosTJ05g3LhxCAoKkkdtERER1VRFT1o2ZqopCgoKKjV/g2t4pk+fjtGjR2PdunXyc24KCwsxbdo0TJ8+HWfOnCl3XsePH0ePHj3k+aJ+NWFhYVi3bh1Onz6NTZs24fbt2/Dy8kKPHj2wbds2ODk5ydusWrUKVlZWGDVqFHJyctCrVy9s3LiRz+AhIiKqQby8vBAWFobw8HA0b97c5PkbHPBcvnwZX375pSKgsLS0xOzZs7Fp0yaD8goJCYEQJYefe/fuLTMPW1tbREdHIzo62qB9ExERmb1HqElr9uzZ2LhxI1atWoUnnngCzz33HEaPHg1HR0eT5G9wk1bbtm1x/vx5veXnz59H69atTVEmIiIiAh6ZV0sAD0ZQX7hwAQcPHkSzZs0QEREBLy8vTJw4EUeOHDE6f4NreGbNmoUXX3wRly5dkt9rdezYMbz33ntYtmwZTp06Jadt2bKl0QUkIiKiR8eTTz6JJ598EmvWrEFsbCw2btyIJ598EgEBAQgPD8e8efMqlK/BAc+YMWMAoNgdjhkzBpIkyc/B4ZvTiYiIKs7Yjsc1qdOymoODA8LDwxEeHo7du3fj2Wefxfz586su4ElJSanQjoiIiMhAj/CTlu/du4dt27Zhw4YNOHLkCBo1aoSXX365wvkZHPBcu3YNXbp0gZWVctOCggIcPXoU3bt3r3BhiIiI6CGPUKflIocPH8aGDRvwxRdfoLCwECNHjsTixYuNji8MDnh69OiB1NRU+QWeRTIzM9GjRw82YxEREZHBoqKisHHjRly+fBnt27fHW2+9hTFjxsDZ2dkk+Rsc8JT0nqpbt27BwcHBJIUiIiKiR6sPz6pVqzBu3DiEh4cjMDDQ5PmXe1j6iBEjMGLECEiShAkTJsjzI0aMwNChQ9G3b99S319FREREBqriYenr1q1Dy5Yt4ezsDGdnZ3Tu3Bl79uz5uzhCIDIyEt7e3rCzs0NISAjOnj2ryCM3NxczZ86Eh4cHHBwcMGTIENy4caPMff/+++9YtWpVuYOdoKAgXL9+vdzHVu6Ap+g17UIIODk5yfMuLi7QarV4/vnnsWXLlnLvmIiIiMxLgwYNsGzZMhw/fhzHjx9Hz549MXToUDmoWb58OVauXIk1a9YgKSkJWq0Wffr0QVZWlpxHREQEduzYgdjYWCQmJiI7OxuDBg0qs8uLtbW1QWW9evUq8vPzy52+3E1aGzZsAAD4+flh7ty5bL4iIiKqbMa+D8vAbQcPHqyYX7JkCdatW4djx46hRYsWWL16NRYsWIARI0YAAGJiYuDp6YmtW7diypQpyMzMxPr167F582b5nZZbtmyBj48P9u/fj759+xpxMMYx+EnLCxcuZLBDRERUFUzUpHXnzh3FlJubW+auCwsLERsbi7t376Jz585ISUlBWloaQkND5TQajQbBwcE4evQoACA5ORn5+fmKNN7e3ggMDJTTVBeDOy37+/sX22m5yJUrV4wqEBEREZmWj4+PYn7hwoWIjIwsNu3p06fRuXNn3L9/H46OjtixYwdatGghByyenp6K9J6enrh27RoAIC0tDTY2NnB1ddVLk5aWZqKjqRiDA56IiAjFfH5+Pk6cOIG4uDijHghEREREKiZ6Ds/169cVw7s1Gk2JmzRt2hQnT57E7du38eWXXyIsLAwJCQnyenWlR0mjtw1NU9kMDnhefPHFYpe/9957OH78uNEFIiIiogdMNSy9aNRVedjY2KBx48YAgPbt2yMpKQnvvPMO/vnPfwJ4UIvj5eUlp09PT5drfbRaLfLy8pCRkaGo5UlPT6/2kdwG9+EpSf/+/fHll1+aKjsiIiIyA0II5Obmwt/fH1qtFvHx8fK6vLw8JCQkyMFMu3btYG1trUiTmpqKM2fOmCTg+e233+T/f/DBB3rNa6UxuIanJF988QXc3NxMlR0RERFVsVdffRX9+/eHj48PsrKyEBsbi4MHDyIuLg6SJCEiIgJRUVEICAhAQEAAoqKiYG9vj7FjxwJ48Aib8PBwzJkzB+7u7nBzc8PcuXMRFBQkj9qqiLS0NCxZsgQff/wxcnJyAEDeZ3kZHPC0adNG0Q4nhEBaWhr++OMPrF271tDsiIiIqCRV/C6tmzdvYvz48UhNTYWLiwtatmyJuLg49OnTBwAwb9485OTkYNq0acjIyEDHjh2xb98+ODk5yXmsWrUKVlZWGDVqFHJyctCrVy9s3LgRlpaWpe779u3bmD59Ovbt2wdra2u88sormDFjBiIjI/H222/j8ccfxyeffGLwKShicMAzbNgwxbyFhQXq1q2LkJAQNGvWrMIFISIiIqWqfrXE+vXrS89PkhAZGVniCC8AsLW1RXR0NKKjow3a96uvvopDhw4hLCwMcXFxeOmllxAXF4f79+9jz549CA4ONig/NYMDnoULFxq1QyIiIiK13bt3Y8OGDejduzemTZuGxo0bo0mTJli9erVJ8q9QH57CwkLs3LkT58+fhyRJaNGiBYYMGVJmdRUREREZqAa9ANQYv//+O1q0aAEAeOyxx2Bra4vnnnvOZPkbHPBcunQJAwYMwG+//YamTZtCCIFffvkFPj4+2L17Nxo1amSywhERET3SqrgPT3XS6XSK92lZWlqa9M0OBgc8s2bNQqNGjXDs2DF5VNatW7cwbtw4zJo1C7t37zZZ4YiIiOjRIITAhAkT5Ici3r9/Hy+88IJe0LN9+/YK5W9wwJOQkKAIdgDA3d0dy5YtQ9euXStUCCIiItJX1Z2Wq1NYWJhifty4cSbN3+CAR6PRKF4DXyQ7Oxs2NjYmKRQRERHhkWrS2rBhQ6Xmb/CTlgcNGoTnn38eP/zwA4QQEELg2LFjeOGFFzBkyJDKKCMRERGRUQwOeN599100atQInTt3hq2tLWxtbdG1a1c0btwY77zzTmWUkYiI6JFU1KRlzEQPGNykVadOHXz11Ve4dOkSzp8/DyEEWrRoIb9ojIiIiEzkEWrSqmwVfpdW48aNGeQQERFRjWCyl4cSERGRibGGx2QY8BAREZmpR2lYemVjwPMQUVgAoftfP+6H3ggPAJJ6yL2uUDlvpVwvHn7NhlBecXnOyrzVfcets5XzOjtrxbxFfoFy83s5MEihquySujwqQqect/j7shGqskgWqrzU25obnfKzkaxLuSXUx1aoOjZj7yZDT1UZH1upmxqxLQBYlPUtauyXrKEFfPgeU38uBarr3UI1VkNXxolXXxPq/NXbSxaqWeV6oXf/GTx2pOLU+1Ldn+r7V+hK/yD17veyqL8PSjt21XnSK4s6LyvV56S+tx1sVfmrjl29vep7W1Ee9fd/ZWINj8lU4Z1GREREVD0MDnhee+01FKr/QgGQmZmJMWPGmKRQREREhL9reIyZCEAFAp5Nmzaha9euuHz5srzs4MGDCAoKwtWrV01ZNiIiokcan8NjOgYHPKdOnYKfnx9at26Njz76CC+//DJCQ0MxYcIEJCYmVkYZiYiIiIxicDdLFxcXxMbGYsGCBZgyZQqsrKywZ88e9OrVqzLKR0RE9Ohip2WTqVCn5ejoaKxatQpjxozBY489hlmzZuHnn382ddmIiIgeaWzSMh2DA57+/ftj0aJF2LRpEz799FOcOHEC3bt3R6dOnbB8+fLKKCMRERGRUQwOeAoKCnDq1CmMHDkSAGBnZ4d169bhiy++wKpVq0xeQCIiokcWR2mZjMEBT3x8PLy9vfWWDxw4EKdPnzYor0OHDmHw4MHw9vaGJEnYuXOnYr0QApGRkfD29oadnR1CQkJw9uxZRZrc3FzMnDkTHh4ecHBwwJAhQ3Djxg1DD4uIiMj8MOAxGZM+eNDDw8Og9Hfv3kWrVq2wZs2aYtcvX74cK1euxJo1a5CUlAStVos+ffogKytLThMREYEdO3YgNjYWiYmJyM7OxqBBg4p9VhARERE9mgwepWVhYQGplMe+GxJo9O/fH/379y92nRACq1evxoIFCzBixAgAQExMDDw9PbF161ZMmTIFmZmZWL9+PTZv3ozevXsDALZs2QIfHx/s378fffv2NeDIiIiIzIsEo94iY9S2tY3BAc+OHTsU8/n5+Thx4gRiYmKwaNEikxUsJSUFaWlpCA0NlZdpNBoEBwfj6NGjmDJlCpKTk5Gfn69I4+3tjcDAQBw9erTEgCc3Nxe5ubny/J07d0xWbiIiIpPhsHSTMTjgGTp0qN6ykSNH4vHHH8e2bdsQHh5ukoKlpaUBADw9PRXLPT09ce3aNTmNjY0NXF1d9dIUbV+cpUuXmjQ4IyIiqgx8W7rpmKwPT8eOHbF//35TZSdTN58JIUptUitPmvnz5yMzM1Oerl+/bpKyEhERkXkyScCTk5OD6OhoNGjQwBTZAQC0Wi0A6NXUpKeny7U+Wq0WeXl5yMjIKDFNcTQaDZydnRUTERGR2eEoLZMxOOBxdXWFm5ubPLm6usLJyQmffPIJ3nrrLZMVzN/fH1qtFvHx8fKyvLw8JCQkoEuXLgCAdu3awdraWpEmNTUVZ86ckdMQERHVaAx2TMLgPjyrV69WzFtYWKBu3bro2LGjXl+asmRnZ+PSpUvyfEpKCk6ePAk3Nzc0bNgQERERiIqKQkBAAAICAhAVFQV7e3uMHTsWwIP3eoWHh2POnDlwd3eHm5sb5s6di6CgIHnUFhEREZHBAU9YWFiJ606ePInWrVuXO6/jx4+jR48e8vzs2bPlfWzcuBHz5s1DTk4Opk2bhoyMDHTs2BH79u2Dk5OTvM2qVatgZWWFUaNGIScnB7169cLGjRthaWlp6KERERGZFXZaNh2DAx61zMxMfPrpp/j444/x888/G/QcnpCQEAhR8qchSRIiIyMRGRlZYhpbW1tER0cjOjrakGITERGZPw5LN5kKd1r+7rvvMG7cOHh5eSE6OhoDBgzA8ePHTVk2IiIiIpMwqIbnxo0b2LhxIz755BPcvXsXo0aNQn5+Pr788ku0aNGisspIRET0SGKTlumUu4ZnwIABaNGiBc6dO4fo6Gj8/vvvbEYiIiKqTByWbjLlruHZt28fZs2ahalTpyIgIKAyy0RERERkUuWu4Tl8+DCysrLQvn17dOzYEWvWrMEff/xRmWUjIiJ6pBU1aRkz0QPlDng6d+6Mjz76CKmpqZgyZQpiY2NRv3596HQ6xMfHIysrqzLLSURE9Ohhk5bJGDxKy97eHpMmTUJiYiJOnz6NOXPmYNmyZahXrx6GDBlSGWUkIiJ6NDHgMRmj3qXVtGlTLF++HDdu3MBnn31mqjIRERERmZTRDx4EAEtLSwwbNgzDhg0zRXZEREQEDks3JZMEPERERFQJ+KRlkzGqSYuIiIioJmANDxERkZmShIBUyjsny7M9PcAaHiIiInNVxaO0li5dig4dOsDJyQn16tXDsGHDcOHCBWWRhEBkZCS8vb1hZ2eHkJAQnD17VpEmNzcXM2fOhIeHBxwcHDBkyBDcuHHD0KM3KQY8REREBABISEjA9OnTcezYMcTHx6OgoAChoaG4e/eunGb58uVYuXIl1qxZg6SkJGi1WvTp00fxPL6IiAjs2LEDsbGxSExMRHZ2NgYNGoTCwsLqOCwAbNIiIiIyW1U9SisuLk4xv2HDBtSrVw/Jycno3r07hBBYvXo1FixYgBEjRgAAYmJi4Onpia1bt2LKlCnIzMzE+vXrsXnzZvTu3RsAsGXLFvj4+GD//v3o27dvxQ/ICKzhISIiMlfV/ODBzMxMAICbmxsAICUlBWlpaQgNDZXTaDQaBAcH4+jRowCA5ORk5OfnK9J4e3sjMDBQTlMdWMNDRERUy925c0cxr9FooNFoSt1GCIHZs2ejW7duCAwMBACkpaUBADw9PRVpPT09ce3aNTmNjY0NXF1d9dIUbV8dWMNDRERkpkz18lAfHx+4uLjI09KlS8vc94wZM3Dq1Kli36QgSZJiXgiht0ytPGkqE2t4iIiIzJWJHjx4/fp1ODs7y4vLqt2ZOXMmdu3ahUOHDqFBgwbycq1WC+BBLY6Xl5e8PD09Xa710Wq1yMvLQ0ZGhqKWJz09HV26dDHiYIzDGh4iIiIzZaoaHmdnZ8VUUsAjhMCMGTOwfft2fPfdd/D391es9/f3h1arRXx8vLwsLy8PCQkJcjDTrl07WFtbK9KkpqbizJkz1RrwsIaHiIiIAADTp0/H1q1b8dVXX8HJyUnuc+Pi4gI7OztIkoSIiAhERUUhICAAAQEBiIqKgr29PcaOHSunDQ8Px5w5c+Du7g43NzfMnTsXQUFB8qit6sCAh4iIyFxV8bu01q1bBwAICQlRLN+wYQMmTJgAAJg3bx5ycnIwbdo0ZGRkoGPHjti3bx+cnJzk9KtWrYKVlRVGjRqFnJwc9OrVCxs3boSlpaURB2McBjxERERmrCrfeC7K8SoKSZIQGRmJyMjIEtPY2toiOjoa0dHRJiydcdiHh4iIiGo91vAQERGZKyEeTMZsTwAY8BAREZmtqn61RG3GJi0iIiKq9VjDQ0REZK6qeJRWbcaAh4iIyExJugeTMdvTA2zSIiIiolqPNTxERETmik1aJsOAh4iIyExxlJbpMOAhIiIyV3wOj8mwDw8RERHVeqzhISIiMlNs0jIdBjxERETmip2WTYZNWkRERFTrsYaHiIjITLFJy3TMuoYnMjISkiQpJq1WK68XQiAyMhLe3t6ws7NDSEgIzp49W40lJiIiMqGiUVrGTATAzAMeAHj88ceRmpoqT6dPn5bXLV++HCtXrsSaNWuQlJQErVaLPn36ICsrqxpLTERERObG7Ju0rKysFLU6RYQQWL16NRYsWIARI0YAAGJiYuDp6YmtW7diypQpVV1UIiIik2KTlumYfQ3PxYsX4e3tDX9/fzz99NO4cuUKACAlJQVpaWkIDQ2V02o0GgQHB+Po0aOl5pmbm4s7d+4oJiIiIrMjTDARADMPeDp27IhNmzZh7969+Oijj5CWloYuXbrg1q1bSEtLAwB4enoqtvH09JTXlWTp0qVwcXGRJx8fn0o7BiIiIqp+Zt2k1b9/f/n/QUFB6Ny5Mxo1aoSYmBh06tQJACBJkmIbIYTeMrX58+dj9uzZ8vydO3cY9BARkdlhk5bpmHUNj5qDgwOCgoJw8eJFuV+PujYnPT1dr9ZHTaPRwNnZWTERERGZHZ0wfiIANSzgyc3Nxfnz5+Hl5QV/f39otVrEx8fL6/Py8pCQkIAuXbpUYymJiIhMhH14TMasm7Tmzp2LwYMHo2HDhkhPT8fixYtx584dhIWFQZIkREREICoqCgEBAQgICEBUVBTs7e0xduzY6i46ERERmRGzDnhu3LiBMWPG4M8//0TdunXRqVMnHDt2DL6+vgCAefPmIScnB9OmTUNGRgY6duyIffv2wcnJqZpLTkREZDwJRvbhMVlJaj6zDnhiY2NLXS9JEiIjIxEZGVk1BSIiIqpKxj4tmU9altWoPjxEREREFWHWNTxERESPMg5LNx0GPERERObK2JFWDHhkbNIiIiKiWo81PERERGZKEgKSER2Pjdm2tmHA8xDJ0gqSxYNTIgoLlSvVF421del56XTy//NclKe5UL2patygVXZ+GQVVbWCt+hjzytje0lI5rz5WK2V+kmrekF7/opqf8qnev6Q6dFioXk3y0Ocmqc6TJKkqRFXb6p1H9edkoUNp1F9MD19DACAk9eeg3r7U7JWbqtJamLqhv4yxsEK93tjdP/w5W6o+J51qvrCMz0F1P4n8gtL3rT6Z6v2rLouyPihJfU2qt69E6u89ycq69PXq7xIVnerc6d1T6u8uQ8qmzstCed4Lc+4r5i1tNcoMVfkJ9eeWr/7ueGh/utKvIZPS/W8yZnsCwCYtIiIiegSwhoeIiMhMsUnLdBjwEBERmSuO0jIZBjxERETmik9aNhn24SEiIqJajzU8REREZopPWjYdBjxERETmik1aJsMmLSIiIqr1WMNDRERkpiTdg8mY7ekBBjxERETmik1aJsMmLSIiIqr1WMNDRERkrvjgQZNhwENERGSm+GoJ02GTFhEREQEADh06hMGDB8Pb2xuSJGHnzp2K9UIIREZGwtvbG3Z2dggJCcHZs2cVaXJzczFz5kx4eHjAwcEBQ4YMwY0bN6rwKIrHgIeIiMhcFXVaNmYywN27d9GqVSusWbOm2PXLly/HypUrsWbNGiQlJUGr1aJPnz7IysqS00RERGDHjh2IjY1FYmIisrOzMWjQIBQWFhp1KozFJi0iIiJzJQAYM7TcwBat/v37o3///sVnJQRWr16NBQsWYMSIEQCAmJgYeHp6YuvWrZgyZQoyMzOxfv16bN68Gb179wYAbNmyBT4+Pti/fz/69u1rxMEYhzU8REREZqqoD48xEwDcuXNHMeXm5hpclpSUFKSlpSE0NFReptFoEBwcjKNHjwIAkpOTkZ+fr0jj7e2NwMBAOU11YcBDRERUy/n4+MDFxUWeli5danAeaWlpAABPT0/Fck9PT3ldWloabGxs4OrqWmKa6sImLSIiInMlYOSDBx/8c/36dTg7O8uLNRpNhbOUJEm5CyH0lukVoxxpKhtreIiIiMyViTotOzs7K6aKBDxarRYA9Gpq0tPT5VofrVaLvLw8ZGRklJimujDgISIiojL5+/tDq9UiPj5eXpaXl4eEhAR06dIFANCuXTtYW1sr0qSmpuLMmTNymurCJi0iIiJzpQNgTEuQgSO8srOzcenSJXk+JSUFJ0+ehJubGxo2bIiIiAhERUUhICAAAQEBiIqKgr29PcaOHQsAcHFxQXh4OObMmQN3d3e4ublh7ty5CAoKkkdtVRcGPERERGaqqp+0fPz4cfTo0UOenz17NgAgLCwMGzduxLx585CTk4Np06YhIyMDHTt2xL59++Dk5CRvs2rVKlhZWWHUqFHIyclBr169sHHjRlhaWlb4OEyBAQ8REREBAEJCQiBKCZIkSUJkZCQiIyNLTGNra4vo6GhER0dXQgkrjgEPERGRuarA05L1ticADHiIiIjMFwMek+EoLSIiIqr1WMNDRERkrljDYzIMeIiIiMxVFQ9Lr80Y8BAREZmpqh6WXpuxDw8RERHVeqzhISIiMlfsw2MytaaGZ+3atfD394etrS3atWuHw4cPV3eRiIiIjKMTxk8EoJYEPNu2bUNERAQWLFiAEydO4Mknn0T//v3x66+/VnfRiIiIyAzUioBn5cqVCA8Px3PPPYfmzZtj9erV8PHxwbp166q7aERERBVX1KRlzEQAakHAk5eXh+TkZISGhiqWh4aG4ujRo9VUKiIiIlMwNthhwFOkxnda/vPPP1FYWAhPT0/Fck9PT6SlpRW7TW5uLnJzc+X5O3fuVGoZiYiIqHrV+BqeIpKkfDKTEEJvWZGlS5fCxcVFnnx8fKqiiERERIZhk5bJ1PiAx8PDA5aWlnq1Oenp6Xq1PkXmz5+PzMxMebp+/XpVFJWIiMgwHKVlMjU+4LGxsUG7du0QHx+vWB4fH48uXboUu41Go4Gzs7NiIiIiotqrxvfhAYDZs2dj/PjxaN++PTp37owPP/wQv/76K1544YXqLhoREVHFCd2DyZjtCUAtCXhGjx6NW7du4fXXX0dqaioCAwPxn//8B76+vtVdNCIioorjk5ZNplYEPAAwbdo0TJs2rbqLQUREZDo6I4eWsw+PrMb34SEiIiIqS62p4SEiIqp12KRlMgx4iIiIzJWAkQGPyUpS47FJi4iIiGo91vAQERGZKzZpmQwDHiIiInOl0wEw4lk6Oj6HpwibtIiIiKjWYw0PERGRuWKTlskw4CEiIjJXDHhMhk1aREREVOuxhoeIiMhc8dUSJsOAh4iIyEwJoYMw4o3nxmxb2zDgISIiMldCGFdLwz48MvbhISIiolqPNTxERETmShjZh4c1PDIGPEREROZKpwMkI/rhsA+PjE1aREREVOuxhoeIiMhcsUnLZBjwEBERmSmh00EY0aTFYel/Y5MWERER1Xqs4SEiIjJXbNIyGQY8RERE5konAIkBjymwSYuIiIhqPdbwEBERmSshABjzHB7W8BRhwENERGSmhE5AGNGkJRjwyBjwEBERmSuhg3E1PByWXoR9eIiIiKjWYw0PERGRmWKTlukw4CEiIjJXbNIyGQY8+DsCLhB58nUlRKEijaSzVG6kk5Tzhcr0usK/o+qCfGtl0lxlS2JhnjICLyi4r5i3KCxQzeeqypJX6rzeo8XVEb/qWNXHrueh7fXOk1CeF51Qll0/L1PfjKW30kqq/annAemhdcrPXP/p7qprQL1vneo86pQZ6J1mC+X+dAXKc1dQoNy+IN+y1PnCXNVn8dBlVXhPeQ3lZCv3dcdCWbh72cp59fa6+8prVn2J6l3j+arPoUB1MgrU17xyXlLdb1Jh/t8z6s9Ul6+aV68v43NSX8Oq+0cI1f2nvi6EOr8yrnm99GXcjwZRXaNllEVdsaAui0UZtQfq+7/0+0993tTfS8p9SXrfPcq8C4Xyc9f7nNTnVad3sMr8H/oNKPhfXlVRe1KAfKOeO1iA/LITPSIkwfou3LhxAz4+PtVdDCIiqkGuX7+OBg0aVEre9+/fh7+/P9LS0ozOS6vVIiUlBba2tiYoWc3FgAeATqfD77//DicnJ0iS+q9283Dnzh34+Pjg+vXrcHZ2ru7i1Cg8dxXD81ZxPHcVU1POmxACWVlZ8Pb2hoVF5Y39uX//PvLy1DWIhrOxsXnkgx2ATVoAAAsLi0qL0k3N2dnZrL8IzBnPXcXwvFUcz13F1ITz5uLiUun7sLW1ZaBiQhyWTkRERLUeAx4iIiKq9Rjw1BAajQYLFy6ERqOp7qLUODx3FcPzVnE8dxXD80aViZ2WiYiIqNZjDQ8RERHVegx4iIiIqNZjwENERES1HgMeIiIiqvUY8JiRpUuXokOHDnByckK9evUwbNgwXLhwQS/d+fPnMWTIELi4uMDJyQmdOnXCr7/+Wg0lNh/lOXfZ2dmYMWMGGjRoADs7OzRv3hzr1q2rphKbh3Xr1qFly5byg946d+6MPXv2yOuFEIiMjIS3tzfs7OwQEhKCs2fPVmOJzUdp5y4/Px///Oc/ERQUBAcHB3h7e+PZZ5/F77//Xs2lNg9lXXcPmzJlCiRJwurVq6u2kFTrMOAxIwkJCZg+fTqOHTuG+Ph4FBQUIDQ0FHfv3pXTXL58Gd26dUOzZs1w8OBB/Pzzz3jttdce+adxlufcvfTSS4iLi8OWLVtw/vx5vPTSS5g5cya++uqraix59WrQoAGWLVuG48eP4/jx4+jZsyeGDh0qBzXLly/HypUrsWbNGiQlJUGr1aJPnz7Iysqq5pJXv9LO3b179/DTTz/htddew08//YTt27fjl19+wZAhQ6q72GahrOuuyM6dO/HDDz/A29u7mkpKtYogs5Weni4AiISEBHnZ6NGjxbhx46qxVDVDcefu8ccfF6+//roiXdu2bcX//d//VXXxzJqrq6v4+OOPhU6nE1qtVixbtkxed//+feHi4iLef//9aiyh+So6d8X58ccfBQBx7dq1Ki5VzaA+dzdu3BD169cXZ86cEb6+vmLVqlXVVziqFVjDY8YyMzMBAG5ubgAevOR09+7daNKkCfr27Yt69eqhY8eO2LlzZzWW0jypzx0AdOvWDbt27cJvv/0GIQQOHDiAX375BX379q2uYpqVwsJCxMbG4u7du+jcuTNSUlKQlpaG0NBQOY1Go0FwcDCOHj1ajSU1P+pzV5zMzExIkoQ6depUbeHMXHHnTqfTYfz48Xj55Zfx+OOPV3MJqdao7oiLiqfT6cTgwYNFt27d5GWpqakCgLC3txcrV64UJ06cEEuXLhWSJImDBw9WY2nNS3HnTgghcnNzxbPPPisACCsrK2FjYyM2bdpUTaU0H6dOnRIODg7C0tJSuLi4iN27dwshhDhy5IgAIH777TdF+smTJ4vQ0NDqKKrZKencqeXk5Ih27dqJZ555popLaL5KO3dRUVGiT58+QqfTCSEEa3jIJPi2dDM1Y8YMnDp1ComJifIynU4HABg6dCheeuklAEDr1q1x9OhRvP/++wgODq6Wspqb4s4dALz77rs4duwYdu3aBV9fXxw6dAjTpk2Dl5cXevfuXU2lrX5NmzbFyZMncfv2bXz55ZcICwtDQkKCvF6SJEV6IYTeskdVSeeuRYsWcpr8/Hw8/fTT0Ol0WLt2bTWW1ryUdO5ycnLwzjvv4KeffuJ1RqZV3REX6ZsxY4Zo0KCBuHLlimJ5bm6usLKyEm+88YZi+bx580SXLl2qsohmq6Rzd+/ePWFtbS2++eYbxfLw8HDRt2/fqiyi2evVq5d4/vnnxeXLlwUA8dNPPynWDxkyRDz77LPVVDrzVnTuiuTl5Ylhw4aJli1bij///LMaS2b+is7dqlWrhCRJwtLSUp4ACAsLC+Hr61vdxaQajH14zIgQAjNmzMD27dvx3Xffwd/fX7HexsYGHTp00Btu/csvv8DX17cqi2p2yjp3+fn5yM/Ph4WF8pK3tLSUa87oASEEcnNz4e/vD61Wi/j4eHldXl4eEhIS0KVLl2osofkqOnfAg2tu1KhRuHjxIvbv3w93d/dqLp15Kzp348ePx6lTp3Dy5El58vb2xssvv4y9e/dWdzGpBmOTlhmZPn06tm7diq+++gpOTk5IS0sDALi4uMDOzg4A8PLLL2P06NHo3r07evTogbi4OHz99dc4ePBgNZa8+pV17pydnREcHIyXX34ZdnZ28PX1RUJCAjZt2oSVK1dWc+mrz6uvvor+/fvDx8cHWVlZiI2NxcGDBxEXFwdJkhAREYGoqCgEBAQgICAAUVFRsLe3x9ixY6u76NWutHNXUFCAkSNH4qeffsI333yDwsJC+Zp0c3ODjY1NNZe+epV27tzd3fWCQ2tra2i1WjRt2rSaSky1QrXWL5ECgGKnDRs2KNKtX79eNG7cWNja2opWrVqJnTt3Vk+BzUh5zl1qaqqYMGGC8Pb2Fra2tqJp06ZixYoVcsfIR9GkSZOEr6+vsLGxEXXr1hW9evUS+/btk9frdDqxcOFCodVqhUajEd27dxenT5+uxhKbj9LOXUpKSonX5IEDB6q34GagrOtOjZ2WyRQkIYSo6iCLiIiIqCqxDw8RERHVegx4iIiIqNZjwENERES1HgMeIiIiqvUY8BAREVGtx4CHiIiIaj0GPERERFTrMeAhoiqXl5eHxo0b48iRIwCAq1evQpIknDx5slL3e/r0aTRo0AB3796t1P0QkflhwENkpAkTJkCSJL3p0qVL1V00s/Xhhx/C19cXXbt2Lfc2fn5+WL16td7yyMhItG7dulx5BAUF4YknnsCqVavKvV8iqh0Y8BCZQL9+/ZCamqqY1C8wBR7UbBAQHR2N5557rlr2PXHiRKxbtw6FhYXVsn8iqh4MeIhMQKPRQKvVKiZLS0uEhIRgxowZmD17Njw8PNCnTx8AwLlz5zBgwAA4OjrC09MT48ePx59//innd/fuXTz77LNwdHSEl5cXVqxYgZCQEERERMhpJEnCzp07FeWoU6cONm7cKM//9ttvGD16NFxdXeHu7o6hQ4fi6tWr8voJEyZg2LBhePvtt+Hl5QV3d3dMnz4d+fn5cprc3FzMmzcPPj4+0Gg0CAgIwPr16yGEQOPGjfH2228rynDmzBlYWFjg8uXLxZ6rn376CZcuXcLAgQNLPJ86nQ6TJ09GkyZNcO3atRLTFae42jY/Pz95fd++fXHr1i0kJCQYlC8R1WwMeIgqWUxMDKysrHDkyBF88MEHSE1NRXBwMFq3bo3jx48jLi4ON2/exKhRo+RtXn75ZRw4cAA7duzAvn37cPDgQSQnJxu033v37qFHjx5wdHTEoUOHkJiYCEdHR/Tr109R03TgwAFcvnwZBw4cQExMDDZu3KgImp599lnExsbi3Xffxfnz5/H+++/D0dERkiRh0qRJ2LBhg2K/n3zyCZ588kk0atSo2HIdOnQITZo0gbOzc7Hr8/LyMGrUKBw/fhyJiYnw9fU16LgfrmW7dOkSGjdujO7du8vrbWxs0KpVKxw+fNigfImohqvml5cS1XhhYWHC0tJSODg4yNPIkSOFEEIEBweL1q1bK9K/9tprIjQ0VLHs+vXrAoC4cOGCyMrKEjY2NiI2NlZef+vWLWFnZydefPFFeRkAsWPHDkU+Li4u8hvi169fL5o2bap4G3xubq6ws7MTe/fulcvu6+srCgoK5DRPPfWUGD16tBBCiAsXLggAIj4+vthj//3334WlpaX44YcfhBBC5OXlibp164qNGzeWeL5efPFF0bNnT8WyoreLHz58WPTu3Vt07dpV3L59W5Gm6O3aD59nBwcHYW1tLVq1aqW3H51OJ4YPHy7atWsn7t27p1g3fPhwMWHChBLLSES1j1X1hltEtUOPHj2wbt06ed7BwUH+f/v27RVpk5OTceDAATg6Ourlc/nyZeTk5CAvLw+dO3eWl7u5uaFp06YGlSk5ORmXLl2Ck5OTYvn9+/cVzU2PP/44LC0t5XkvLy+cPn0aAHDy5ElYWloiODi42H14eXlh4MCB+OSTT/DEE0/gm2++wf379/HUU0+VWK6cnBzY2toWu27MmDFo0KABvv32W9jb2+utf/nllzFhwgTFsnfffReHDh3SS/vqq6/i+++/R1JSEuzs7BTr7OzscO/evRLLSES1DwMeIhNwcHBA48aNS1z3MJ1Oh8GDB+PNN9/US+vl5YWLFy+Wa5+SJEEIoVj2cN8bnU6Hdu3a4dNPP9Xbtm7duvL/ra2t9fLV6XQAoBcoFOe5557D+PHjsWrVKmzYsAGjR48uNlgp4uHhIQdUagMGDMCWLVtw7Ngx9OzZs9ht1efZzc1NL92WLVuwatUqHDx4EA0aNNBb/9dff5XY5EZEtRP78BBVsbZt2+Ls2bPw8/ND48aNFVNR4GRtbY1jx47J22RkZOCXX35R5FO3bl2kpqbK8xcvXlTUWrRt2xYXL15EvXr19Pbj4uJSrrIGBQVBp9OV2sF3wIABcHBwwLp167Bnzx5MmjSp1DzbtGmD//73v3rBGgBMnToVy5Ytw5AhQyrcqfj777/Hc889hw8++ACdOnUqNs2ZM2fQpk2bCuVPRDUTAx6iKjZ9+nT89ddfGDNmDH788UdcuXIF+/btw6RJk1BYWAhHR0eEh4fj5ZdfxrfffoszZ85gwoQJsLBQ3q49e/bEmjVr8NNPP+H48eN44YUXFLU1zzzzDDw8PDB06FAcPnwYKSkpSEhIwIsvvogbN26Uq6x+fn4ICwvDpEmTsHPnTqSkpODgwYP4/PPP5TSWlpaYMGEC5s+fj8aNGyua4orTo0cP3L17F2fPni12/cyZM7F48WIMGjQIiYmJ5SpnkbS0NAwfPhxPP/00+vbti7S0NKSlpeGPP/6Q01y9ehW//fYbevfubVDeRFSzMeAhqmLe3t44cuQICgsL0bdvXwQGBuLFF1+Ei4uLHNS89dZb6N69O4YMGYLevXujW7duaNeunSKfFStWwMfHB927d8fYsWMxd+5cRVOSvb09Dh06hIYNG2LEiBFo3rw5Jk2ahJycnBJHSBVn3bp1GDlyJKZNm4ZmzZph8uTJek8qDg8PR15eXpm1OwDg7u6OESNGFNvUViQiIgKLFi3CgAEDcPTo0XKX9b///S9u3ryJmJgYeHl5yVOHDh3kNJ999hlCQ0MNHv1FRDWbJIqrVyYisxMSEoLWrVsX+7Th6nbkyBGEhITgxo0b8PT0LDP96dOn0bt372I7VVem3NxcBAQE4LPPPjPoKc9EVPOxhoeIKiw3NxeXLl3Ca6+9hlGjRpUr2AEe9A1avny54iGIVeHatWtYsGABgx2iRxBHaRFRhX322WcIDw9H69atsXnzZoO2DQsLq6RSlaxJkyZo0qRJle+XiKofm7SIiIio1mOTFhEREdV6DHiIiIio1mPAQ0RERLUeAx4iIiKq9RjwEBERUa3HgIeIiIhqPQY8REREVOsx4CEiIqJajwEPERER1Xr/D9z5LTGfMfokAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "do2d(\n", + " lockin1.frequency, 25000, 35000, 101, 0.05,\n", + " lockin1.aux_out1, 0.001, 0.3, 5, 0.01,\n", + " lockin1.X, lockin1.R_V,\n", + " do_plot=True,\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qcodesdriver", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "df2095ddf9f3a872216ad49a627e91eccff0e569e7f08f7817527e268a567405" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 7782647ab99a8d3505157d1ac84acbca0406716c Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Thu, 16 Mar 2023 02:02:28 +0000 Subject: [PATCH 14/22] Bump actions/checkout from 3.3.0 to 3.4.0 Bumps [actions/checkout](https://github.com/actions/checkout) from 3.3.0 to 3.4.0. - [Release notes](https://github.com/actions/checkout/releases) - [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md) - [Commits](https://github.com/actions/checkout/compare/v3.3.0...v3.4.0) --- updated-dependencies: - dependency-name: actions/checkout dependency-type: direct:production update-type: version-update:semver-minor ... Signed-off-by: dependabot[bot] --- .github/workflows/docs.yaml | 4 ++-- .github/workflows/pytest.yaml | 2 +- .github/workflows/upload_to_pypi.yaml | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/.github/workflows/docs.yaml b/.github/workflows/docs.yaml index 7b180ecc5..d842b8963 100644 --- a/.github/workflows/docs.yaml +++ b/.github/workflows/docs.yaml @@ -30,13 +30,13 @@ jobs: OS: ${{ matrix.os }} UPLOAD_TO_GHPAGES: ${{ matrix.os == 'ubuntu-latest' && matrix.python-version == '3.10' && github.event_name == 'push' && github.ref == 'refs/heads/main' }} steps: - - uses: actions/checkout@v3.3.0 + - uses: actions/checkout@v3.4.0 with: fetch-depth: '0' # if we upload to ghpages we need the full # history to generate correct version info if: ${{ fromJSON(env.UPLOAD_TO_GHPAGES) }} - - uses: actions/checkout@v3.3.0 + - uses: actions/checkout@v3.4.0 if: ${{ !fromJSON(env.UPLOAD_TO_GHPAGES) }} - name: setup ubuntu-latest xvfb uses: ./.github/actions/setup-ubuntu-latest-xvfb diff --git a/.github/workflows/pytest.yaml b/.github/workflows/pytest.yaml index 4752906a5..1d7cc5c57 100644 --- a/.github/workflows/pytest.yaml +++ b/.github/workflows/pytest.yaml @@ -33,7 +33,7 @@ jobs: PYTHON: ${{ matrix.python-version }} steps: - - uses: actions/checkout@v3.3.0 + - uses: actions/checkout@v3.4.0 with: submodules: true - name: setup ubuntu-latest xvfb diff --git a/.github/workflows/upload_to_pypi.yaml b/.github/workflows/upload_to_pypi.yaml index a485faae5..21084c914 100644 --- a/.github/workflows/upload_to_pypi.yaml +++ b/.github/workflows/upload_to_pypi.yaml @@ -11,7 +11,7 @@ jobs: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v3.3.0 + - uses: actions/checkout@v3.4.0 - name: Set up Python uses: actions/setup-python@v4.5.0 with: From 3e17914c0fd075dfb42308a0240cd6d91d40123e Mon Sep 17 00:00:00 2001 From: Rasmus Bjerregaard Christensen Date: Tue, 21 Mar 2023 14:38:49 +0100 Subject: [PATCH 15/22] add typing --- .../drivers/StanfordResearchSystems/SR844.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py index 8775f8004..44e586e00 100644 --- a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py +++ b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py @@ -1,7 +1,7 @@ from functools import partial import numpy as np from typing import Any, Iterable, Tuple, Union - +from numpy.typing import NDArray from qcodes import VisaInstrument from qcodes.instrument.parameter import ( Parameter, @@ -36,7 +36,7 @@ class SR844(VisaInstrument): } value_sensitivity_map = {v: k for k, v in sensitivity_value_map.items()} - def __init__(self, name: str, address: str, **kwargs: Any): + def __init__(self, name: str, address: str, **kwargs: Any) -> None: super().__init__(name, address, **kwargs) self.add_parameter( @@ -700,12 +700,12 @@ def get_raw(self) -> ParamRawDataType: return self.parse_binary(rawdata) - def parse_binary(self, rawdata): + def parse_binary(self, rawdata:bytes) -> NDArray: realdata = np.frombuffer(rawdata, dtype=" Any: self.root_instrument.write(f"TRCL ? {self.channel}, 0, {N}") return self.root_instrument.visa_handle.read_raw() From a74244a23d3ca2efc977babb00d826bffcd3d5a7 Mon Sep 17 00:00:00 2001 From: Rasmus Bjerregaard Christensen Date: Tue, 21 Mar 2023 14:59:44 +0100 Subject: [PATCH 16/22] run black --- .../drivers/StanfordResearchSystems/SR844.py | 117 +++++++++--------- 1 file changed, 57 insertions(+), 60 deletions(-) diff --git a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py index 44e586e00..979ef3ce6 100644 --- a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py +++ b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py @@ -18,22 +18,22 @@ class SR844(VisaInstrument): """ sensitivity_value_map = { - 100e-9: 0, - 300e-9: 1, - 1e-6: 2, - 3e-6: 3, - 10e-6: 4, - 30e-6: 5, - 100e-6: 6, - 300e-6: 7, - 1e-3: 8, - 3e-3: 9, - 10e-3: 10, - 30e-3: 11, - 100e-3: 12, - 300e-3: 13, - 1: 14, - } + 100e-9: 0, + 300e-9: 1, + 1e-6: 2, + 3e-6: 3, + 10e-6: 4, + 30e-6: 5, + 100e-6: 6, + 300e-6: 7, + 1e-3: 8, + 3e-3: 9, + 10e-3: 10, + 30e-3: 11, + 100e-3: 12, + 300e-3: 13, + 1: 14, + } value_sensitivity_map = {v: k for k, v in sensitivity_value_map.items()} def __init__(self, name: str, address: str, **kwargs: Any) -> None: @@ -182,7 +182,7 @@ def __init__(self, name: str, address: str, **kwargs: Any) -> None: unit="% of 200 dBm scale", vals=Numbers(min_value=-110, max_value=110), ) - + self.add_parameter( "Y_offset", get_cmd="DOFF? 2, 0", @@ -191,7 +191,7 @@ def __init__(self, name: str, address: str, **kwargs: Any) -> None: unit="% of full scale", vals=Numbers(min_value=-110, max_value=110), ) - + self.add_parameter( "complex_voltage", label="Voltage", @@ -311,7 +311,7 @@ def __init__(self, name: str, address: str, **kwargs: Any) -> None: set_cmd=partial(self._set_ch_display, ch), vals=Strings(), ) - + self.add_parameter( f"ch{ch}_datatrace", channel=ch, @@ -320,22 +320,44 @@ def __init__(self, name: str, address: str, **kwargs: Any) -> None: parameter_class=ChannelTrace, ) - - self.add_parameter("X", label='X', get_cmd="OUTP? 1", get_parser=float, unit="V") - self.add_parameter("Y", label='Y', get_cmd="OUTP? 2", get_parser=float, unit="V") - self.add_parameter("R_V", label='R_V', get_cmd="OUTP? 3", get_parser=float, unit="V") - self.add_parameter("R_dBm", label='R_dBm', get_cmd="OUTP? 4", get_parser=float, unit="dBm") - self.add_parameter("phase", label='phase', get_cmd="OUTP? 5", get_parser=float, unit="deg") - self.add_parameter("ch1", label='display channel 1', get_cmd="OUTR? 1", get_parser=float, unit="V") - self.add_parameter("ch2", label='display channel 2', get_cmd="OUTR? 2", get_parser=float, unit="V") - + self.add_parameter( + "X", label="X", get_cmd="OUTP? 1", get_parser=float, unit="V" + ) + self.add_parameter( + "Y", label="Y", get_cmd="OUTP? 2", get_parser=float, unit="V" + ) + self.add_parameter( + "R_V", label="R_V", get_cmd="OUTP? 3", get_parser=float, unit="V" + ) + self.add_parameter( + "R_dBm", label="R_dBm", get_cmd="OUTP? 4", get_parser=float, unit="dBm" + ) + self.add_parameter( + "phase", label="phase", get_cmd="OUTP? 5", get_parser=float, unit="deg" + ) + self.add_parameter( + "ch1", + label="display channel 1", + get_cmd="OUTR? 1", + get_parser=float, + unit="V", + ) + self.add_parameter( + "ch2", + label="display channel 2", + get_cmd="OUTR? 2", + get_parser=float, + unit="V", + ) self.add_function("auto_gain", call_cmd="AGAN") self.add_function("auto_wideband_reserve", call_cmd="AWRS") self.add_function("auto_close_in_reserve", call_cmd="ACRS") self.add_function("auto_phase", call_cmd="APHS") - self.add_function("auto_offset_ch1", call_cmd="AOFF 1, {}", args=[Enum(0, 1, 2)]) + self.add_function( + "auto_offset_ch1", call_cmd="AOFF 1, {}", args=[Enum(0, 1, 2)] + ) self.add_function("auto_offset_ch2", call_cmd="AOFF 2, {0}", args=[Enum(0)]) self.add_function("reset", call_cmd="*RST") @@ -404,7 +426,6 @@ def __init__(self, name: str, address: str, **kwargs: Any) -> None: "ch2": "10", } - def snap(self, *parameters: str) -> Tuple[float, ...]: """ Get between 2 and 6 parameters at a single instant. This provides a @@ -464,7 +485,6 @@ def snap(self, *parameters: str) -> Tuple[float, ...]: return tuple(float(val) for val in output.split(",")) - def increment_sensitivity(self) -> bool: """ Increment the sensitivity setting of the lock-in. This is equivalent @@ -476,7 +496,6 @@ def increment_sensitivity(self) -> bool: """ return self._change_sensitivity(1) - def decrement_sensitivity(self) -> bool: """ Decrement the sensitivity setting of the lock-in. This is equivalent @@ -488,7 +507,6 @@ def decrement_sensitivity(self) -> bool: """ return self._change_sensitivity(-1) - def _set_harmonic(self, harm: int) -> None: if harm == 0: self.write("HARM 0") @@ -500,7 +518,6 @@ def _set_harmonic(self, harm: int) -> None: ) self.write("HARM 1") - def _set_freq(self, freq: float) -> None: params = self.parameters if params["reference_source"].get() != "internal": @@ -518,7 +535,6 @@ def _set_freq(self, freq: float) -> None: ) self.write(f"FREQ {freq}") - def _change_sensitivity(self, dn: int) -> float: n_to = self.value_sensitivity_map to_n = self.sensitivity_value_map @@ -526,13 +542,10 @@ def _change_sensitivity(self, dn: int) -> float: n = to_n[self.sensitivity()] if n + dn > max(n_to.keys()) or n + dn < min(n_to.keys()): - raise ValueError( - "Sensitivity is at its extremum" - ) + raise ValueError("Sensitivity is at its extremum") self.sensitivity.set(n_to[n + dn]) - return self.sensitivity.get() - + return self.sensitivity.get() def update_ch_unit(self, channel: int) -> None: params = self.parameters @@ -540,13 +553,11 @@ def update_ch_unit(self, channel: int) -> None: assert isinstance(dataparam, ChannelTrace) dataparam.update_unit() - def _set_ratio(self, ratio_int: int) -> None: self.write(f"DRAT {ratio_int}") for ch in [1, 2]: self.update_ch_unit(ch) - def _get_ch_display(self, channel: int) -> str: val_mapping = { 1: {0: "X", 1: "R_V", 2: "R_dBm", 3: "X Noise", 4: "AuxIn1"}, @@ -556,7 +567,6 @@ def _get_ch_display(self, channel: int) -> str: return val_mapping[channel][resp] - def get_display_value(self, channel: int, disp: str) -> int: val_mapping = { 1: {"X": 0, "R_V": 1, "R_dBm": 2, "X Noise": 3, "AuxIn1": 4}, @@ -568,23 +578,19 @@ def get_display_value(self, channel: int, disp: str) -> int: return val_mapping[channel][disp] - def _set_ch_display(self, channel: int, disp: str) -> None: disp_int = self.get_display_value(channel, disp) self.write(f"DDEF {channel}, {disp_int}") self.update_ch_unit(channel) - def _set_buffer_SR(self, SR: int) -> None: - self.write(f'SRAT {SR}') + self.write(f"SRAT {SR}") self.sweep_setpoints.update_units_if_constant_sample_rate() - def _get_complex_voltage(self) -> complex: x, y = self.snap("X", "Y") return x + 1.0j * y - def set_sweep_parameters( self, @@ -602,6 +608,7 @@ def set_sweep_parameters( elif sweep_param.label is not None: self.sweep_setpoints.label = sweep_param.label + class GeneratedSetPoints(Parameter): """ A parameter that generates a setpoint array from start, stop and num points @@ -618,7 +625,6 @@ def __init__( self.sweep_array = sweep_array self.update_units_if_constant_sample_rate() - def update_units_if_constant_sample_rate(self) -> None: """ If the buffer is filled at a constant sample rate, @@ -631,11 +637,9 @@ def update_units_if_constant_sample_rate(self) -> None: self.unit = "s" self.label = "Time" - def set_raw(self, value: Iterable[Union[float, int]]) -> None: self.sweep_array = value - def get_raw(self) -> ParamRawDataType: assert isinstance(self.root_instrument, SR844) SR = self.root_instrument.buffer_SR.get() @@ -647,6 +651,7 @@ def get_raw(self) -> ParamRawDataType: return np.linspace(0, N * dt, N) + class ChannelTrace(ParameterWithSetpoints): """ Parameter class for the two channel buffers @@ -676,7 +681,6 @@ def __init__(self, name: str, channel: int, **kwargs: Any) -> None: self.channel = channel self.update_unit() - def update_unit(self) -> None: assert isinstance(self.root_instrument, SR844) params = self.root_instrument.parameters @@ -692,24 +696,20 @@ def update_unit(self) -> None: self.unit = "V" self.label = disp - def get_raw(self) -> ParamRawDataType: N = self.get_buffer_length() rawdata = self.poll_raw_binary_data(N) return self.parse_binary(rawdata) - - def parse_binary(self, rawdata:bytes) -> NDArray: + def parse_binary(self, rawdata: bytes) -> NDArray: realdata = np.frombuffer(rawdata, dtype=" Any: self.root_instrument.write(f"TRCL ? {self.channel}, 0, {N}") return self.root_instrument.visa_handle.read_raw() - def get_buffer_length(self) -> int: N = self.root_instrument.buffer_npts() if N == 0: @@ -717,6 +717,3 @@ def get_buffer_length(self) -> int: "No points stored in SR844 data buffer." " Cannot poll anything." ) return N - - - From 7dadb4e43f52fad8a14ccbe8c6daef1d4f06d095 Mon Sep 17 00:00:00 2001 From: Rasmus Bjerregaard Christensen Date: Tue, 21 Mar 2023 17:07:27 +0100 Subject: [PATCH 17/22] fix mypy and refactor --- .../drivers/StanfordResearchSystems/SR844.py | 34 +++++++++---------- 1 file changed, 16 insertions(+), 18 deletions(-) diff --git a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py index 979ef3ce6..049cbcac9 100644 --- a/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py +++ b/qcodes_contrib_drivers/drivers/StanfordResearchSystems/SR844.py @@ -524,28 +524,25 @@ def _set_freq(self, freq: float) -> None: raise ValueError( "Cannot set frequency, since the frequency reference_source is not internal" ) - else: - if freq >= 50000: - self.write(f"FREQ {freq}") - else: - harm = params["harmonic"].get() - if harm == "2f": - raise ValueError( - "Frequency must be 50kHz or greater when lockin is in second harmonics configuration" - ) - self.write(f"FREQ {freq}") - - def _change_sensitivity(self, dn: int) -> float: + if freq < 50000: + harm = params["harmonic"].get() + if harm == "2f": + raise ValueError( + "Frequency must be 50kHz or greater when lockin is in second harmonics configuration" + ) + self.write(f"FREQ {freq}") + + def _change_sensitivity(self, dn: int) -> bool: n_to = self.value_sensitivity_map to_n = self.sensitivity_value_map n = to_n[self.sensitivity()] if n + dn > max(n_to.keys()) or n + dn < min(n_to.keys()): - raise ValueError("Sensitivity is at its extremum") + return False self.sensitivity.set(n_to[n + dn]) - return self.sensitivity.get() + return True def update_ch_unit(self, channel: int) -> None: params = self.parameters @@ -645,11 +642,10 @@ def get_raw(self) -> ParamRawDataType: SR = self.root_instrument.buffer_SR.get() if SR == "Trigger": return self.sweep_array - else: - N = self.root_instrument.buffer_npts.get() - dt = 1 / SR + N = self.root_instrument.buffer_npts.get() + dt = 1 / SR - return np.linspace(0, N * dt, N) + return np.linspace(0, N * dt, N) class ChannelTrace(ParameterWithSetpoints): @@ -707,10 +703,12 @@ def parse_binary(self, rawdata: bytes) -> NDArray: return realdata[::2] * 2.0 ** (realdata[1::2] - 124) def poll_raw_binary_data(self, N: int) -> Any: + assert isinstance(self.root_instrument, SR844) self.root_instrument.write(f"TRCL ? {self.channel}, 0, {N}") return self.root_instrument.visa_handle.read_raw() def get_buffer_length(self) -> int: + assert isinstance(self.root_instrument, SR844) N = self.root_instrument.buffer_npts() if N == 0: raise ValueError( From e39c73bf223f48b8c57b3f26eef55aa10e3d0853 Mon Sep 17 00:00:00 2001 From: Rasmus Bjerregaard Christensen Date: Tue, 21 Mar 2023 17:24:52 +0100 Subject: [PATCH 18/22] fix imports and change name of example --- .../{Qcodes example with Stanford SR844.ipynb => SR844.ipynb} | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) rename docs/examples/{Qcodes example with Stanford SR844.ipynb => SR844.ipynb} (99%) diff --git a/docs/examples/Qcodes example with Stanford SR844.ipynb b/docs/examples/SR844.ipynb similarity index 99% rename from docs/examples/Qcodes example with Stanford SR844.ipynb rename to docs/examples/SR844.ipynb index 75791cba0..827280fd3 100644 --- a/docs/examples/Qcodes example with Stanford SR844.ipynb +++ b/docs/examples/SR844.ipynb @@ -14,7 +14,7 @@ "from qcodes.dataset import do0d, do1d, do2d, load_or_create_experiment\n", "from qcodes.instrument.parameter import ParameterWithSetpoints\n", "from qcodes.utils import validators\n", - "from qcodes.instrument_drivers.stanford_research import SR844" + "from qcodes_contrib_drivers.drivers.StanfordResearchSystems.SR844 import SR844" ] }, { From c82452aa05badaa62d347c64019c03e173661785 Mon Sep 17 00:00:00 2001 From: Rasmus Bjerregaard Christensen Date: Tue, 21 Mar 2023 18:01:11 +0100 Subject: [PATCH 19/22] add execute: never --- docs/examples/SR844.ipynb | 3 +++ 1 file changed, 3 insertions(+) diff --git a/docs/examples/SR844.ipynb b/docs/examples/SR844.ipynb index 827280fd3..b4c739efe 100644 --- a/docs/examples/SR844.ipynb +++ b/docs/examples/SR844.ipynb @@ -852,6 +852,9 @@ } } }, + "nbsphinx": { + "execute": "never" +}, "nbformat": 4, "nbformat_minor": 2 } From e9ed943dd2fe2f3b922f2323bf8f2cdfcb57a7dc Mon Sep 17 00:00:00 2001 From: "Rasmus B. Christensen" Date: Wed, 22 Mar 2023 18:30:09 +0100 Subject: [PATCH 20/22] fix move execute never --- docs/examples/SR844.ipynb | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/examples/SR844.ipynb b/docs/examples/SR844.ipynb index b4c739efe..3ad682085 100644 --- a/docs/examples/SR844.ipynb +++ b/docs/examples/SR844.ipynb @@ -845,6 +845,9 @@ "pygments_lexer": "ipython3", "version": "3.9.16" }, + "nbsphinx": { + "execute": "never" +}, "orig_nbformat": 4, "vscode": { "interpreter": { @@ -852,9 +855,6 @@ } } }, - "nbsphinx": { - "execute": "never" -}, "nbformat": 4, "nbformat_minor": 2 } From 3f62857e7b22e77c245af1e2ca6c67868b172e95 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Fri, 31 Mar 2023 02:01:28 +0000 Subject: [PATCH 21/22] Update ipython requirement from ~=8.11.0 to ~=8.12.0 Updates the requirements on [ipython](https://github.com/ipython/ipython) to permit the latest version. - [Release notes](https://github.com/ipython/ipython/releases) - [Commits](https://github.com/ipython/ipython/compare/8.11.0...8.12.0) --- updated-dependencies: - dependency-name: ipython dependency-type: direct:production ... Signed-off-by: dependabot[bot] --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 9bb36ed37..a843c4cbe 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,2 +1,2 @@ mypy~=1.1.1 -ipython~=8.11.0 +ipython~=8.12.0 From fb50a6f306b0f1fdfe08174f356c34958e751efd Mon Sep 17 00:00:00 2001 From: Mikhail Astafev Date: Mon, 3 Apr 2023 10:38:02 +0200 Subject: [PATCH 22/22] Update SR844.ipynb --- docs/examples/SR844.ipynb | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/examples/SR844.ipynb b/docs/examples/SR844.ipynb index 3ad682085..9299bb18d 100644 --- a/docs/examples/SR844.ipynb +++ b/docs/examples/SR844.ipynb @@ -6,6 +6,7 @@ "metadata": {}, "outputs": [], "source": [ + "# Standford Research SR844 example", "\n", "from time import sleep\n", "\n",