-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
trainer.py
885 lines (700 loc) · 33.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
import inspect
import logging as log
import os
import sys
import warnings
from argparse import ArgumentParser
from typing import Union, Optional, List, Dict, Tuple, Iterable
import torch
from torch import optim
import torch.distributed as torch_distrib
import torch.multiprocessing as mp
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.loggers import LightningLoggerBase
from pytorch_lightning.profiler import Profiler, PassThroughProfiler
from pytorch_lightning.profiler.profiler import BaseProfiler
from pytorch_lightning.trainer.auto_mix_precision import TrainerAMPMixin
from pytorch_lightning.trainer.callback_config import TrainerCallbackConfigMixin
from pytorch_lightning.trainer.data_loading import TrainerDataLoadingMixin
from pytorch_lightning.trainer.distrib_data_parallel import TrainerDDPMixin
from pytorch_lightning.trainer.distrib_parts import (
TrainerDPMixin,
parse_gpu_ids,
determine_root_gpu_device
)
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.trainer.callback_hook import TrainerCallbackHookMixin
from pytorch_lightning.trainer.deprecated_api import TrainerDeprecatedAPITillVer0_8
from pytorch_lightning.trainer.evaluation_loop import TrainerEvaluationLoopMixin
from pytorch_lightning.trainer.logging import TrainerLoggingMixin
from pytorch_lightning.trainer.model_hooks import TrainerModelHooksMixin
from pytorch_lightning.trainer.training_io import TrainerIOMixin
from pytorch_lightning.trainer.training_loop import TrainerTrainLoopMixin
from pytorch_lightning.trainer.training_tricks import TrainerTrainingTricksMixin
from pytorch_lightning.utilities.debugging import MisconfigurationException
try:
from apex import amp
except ImportError:
APEX_AVAILABLE = False
else:
APEX_AVAILABLE = True
try:
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
except ImportError:
XLA_AVAILABLE = False
else:
XLA_AVAILABLE = True
class Trainer(
TrainerIOMixin,
TrainerDPMixin,
TrainerDDPMixin,
TrainerLoggingMixin,
TrainerModelHooksMixin,
TrainerTrainingTricksMixin,
TrainerDataLoadingMixin,
TrainerAMPMixin,
TrainerEvaluationLoopMixin,
TrainerTrainLoopMixin,
TrainerCallbackConfigMixin,
TrainerCallbackHookMixin,
TrainerDeprecatedAPITillVer0_8,
):
def __init__(
self,
logger: Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool] = True,
checkpoint_callback: Union[ModelCheckpoint, bool] = True,
early_stop_callback: Optional[Union[EarlyStopping, bool]] = False,
callbacks: List[Callback] = [],
default_save_path: Optional[str] = None,
gradient_clip_val: float = 0,
gradient_clip=None, # backward compatible, todo: remove in v0.8.0
process_position: int = 0,
nb_gpu_nodes=None, # backward compatible, todo: remove in v0.8.0
num_nodes: int = 1,
gpus: Optional[Union[List[int], str, int]] = None,
num_tpu_cores: Optional[int] = None,
log_gpu_memory: Optional[str] = None,
show_progress_bar: bool = True,
progress_bar_refresh_rate: int = 1,
overfit_pct: float = 0.0,
track_grad_norm: int = -1,
check_val_every_n_epoch: int = 1,
fast_dev_run: bool = False,
accumulate_grad_batches: Union[int, Dict[int, int], List[list]] = 1,
max_nb_epochs=None, # backward compatible, todo: remove in v0.8.0
min_nb_epochs=None, # backward compatible, todo: remove in v0.8.0
max_epochs: int = 1000,
min_epochs: int = 1,
max_steps: Optional[int] = None,
min_steps: Optional[int] = None,
train_percent_check: float = 1.0,
val_percent_check: float = 1.0,
test_percent_check: float = 1.0,
val_check_interval: float = 1.0,
log_save_interval: int = 100,
row_log_interval: int = 10,
add_row_log_interval=None, # backward compatible, todo: remove in v0.8.0
distributed_backend: Optional[str] = None,
use_amp=False, # backward compatible, todo: remove in v0.9.0
precision: int = 32,
print_nan_grads: bool = False,
weights_summary: str = 'full',
weights_save_path: Optional[str] = None,
amp_level: str = 'O1',
nb_sanity_val_steps=None, # backward compatible, todo: remove in v0.8.0
num_sanity_val_steps: int = 5,
truncated_bptt_steps: Optional[int] = None,
resume_from_checkpoint: Optional[str] = None,
profiler: Optional[BaseProfiler] = None,
benchmark: bool = False,
reload_dataloaders_every_epoch: bool = False,
**kwargs
):
r"""
Customize every aspect of training via flags
Args:
logger: Logger (or iterable collection of loggers) for experiment tracking.
checkpoint_callback: Callback for checkpointing.
early_stop_callback (:class:`pytorch_lightning.callbacks.EarlyStopping`):
callbacks: Add a list of callbacks.
default_save_path: Default path for logs and weights when no logger/ckpt_callback passed
gradient_clip_val: 0 means don't clip.
gradient_clip:
.. warning:: deprecated 0.7.0 Use `gradient_clip_val` instead. Will remove 0.9.0.
process_position: orders the tqdm bar when running multiple models on same machine.
num_nodes: number of GPU nodes for distributed training.
nb_gpu_nodes:
.. warning:: .. deprecated:: 0.7.0
Use `num_nodes` instead. Will remove 0.9.0.
gpus: Which GPUs to train on.
num_tpu_cores: How many TPU cores to train on (1 or 8).
log_gpu_memory: None, 'min_max', 'all'. Might slow performance
show_progress_bar: If true shows tqdm progress bar
progress_bar_refresh_rate: How often to refresh progress bar (in steps)
track_grad_norm: -1 no tracking. Otherwise tracks that norm
check_val_every_n_epoch: Check val every n train epochs.
fast_dev_run: runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).
accumulate_grad_batches: Accumulates grads every k batches or as set up in the dict.
max_epochs: Stop training once this number of epochs is reached.
max_nb_epochs:
.. warning:: .. deprecated:: 0.7.0
Use `max_epochs` instead. Will remove 0.9.0.
min_epochs: Force training for at least these many epochs
min_nb_epochs:
.. warning:: .. deprecated:: 0.7.0
Use `min_epochs` instead. Will remove 0.9.0.
max_steps: Stop training after this number of steps. Disabled by default (None).
min_steps: Force training for at least these number of steps. Disabled by default (None).
train_percent_check: How much of training dataset to check.
val_percent_check: How much of validation dataset to check.
test_percent_check: How much of test dataset to check.
val_check_interval: How often within one training epoch to check the validation set
log_save_interval: Writes logs to disk this often
row_log_interval: How often to add logging rows (does not write to disk)
add_row_log_interval:
.. warning:: .. deprecated:: 0.7.0
Use `row_log_interval` instead. Will remove 0.9.0.
distributed_backend: The distributed backend to use.
use_amp:
.. warning:: .. deprecated:: 0.7.0
Use `precision` instead. Will remove 0.9.0.
precision: Full precision (32), half precision (16).
print_nan_grads: Prints gradients with nan values
weights_summary: Prints a summary of the weights when training begins.
weights_save_path: Where to save weights if specified.
amp_level: The optimization level to use (O1, O2, etc...).
num_sanity_val_steps: Sanity check runs n batches of val before starting the training routine.
nb_sanity_val_steps:
.. warning:: .. deprecated:: 0.7.0
Use `num_sanity_val_steps` instead. Will remove 0.8.0.
truncated_bptt_steps: Truncated back prop breaks performs backprop every k steps of
resume_from_checkpoint: To resume training from a specific checkpoint pass in the path here.k
profiler: To profile individual steps during training and assist in
reload_dataloaders_every_epoch: Set to True to reload dataloaders every epoch
benchmark: If true enables cudnn.benchmark.
"""
# Init callbacks
self.callbacks = callbacks
self.on_init_start()
# benchmarking
self.benchmark = benchmark
if benchmark:
torch.backends.cudnn.benchmark = True
# Transfer params
self.num_nodes = num_nodes
# Backward compatibility, TODO: remove in v0.8.0
if nb_gpu_nodes is not None:
warnings.warn("Argument `nb_gpu_nodes` has renamed to `num_nodes` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
self.num_gpu_nodes = nb_gpu_nodes
self.log_gpu_memory = log_gpu_memory
self.gradient_clip_val = gradient_clip_val
# Backward compatibility, TODO: remove in v0.8.0
if gradient_clip is not None:
warnings.warn("Argument `gradient_clip` has renamed to `gradient_clip_val` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
self.gradient_clip = gradient_clip
self.reload_dataloaders_every_epoch = reload_dataloaders_every_epoch
self.progress_bar_refresh_rate = progress_bar_refresh_rate
self.check_val_every_n_epoch = check_val_every_n_epoch
self.track_grad_norm = track_grad_norm
self.on_gpu = True if (gpus and torch.cuda.is_available()) else False
# tpu config
self.on_tpu = num_tpu_cores is not None
self.num_tpu_cores = num_tpu_cores
assert num_tpu_cores in [1, 8, None], 'num_tpu_cores can only be 1 or 8'
self.process_position = process_position
self.weights_summary = weights_summary
self.max_epochs = max_epochs
# Backward compatibility, TODO: remove in v0.8.0
if max_nb_epochs is not None:
warnings.warn("Argument `max_nb_epochs` has renamed to `max_epochs` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
self.max_nb_epochs = max_nb_epochs
self.min_epochs = min_epochs
# Backward compatibility, TODO: remove in v0.8.0
if min_nb_epochs is not None:
warnings.warn("Argument `min_nb_epochs` has renamed to `min_epochs` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
self.min_nb_epochs = min_nb_epochs
self.max_steps = max_steps
self.min_steps = min_steps
self.num_sanity_val_steps = num_sanity_val_steps
# Backward compatibility, TODO: remove in v0.8.0
if nb_sanity_val_steps is not None:
warnings.warn("Argument `nb_sanity_val_steps` has renamed to "
"`num_sanity_val_steps` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
self.nb_sanity_val_steps = nb_sanity_val_steps
self.print_nan_grads = print_nan_grads
self.truncated_bptt_steps = truncated_bptt_steps
self.resume_from_checkpoint = resume_from_checkpoint
self.shown_warnings = set()
self.fast_dev_run = fast_dev_run
if self.fast_dev_run:
self.num_sanity_val_steps = 1
self.max_epochs = 1
m = '''
Running in fast_dev_run mode: will run a full train,
val loop using a single batch
'''
log.info(m)
# set default save path if user didn't provide one
self.default_save_path = default_save_path
if self.default_save_path is None:
self.default_save_path = os.getcwd()
# training bookeeping
self.total_batch_idx = 0
self.running_loss = []
self.avg_loss = 0
self.batch_idx = 0
self.tqdm_metrics = {}
self.callback_metrics = {}
self.num_val_batches = 0
self.num_training_batches = 0
self.num_test_batches = 0
self.train_dataloader = None
self.test_dataloaders = None
self.val_dataloaders = None
# training state
self.model = None
self.testing = False
self.disable_validation = False
self.lr_schedulers = []
self.optimizers = None
self.global_step = 0
self.current_epoch = 0
self.total_batches = 0
# configure logger
self.configure_logger(logger)
# configure profiler
if profiler is True:
profiler = Profiler()
self.profiler = profiler or PassThroughProfiler()
# configure early stop callback
# creates a default one if none passed in
self.configure_early_stopping(early_stop_callback)
# configure checkpoint callback
self.checkpoint_callback = checkpoint_callback
self.weights_save_path = weights_save_path
# accumulated grads
self.accumulate_grad_batches = accumulate_grad_batches
self.configure_accumulated_gradients(accumulate_grad_batches)
# allow int, string and gpu list
self.gpus = gpus
self.data_parallel_device_ids = parse_gpu_ids(self.gpus)
self.root_gpu = determine_root_gpu_device(self.data_parallel_device_ids)
# tpu state flags
self.use_tpu = False
self.tpu_local_core_rank = None
self.tpu_global_core_rank = None
# distributed backend choice
self.use_ddp = False
self.use_ddp2 = False
self.use_dp = False
self.single_gpu = False
self.distributed_backend = distributed_backend
self.set_distributed_mode(distributed_backend, self.num_nodes)
# override dist backend when using tpus
if self.on_tpu:
self.init_tpu()
self.current_tpu_idx = None
# init flags for SLURM+ddp to work
self.proc_rank = 0
self.world_size = 1
self.node_rank = 0
self.configure_slurm_ddp(self.num_nodes)
# nvidia setup
self.set_nvidia_flags(self.is_slurm_managing_tasks, self.data_parallel_device_ids)
# can't init progress bar here because starting a new process
# means the progress_bar won't survive pickling
self.show_progress_bar = show_progress_bar
# logging
self.log_save_interval = log_save_interval
self.val_check_interval = val_check_interval
# backward compatibility
if add_row_log_interval is not None:
warnings.warn("`add_row_log_interval` has renamed to `row_log_interval` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
if not row_log_interval: # in case you did not set the proper value
row_log_interval = add_row_log_interval
self.row_log_interval = row_log_interval
# how much of the data to use
self.overfit_pct = overfit_pct
self.determine_data_use_amount(train_percent_check, val_percent_check,
test_percent_check, overfit_pct)
# 16 bit mixed precision training using apex
self.amp_level = amp_level
self.precision = precision
assert self.precision in (16, 32), 'only 32 or 16 bit precision supported'
if self.precision == 16 and self.num_tpu_cores is None:
use_amp = True
self.init_amp(use_amp)
# Callback system
self.on_init_end()
@property
def slurm_job_id(self) -> int:
try:
job_id = os.environ['SLURM_JOB_ID']
job_id = int(job_id)
except Exception:
job_id = None
return job_id
@classmethod
def default_attributes(cls):
init_signature = inspect.signature(Trainer)
args = {}
for param_name in init_signature.parameters:
value = init_signature.parameters[param_name].default
args[param_name] = value
return args
@classmethod
def add_argparse_args(cls, parent_parser: ArgumentParser) -> ArgumentParser:
"""Extend existing argparse by default `Trainer` attributes."""
parser = ArgumentParser(parents=[parent_parser], add_help=False)
trainer_default_params = Trainer.default_attributes()
# TODO: get "help" from docstring :)
for arg in trainer_default_params:
parser.add_argument(
f'--{arg}',
default=trainer_default_params[arg],
dest=arg,
help='autogenerated by pl.Trainer'
)
return parser
@classmethod
def from_argparse_args(cls, args):
params = vars(args)
return cls(**params)
@property
def num_gpus(self) -> int:
gpus = self.data_parallel_device_ids
if gpus is None:
return 0
return len(gpus)
@property
def data_parallel(self) -> bool:
return self.use_dp or self.use_ddp or self.use_ddp2
@property
def training_tqdm_dict(self) -> dict:
"""Read-only for tqdm metrics.
:return:
"""
ref_model = self.model if not self.data_parallel else self.model.module
return dict(**ref_model.get_tqdm_dict(), **self.tqdm_metrics)
@property
def tng_tqdm_dic(self):
"""Read-only for tqdm metrics.
:return: dictionary
.. warning:: .. deprecated:: 0.5.0
Use `training_tqdm_dict` instead. Will remove 0.8.0.
"""
warnings.warn("`tng_tqdm_dic` has renamed to `training_tqdm_dict` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
return self.training_tqdm_dict
# -----------------------------
# MODEL TRAINING
# -----------------------------
def fit(
self,
model: LightningModule,
train_dataloader: Optional[DataLoader] = None,
val_dataloaders: Optional[DataLoader] = None,
test_dataloaders: Optional[DataLoader] = None
):
r"""
Runs the full optimization routine.
Args:
model: Model to fit.
train_dataloader: A Pytorch
DataLoader with training samples. If the model has
a predefined train_dataloader method this will be skipped.
val_dataloaders: Either a single
Pytorch Dataloader or a list of them, specifying validation samples.
If the model has a predefined val_dataloaders method this will be skipped
test_dataloaders: Either a single
Pytorch Dataloader or a list of them, specifying validation samples.
If the model has a predefined test_dataloaders method this will be skipped
Example::
# Option 1,
# Define the train_dataloader(), test_dataloader() and val_dataloader() fxs
# in the lightningModule
# RECOMMENDED FOR MOST RESEARCH AND APPLICATIONS TO MAINTAIN READABILITY
trainer = Trainer()
model = LightningModule()
trainer.fit(model)
# Option 2
# in production cases we might want to pass different datasets to the same model
# Recommended for PRODUCTION SYSTEMS
train, val, test = DataLoader(...), DataLoader(...), DataLoader(...)
trainer = Trainer()
model = LightningModule()
trainer.fit(model, train_dataloader=train,
val_dataloader=val, test_dataloader=test)
# Option 1 & 2 can be mixed, for example the training set can be
# defined as part of the model, and validation/test can then be
# feed to .fit()
"""
# bind logger and other properties
model.logger = self.logger
self.copy_trainer_model_properties(model)
# set up the passed in dataloaders (if needed)
self.__attach_dataloaders(model, train_dataloader, val_dataloaders, test_dataloaders)
# download the data and do whatever transforms we need
# do before any spawn calls so that the model can assign properties
# only on proc 0 because no spawn has happened yet
model.prepare_data()
# route to appropriate start method
# when using multi-node or DDP within a node start each module in a separate process
if self.use_ddp2:
task = int(os.environ['SLURM_LOCALID'])
self.ddp_train(task, model)
elif self.use_ddp:
if self.is_slurm_managing_tasks:
task = int(os.environ['SLURM_LOCALID'])
self.ddp_train(task, model)
else:
self.__set_random_port()
# track for predict
self.model = model
# train
mp.spawn(self.ddp_train, nprocs=self.num_gpus, args=(model,))
# load weights if not interrupted
self.load_spawn_weights(model)
self.model = model
# 1 gpu or dp option triggers training using DP module
# easier to avoid NCCL issues
elif self.use_dp:
self.dp_train(model)
elif self.single_gpu:
self.single_gpu_train(model)
elif self.use_tpu: # pragma: no cover
log.info(f'training on {self.num_tpu_cores} TPU cores')
# COLAB_GPU is an env var available by default in Colab environments.
start_method = 'fork' if os.getenv('COLAB_GPU') else 'spawn'
# track for predict
self.model = model
# train
xmp.spawn(self.tpu_train, args=(model,), nprocs=self.num_tpu_cores, start_method=start_method)
# load weights if not interrupted
self.load_spawn_weights(model)
self.model = model
# ON CPU
else:
# run through amp wrapper
if self.use_amp:
raise MisconfigurationException('amp + cpu is not supported. Please use a GPU option')
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers())
self.run_pretrain_routine(model)
# return 1 when finished
# used for testing or when we need to know that training succeeded
return 1
def __set_random_port(self):
"""
When running DDP NOT managed by SLURM, the ports might collide
:return:
"""
try:
default_port = os.environ['MASTER_PORT']
except Exception:
import random
default_port = random.randint(10000, 19000)
os.environ['MASTER_PORT'] = str(default_port)
def __attach_dataloaders(self, model, train_dataloader, val_dataloaders, test_dataloaders):
# when dataloader is passed via fit, patch the train_dataloader
# functions to overwrite with these implementations
if train_dataloader is not None:
if not self.is_overriden('training_step', model):
m = 'You called .fit() with a train_dataloader but did not define training_step()'
raise MisconfigurationException(m)
model.train_dataloader = _PatchDataLoader(train_dataloader)
if val_dataloaders is not None:
if not self.is_overriden('validation_step', model):
m = 'You called .fit() with a val_dataloaders but did not define validation_step()'
raise MisconfigurationException(m)
model.val_dataloader = _PatchDataLoader(val_dataloaders)
if test_dataloaders is not None:
if not self.is_overriden('test_step', model):
m = 'You called .fit() with a test_dataloaders but did not define test_step()'
raise MisconfigurationException(m)
model.test_dataloader = _PatchDataLoader(test_dataloaders)
def init_optimizers(
self,
optimizers: Union[Optimizer, Tuple[List, List], List[Optimizer], Tuple[Optimizer]]
) -> Tuple[List, List]:
# single output, single optimizer
if isinstance(optimizers, Optimizer):
return [optimizers], []
# two lists, optimizer + lr schedulers
elif len(optimizers) == 2 and isinstance(optimizers[0], list):
optimizers, lr_schedulers = optimizers
lr_schedulers = self.configure_schedulers(lr_schedulers)
return optimizers, lr_schedulers
# single list or tuple, multiple optimizer
elif isinstance(optimizers, (list, tuple)):
return optimizers, []
# unknown configuration
else:
raise ValueError('Unknown configuration for model optimizers. Output'
'from model.configure_optimizers() should either be:'
'* single output, single torch.optim.Optimizer'
'* single output, list of torch.optim.Optimizer'
'* two outputs, first being a list of torch.optim.Optimizer',
'second being a list of torch.optim.lr_scheduler')
def configure_schedulers(self, schedulers: list):
# Convert each scheduler into dict sturcture with relevant information
lr_schedulers = []
default_config = {'interval': 'epoch', # default every epoch
'frequency': 1, # default every epoch/batch
'reduce_on_plateau': False, # most often not ReduceLROnPlateau scheduler
'monitor': 'val_loss'} # default value to monitor for ReduceLROnPlateau
for scheduler in schedulers:
if isinstance(scheduler, dict):
if 'scheduler' not in scheduler:
raise ValueError(f'Lr scheduler should have key `scheduler`',
' with item being a lr scheduler')
scheduler['reduce_on_plateau'] = isinstance(
scheduler['scheduler'], optim.lr_scheduler.ReduceLROnPlateau)
lr_schedulers.append({**default_config, **scheduler})
elif isinstance(scheduler, optim.lr_scheduler.ReduceLROnPlateau):
lr_schedulers.append({**default_config, 'scheduler': scheduler,
'reduce_on_plateau': True})
elif isinstance(scheduler, optim.lr_scheduler._LRScheduler):
lr_schedulers.append({**default_config, 'scheduler': scheduler})
else:
raise ValueError(f'Input {scheduler} to lr schedulers '
'is a invalid input.')
return lr_schedulers
def run_pretrain_routine(self, model: LightningModule):
"""Sanity check a few things before starting actual training.
Args:
model: The model to run sanity test on.
"""
ref_model = model
if self.data_parallel:
ref_model = model.module
# give model convenience properties
ref_model.trainer = self
# set local properties on the model
self.copy_trainer_model_properties(ref_model)
# log hyper-parameters
if self.logger is not None:
# save exp to get started
if hasattr(ref_model, "hparams"):
self.logger.log_hyperparams(ref_model.hparams)
self.logger.save()
if self.use_ddp or self.use_ddp2:
torch_distrib.barrier()
# wait for all models to restore weights
if self.on_tpu and XLA_AVAILABLE:
# wait for all processes to catch up
torch_xla.core.xla_model.rendezvous("pl.Trainer.run_pretrain_routine")
# register auto-resubmit when on SLURM
self.register_slurm_signal_handlers()
# print model summary
# TODO: remove self.testing condition because model.summarize() is wiping out the weights
if self.proc_rank == 0 and self.weights_summary is not None and not self.testing:
if self.weights_summary in ['full', 'top']:
ref_model.summarize(mode=self.weights_summary)
else:
m = "weights_summary can be None, 'full' or 'top'"
raise MisconfigurationException(m)
# track model now.
# if cluster resets state, the model will update with the saved weights
self.model = model
# set up checkpoint callback
self.configure_checkpoint_callback()
# restore training and model before hpc call
self.restore_weights(model)
# when testing requested only run test and return
if self.testing:
# only load test dataloader for testing
# self.reset_test_dataloader(ref_model)
self.run_evaluation(test_mode=True)
return
# check if we should run validation during training
self.disable_validation = not self.is_overriden('validation_step') and not self.fast_dev_run
# run tiny validation (if validation defined)
# to make sure program won't crash during val
ref_model.on_sanity_check_start()
if not self.disable_validation and self.num_sanity_val_steps > 0:
self.reset_val_dataloader(ref_model)
# init progress bars for validation sanity check
pbar = tqdm(desc='Validation sanity check',
total=self.num_sanity_val_steps * len(self.val_dataloaders),
leave=False, position=2 * self.process_position,
disable=not self.show_progress_bar, dynamic_ncols=True)
self.main_progress_bar = pbar
# dummy validation progress bar
self.val_progress_bar = tqdm(disable=True)
eval_results = self.evaluate(model,
self.val_dataloaders,
self.num_sanity_val_steps,
False)
_, _, _, callback_metrics, _ = self.process_output(eval_results)
# close progress bars
self.main_progress_bar.close()
self.val_progress_bar.close()
if self.enable_early_stop:
self.early_stop_callback.check_metrics(callback_metrics)
# init progress bar
pbar = tqdm(leave=True, position=2 * self.process_position,
disable=not self.show_progress_bar, dynamic_ncols=True,
file=sys.stdout)
self.main_progress_bar = pbar
# clear cache before training
if self.on_gpu:
torch.cuda.empty_cache()
# CORE TRAINING LOOP
self.train()
def test(self, model: Optional[LightningModule] = None):
r"""
Separates from fit to make sure you never run on your test set until you want to.
Args:
model (:class:`.LightningModule`): The model to test.
Example::
# Option 1
# run test after fitting
trainer = Trainer()
model = LightningModule()
trainer.fit()
trainer.test()
# Option 2
# run test from a loaded model
model = LightningModule.load_from_checkpoint('path/to/checkpoint.ckpt')
trainer = Trainer()
trainer.test(model)
"""
self.testing = True
if model is not None:
self.model = model
self.fit(model)
elif self.use_ddp or self.use_tpu: # pragma: no cover
# attempt to load weights from a spawn
path = os.path.join(self.default_save_path, '__temp_weight_ddp_end.ckpt')
test_model = self.model
if os.path.exists(path):
test_model = self.load_spawn_weights(self.model)
self.fit(test_model)
else:
self.run_evaluation(test_mode=True)
self.testing = False
class _PatchDataLoader(object):
r'''
Callable object for patching dataloaders passed into trainer.fit().
Use this class to override model.*_dataloader() and be pickle-compatible.
Args:
dataloader: Dataloader object to return when called.
'''
def __init__(self, dataloader: Union[List[DataLoader], DataLoader]):
self.dataloader = dataloader
def __call__(self) -> Union[List[DataLoader], DataLoader]:
return self.dataloader