-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
data_loading.py
264 lines (214 loc) · 10.2 KB
/
data_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import warnings
from abc import ABC
import torch.distributed as dist
try:
# loading for pyTorch 1.3
from torch.utils.data import IterableDataset
except ImportError:
# loading for pyTorch 1.1
import torch
warnings.warn('Your version of pyTorch %s does not support `IterableDataset`,'
' please upgrade to 1.2+' % torch.__version__, ImportWarning)
EXIST_ITER_DATASET = False
else:
EXIST_ITER_DATASET = True
from torch.utils.data.distributed import DistributedSampler
from pytorch_lightning.utilities.debugging import MisconfigurationException
try:
from apex import amp
APEX_AVAILABLE = True
except ImportError:
APEX_AVAILABLE = False
try:
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
XLA_AVAILABLE = True
except ImportError:
XLA_AVAILABLE = False
class TrainerDataLoadingMixin(ABC):
def __init__(self):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
self.proc_rank = None
self.use_ddp = None
self.use_ddp2 = None
self.shown_warnings = None
self.val_check_interval = None
self.use_tpu = None
self.tpu_local_core_rank = None
def _percent_range_check(self, name):
value = getattr(self, name)
msg = f"`{name}` must lie in the range [0.0, 1.0], but got {value:.3f}."
if name == "val_check_interval":
msg += " If you want to disable validation set `val_percent_check` to 0.0 instead."
if not 0. <= value <= 1.:
raise ValueError(msg)
def init_train_dataloader(self, model):
"""
Dataloaders are provided by the model
:param model:
:return:
"""
self.get_train_dataloader = model.train_dataloader
# determine number of training batches
if EXIST_ITER_DATASET and isinstance(self.get_train_dataloader().dataset, IterableDataset):
self.num_training_batches = float('inf')
else:
self._percent_range_check('train_percent_check')
self.num_training_batches = len(self.get_train_dataloader())
self.num_training_batches = int(self.num_training_batches * self.train_percent_check)
# determine when to check validation
# if int passed in, val checks that often
# otherwise, it checks in [0, 1.0] % range of a training epoch
if isinstance(self.val_check_interval, int):
self.val_check_batch = self.val_check_interval
if self.val_check_batch > self.num_training_batches:
raise ValueError(
f"`val_check_interval` ({self.val_check_interval}) must be less than or equal "
f"to the number of the training batches ({self.num_training_batches}). "
f"If you want to disable validation set `val_percent_check` to 0.0 instead.")
else:
self._percent_range_check('val_check_interval')
self.val_check_batch = int(self.num_training_batches * self.val_check_interval)
self.val_check_batch = max(1, self.val_check_batch)
on_ddp = self.use_ddp or self.use_ddp2
needs_sampler = on_ddp or self.use_tpu
if needs_sampler and not isinstance(self.get_train_dataloader().sampler, DistributedSampler):
msg = """
You're using multiple gpus and multiple nodes, or TPUs without using a
to assign a subset of your data to each process. To silence this warning, pass a
DistributedSampler to your DataLoader.
ie: this:
dataset = myDataset()
dataloader = Dataloader(dataset)
becomes:
dataset = myDataset()
dist_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
dataloader = Dataloader(dataset, sampler=dist_sampler)
If you want each process to load the full dataset, ignore this warning.
"""
if msg not in self.shown_warnings and self.proc_rank == 0:
self.shown_warnings.add(msg)
warnings.warn(msg)
def init_val_dataloader(self, model):
"""
Dataloaders are provided by the model
:param model:
:return:
"""
self.get_val_dataloaders = model.val_dataloader
self.num_val_batches = 0
# determine number of validation batches
# val datasets could be none, 1 or 2+
if self.get_val_dataloaders() is not None:
self._percent_range_check('val_percent_check')
self.num_val_batches = sum(len(dataloader) for dataloader in self.get_val_dataloaders())
self.num_val_batches = int(self.num_val_batches * self.val_percent_check)
on_ddp = self.use_ddp or self.use_ddp2
needs_sampler = on_ddp or self.use_tpu
if needs_sampler and self.get_val_dataloaders() is not None:
for dataloader in self.get_val_dataloaders():
if not isinstance(dataloader.sampler, DistributedSampler):
msg = """
Your val_dataloader(s) don't use DistributedSampler.
You're using multiple gpus and multiple nodes, or TPUs without using a
DistributedSampler to assign a subset of your data to each process.
To silence this warning, pass a DistributedSampler to your DataLoader.
ie: this:
dataset = myDataset()
dataloader = Dataloader(dataset)
becomes:
dataset = myDataset()
dist_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
dataloader = Dataloader(dataset, sampler=dist_sampler)
If you want each process to load the full dataset, ignore this warning.
"""
if msg not in self.shown_warnings and self.proc_rank == 0:
self.shown_warnings.add(msg)
warnings.warn(msg)
break
def init_test_dataloader(self, model):
"""Dataloaders are provided by the model.
:param model:
"""
self.get_test_dataloaders = model.test_dataloader
# determine number of test batches
if self.get_test_dataloaders() is not None:
self._percent_range_check('test_percent_check')
len_sum = sum(len(dataloader) for dataloader in self.get_test_dataloaders())
self.num_test_batches = len_sum
self.num_test_batches = int(self.num_test_batches * self.test_percent_check)
on_ddp = self.use_ddp or self.use_ddp2
needs_sampler = on_ddp or self.use_tpu
if needs_sampler and self.get_test_dataloaders() is not None:
for dataloader in self.get_test_dataloaders():
if not isinstance(dataloader.sampler, DistributedSampler):
msg = """
Your `test_dataloader(s)` don't use DistributedSampler.
You're using multiple gpus and multiple nodes, or TPUs without using a
DistributedSampler to assign a subset of your data to each process.
To silence this warning, pass a DistributedSampler to your DataLoader.
ie: this::
dataset = myDataset()
dataloader = Dataloader(dataset)
becomes::
dataset = myDataset()
dist_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
dataloader = Dataloader(dataset, sampler=dist_sampler)
If you want each process to load the full dataset, ignore this warning.
"""
if msg not in self.shown_warnings and self.proc_rank == 0:
self.shown_warnings.add(msg)
warnings.warn(msg)
break
def get_dataloaders(self, model):
"""
Dataloaders are provided by the model
:param model:
:return:
"""
self.init_train_dataloader(model)
self.init_test_dataloader(model)
self.init_val_dataloader(model)
if self.use_ddp or self.use_ddp2:
# wait for all processes to catch up
dist.barrier()
# load each dataloader
self.get_train_dataloader()
self.get_test_dataloaders()
self.get_val_dataloaders()
# on TPUs load each dataloader only on process 0
# this will trigger the data downloads
if self.use_tpu and XLA_AVAILABLE:
if self.tpu_local_core_rank == 0:
self.get_train_dataloader()
self.get_test_dataloaders()
self.get_val_dataloaders()
# wait for all processes to catch up
torch_xla.core.xla_model.rendezvous()
# support IterableDataset for train data
self.is_iterable_train_dataloader = (
EXIST_ITER_DATASET and isinstance(self.get_train_dataloader().dataset, IterableDataset))
if self.is_iterable_train_dataloader and not isinstance(self.val_check_interval, int):
m = '''
When using an iterableDataset for `train_dataloader`,
`Trainer(val_check_interval)` must be an int.
An int k specifies checking validation every k training batches
'''
raise MisconfigurationException(m)
def determine_data_use_amount(self, train_percent_check, val_percent_check,
test_percent_check, overfit_pct):
"""
Use less data for debugging purposes
"""
self.train_percent_check = train_percent_check
self.val_percent_check = val_percent_check
self.test_percent_check = test_percent_check
if overfit_pct > 0:
if overfit_pct > 1:
raise ValueError(f"`overfit_pct` must be not greater than 1.0, but got "
f"{overfit_pct:.3f}.")
self.train_percent_check = overfit_pct
self.val_percent_check = overfit_pct
self.test_percent_check = overfit_pct