-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathtrainer.py
950 lines (751 loc) · 38.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Trainer to automate the training."""
import logging
import os
import warnings
from pathlib import Path
from typing import Dict, Iterable, List, Optional, Union
import torch
from torch.utils.data import DataLoader
from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.accelerators.accelerator_connector import AcceleratorConnector
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.core.datamodule import LightningDataModule
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.core.step_result import EvalResult, Result
from pytorch_lightning.loggers import LightningLoggerBase
from pytorch_lightning.plugins.plugin_connector import PluginConnector
from pytorch_lightning.profiler import BaseProfiler
from pytorch_lightning.trainer.callback_hook import TrainerCallbackHookMixin
from pytorch_lightning.trainer.configuration_validator import ConfigValidator
from pytorch_lightning.trainer.connectors.callback_connector import CallbackConnector
from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector
from pytorch_lightning.trainer.connectors.data_connector import DataConnector
from pytorch_lightning.trainer.connectors.debugging_connector import DebuggingConnector
from pytorch_lightning.trainer.connectors.env_vars_connector import overwrite_by_env_vars
from pytorch_lightning.trainer.connectors.logger_connector import LoggerConnector
from pytorch_lightning.trainer.connectors.model_connector import ModelConnector
from pytorch_lightning.trainer.connectors.optimizer_connector import OptimizerConnector
from pytorch_lightning.trainer.connectors.precision_connector import PrecisionConnector
from pytorch_lightning.trainer.connectors.profiler_connector import ProfilerConnector
from pytorch_lightning.trainer.connectors.slurm_connector import SLURMConnector
from pytorch_lightning.trainer.connectors.training_trick_connector import TrainingTricksConnector
from pytorch_lightning.trainer.data_loading import TrainerDataLoadingMixin
from pytorch_lightning.trainer.deprecated_api import DeprecatedDistDeviceAttributes
from pytorch_lightning.trainer.evaluation_loop import EvaluationLoop
from pytorch_lightning.trainer.logging import TrainerLoggingMixin
from pytorch_lightning.trainer.model_hooks import TrainerModelHooksMixin
from pytorch_lightning.trainer.optimizers import TrainerOptimizersMixin
from pytorch_lightning.trainer.properties import TrainerProperties
from pytorch_lightning.trainer.states import TrainerState
from pytorch_lightning.trainer.training_loop import TrainLoop
from pytorch_lightning.trainer.training_tricks import TrainerTrainingTricksMixin
from pytorch_lightning.tuner.tuning import Tuner
from pytorch_lightning.utilities import AMPType, DeviceType, rank_zero_warn
from pytorch_lightning.utilities.cloud_io import load as pl_load
from pytorch_lightning.utilities.debugging import InternalDebugger
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.memory import recursive_detach
from pytorch_lightning.utilities.model_utils import is_overridden
log = logging.getLogger(__name__)
# warnings to ignore in trainer
warnings.filterwarnings(
'ignore', message='torch.distributed.reduce_op is deprecated, ' 'please use torch.distributed.ReduceOp instead'
)
class Trainer(
TrainerProperties,
TrainerCallbackHookMixin,
TrainerModelHooksMixin,
TrainerOptimizersMixin,
TrainerLoggingMixin,
TrainerTrainingTricksMixin,
TrainerDataLoadingMixin,
DeprecatedDistDeviceAttributes,
):
@overwrite_by_env_vars
def __init__(
self,
logger: Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool] = True,
checkpoint_callback: bool = True,
callbacks: Optional[List[Callback]] = None,
default_root_dir: Optional[str] = None,
gradient_clip_val: float = 0,
process_position: int = 0,
num_nodes: int = 1,
num_processes: int = 1,
gpus: Optional[Union[List[int], str, int]] = None,
auto_select_gpus: bool = False,
tpu_cores: Optional[Union[List[int], str, int]] = None,
log_gpu_memory: Optional[str] = None,
progress_bar_refresh_rate: int = 1,
overfit_batches: Union[int, float] = 0.0,
track_grad_norm: Union[int, float, str] = -1,
check_val_every_n_epoch: int = 1,
fast_dev_run: Union[int, bool] = False,
accumulate_grad_batches: Union[int, Dict[int, int], List[list]] = 1,
max_epochs: int = 1000,
min_epochs: int = 1,
max_steps: Optional[int] = None,
min_steps: Optional[int] = None,
limit_train_batches: Union[int, float] = 1.0,
limit_val_batches: Union[int, float] = 1.0,
limit_test_batches: Union[int, float] = 1.0,
val_check_interval: Union[int, float] = 1.0,
flush_logs_every_n_steps: int = 100,
log_every_n_steps: int = 50,
accelerator: Optional[Union[str, Accelerator]] = None,
sync_batchnorm: bool = False,
precision: int = 32,
weights_summary: Optional[str] = 'top',
weights_save_path: Optional[str] = None,
num_sanity_val_steps: int = 2,
truncated_bptt_steps: Optional[int] = None,
resume_from_checkpoint: Optional[Union[Path, str]] = None,
profiler: Optional[Union[BaseProfiler, bool, str]] = None,
benchmark: bool = False,
deterministic: bool = False,
reload_dataloaders_every_epoch: bool = False,
auto_lr_find: Union[bool, str] = False,
replace_sampler_ddp: bool = True,
terminate_on_nan: bool = False,
auto_scale_batch_size: Union[str, bool] = False,
prepare_data_per_node: bool = True,
plugins: Optional[Union[str, list]] = None,
amp_backend: str = 'native',
amp_level: str = 'O2',
distributed_backend: Optional[str] = None,
automatic_optimization: Optional[bool] = None,
move_metrics_to_cpu: bool = False,
enable_pl_optimizer: bool = None, # todo: remove in v1.3
):
r"""
Customize every aspect of training via flags
Args:
accelerator: Previously known as distributed_backend (dp, ddp, ddp2, etc...).
Can also take in an accelerator object for custom hardware.
accumulate_grad_batches: Accumulates grads every k batches or as set up in the dict.
amp_backend: The mixed precision backend to use ("native" or "apex")
amp_level: The optimization level to use (O1, O2, etc...).
auto_lr_find: If set to True, will make trainer.tune() run a learning rate finder,
trying to optimize initial learning for faster convergence. trainer.tune() method will
set the suggested learning rate in self.lr or self.learning_rate in the LightningModule.
To use a different key set a string instead of True with the key name.
auto_scale_batch_size: If set to True, will `initially` run a batch size
finder trying to find the largest batch size that fits into memory.
The result will be stored in self.batch_size in the LightningModule.
Additionally, can be set to either `power` that estimates the batch size through
a power search or `binsearch` that estimates the batch size through a binary search.
auto_select_gpus: If enabled and `gpus` is an integer, pick available
gpus automatically. This is especially useful when
GPUs are configured to be in "exclusive mode", such
that only one process at a time can access them.
benchmark: If true enables cudnn.benchmark.
callbacks: Add a list of callbacks.
checkpoint_callback: If ``True``, enable checkpointing.
It will configure a default ModelCheckpoint callback if there is no user-defined ModelCheckpoint in
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.callbacks`. Default: ``True``.
.. warning:: Passing a ModelCheckpoint instance to this argument is deprecated since
v1.1 and will be unsupported from v1.3. Use `callbacks` argument instead.
check_val_every_n_epoch: Check val every n train epochs.
default_root_dir: Default path for logs and weights when no logger/ckpt_callback passed.
Default: ``os.getcwd()``.
Can be remote file paths such as `s3://mybucket/path` or 'hdfs://path/'
deterministic: If true enables cudnn.deterministic.
distributed_backend: deprecated. Please use 'accelerator'
fast_dev_run: runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es)
of train, val and test to find any bugs (ie: a sort of unit test).
flush_logs_every_n_steps: How often to flush logs to disk (defaults to every 100 steps).
gpus: number of gpus to train on (int) or which GPUs to train on (list or str) applied per node
gradient_clip_val: 0 means don't clip.
limit_train_batches: How much of training dataset to check (floats = percent, int = num_batches)
limit_val_batches: How much of validation dataset to check (floats = percent, int = num_batches)
limit_test_batches: How much of test dataset to check (floats = percent, int = num_batches)
logger: Logger (or iterable collection of loggers) for experiment tracking.
log_gpu_memory: None, 'min_max', 'all'. Might slow performance
log_every_n_steps: How often to log within steps (defaults to every 50 steps).
automatic_optimization: If False you are responsible for calling .backward, .step, zero_grad
in LightningModule. This argument has been moved to LightningModule. It is deprecated
here in v1.1 and will be removed in v1.3.
prepare_data_per_node: If True, each LOCAL_RANK=0 will call prepare data.
Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data
process_position: orders the progress bar when running multiple models on same machine.
progress_bar_refresh_rate: How often to refresh progress bar (in steps). Value ``0`` disables progress bar.
Ignored when a custom callback is passed to :paramref:`~Trainer.callbacks`.
profiler: To profile individual steps during training and assist in identifying bottlenecks. Passing bool
value is deprecated in v1.1 and will be removed in v1.3.
overfit_batches: Overfit a percent of training data (float) or a set number of batches (int). Default: 0.0
plugins: Plugins allow modification of core behavior like ddp and amp, and enable custom lightning plugins.
precision: Full precision (32), half precision (16). Can be used on CPU, GPU or TPUs.
max_epochs: Stop training once this number of epochs is reached.
min_epochs: Force training for at least these many epochs
max_steps: Stop training after this number of steps. Disabled by default (None).
min_steps: Force training for at least these number of steps. Disabled by default (None).
num_nodes: number of GPU nodes for distributed training.
num_processes: number of processes for distributed training with distributed_backend="ddp_cpu"
num_sanity_val_steps: Sanity check runs n validation batches before starting the training routine.
Set it to `-1` to run all batches in all validation dataloaders. Default: 2
reload_dataloaders_every_epoch: Set to True to reload dataloaders every epoch.
replace_sampler_ddp: Explicitly enables or disables sampler replacement. If not specified this
will toggled automatically when DDP is used. By default it will add ``shuffle=True`` for
train sampler and ``shuffle=False`` for val/test sampler. If you want to customize it,
you can set ``replace_sampler_ddp=False`` and add your own distributed sampler.
resume_from_checkpoint: Path/URL of the checkpoint from which training is resumed. If there is
no checkpoint file at the path, start from scratch. If resuming from mid-epoch checkpoint,
training will start from the beginning of the next epoch.
sync_batchnorm: Synchronize batch norm layers between process groups/whole world.
terminate_on_nan: If set to True, will terminate training (by raising a `ValueError`) at the
end of each training batch, if any of the parameters or the loss are NaN or +/-inf.
tpu_cores: How many TPU cores to train on (1 or 8) / Single TPU to train on [1]
track_grad_norm: -1 no tracking. Otherwise tracks that p-norm. May be set to 'inf' infinity-norm.
truncated_bptt_steps: Truncated back prop breaks performs backprop every k steps of much longer
sequence.
val_check_interval: How often to check the validation set. Use float to check within a training epoch,
use int to check every n steps (batches).
weights_summary: Prints a summary of the weights when training begins.
weights_save_path: Where to save weights if specified. Will override default_root_dir
for checkpoints only. Use this if for whatever reason you need the checkpoints
stored in a different place than the logs written in `default_root_dir`.
Can be remote file paths such as `s3://mybucket/path` or 'hdfs://path/'
Defaults to `default_root_dir`.
move_metrics_to_cpu: Whether to force internal logged metrics to be moved to cpu.
This can save some gpu memory, but can make training slower. Use with attention.
enable_pl_optimizer: If True, each optimizer will be wrapped by
`pytorch_lightning.core.optimizer.LightningOptimizer`. It allows Lightning to
handle AMP, TPU, accumulated_gradients, etc.
.. warning:: Currently deprecated and it will be removed in v1.3
"""
super().__init__()
self._device_type = DeviceType.CPU
self._distrib_type = None
# init connectors
self.dev_debugger = InternalDebugger(self)
self.config_validator = ConfigValidator(self)
self.data_connector = DataConnector(self)
self.optimizer_connector = OptimizerConnector(self)
self.accelerator_connector = AcceleratorConnector(self)
self.logger_connector = LoggerConnector(self)
self.model_connector = ModelConnector(self)
self.precision_connector = PrecisionConnector(self)
self.callback_connector = CallbackConnector(self)
self.debugging_connector = DebuggingConnector(self)
self.training_tricks_connector = TrainingTricksConnector(self)
self.profile_connector = ProfilerConnector(self)
self.checkpoint_connector = CheckpointConnector(self)
self.slurm_connector = SLURMConnector(self)
self.tuner = Tuner(self)
self.accelerator_backend = None
self.evaluation_loop = EvaluationLoop(self)
self.train_loop = TrainLoop(self)
self.plugin_connector = PluginConnector(self)
# training state
self.model = None
self.shown_warnings = set()
# init callbacks
# Declare attributes to be set in callback_connector on_trainer_init
self.callback_connector.on_trainer_init(
callbacks,
checkpoint_callback,
progress_bar_refresh_rate,
process_position,
default_root_dir,
weights_save_path,
resume_from_checkpoint,
)
# hook
self.on_init_start()
# init optimizer + lr scheduler related flags
self.optimizer_connector.on_trainer_init(enable_pl_optimizer)
# init data flags
self.data_connector.on_trainer_init(
check_val_every_n_epoch, reload_dataloaders_every_epoch, prepare_data_per_node
)
# init training tricks
self.training_tricks_connector.on_trainer_init(
gradient_clip_val, track_grad_norm, accumulate_grad_batches, truncated_bptt_steps, terminate_on_nan
)
# init accelerator related flags
self.accelerator_connector.on_trainer_init(
num_processes,
tpu_cores,
accelerator,
distributed_backend,
auto_select_gpus,
gpus,
num_nodes,
log_gpu_memory,
sync_batchnorm,
benchmark,
replace_sampler_ddp,
deterministic,
)
# init train loop related flags
# TODO: remove in 1.3.0
if automatic_optimization is None:
automatic_optimization = True
else:
rank_zero_warn(
"Disable automatic optimization with the trainer flag is deprecated and will be removed in v1.3.0!"
"Please use the property on the LightningModule for disabling automatic optimization"
)
self.train_loop.on_trainer_init(
max_epochs,
min_epochs,
max_steps,
min_steps,
num_sanity_val_steps,
automatic_optimization,
weights_summary,
)
self.evaluation_loop.on_trainer_init()
# configure tuner
self.tuner.on_trainer_init(auto_lr_find, auto_scale_batch_size)
# configure profiler
self.profile_connector.on_trainer_init(profiler)
# init logger flags
self.logger_connector.on_trainer_init(
logger,
flush_logs_every_n_steps,
log_every_n_steps,
move_metrics_to_cpu,
)
# init debugging flags
self.debugging_connector.on_init_start(
limit_train_batches,
limit_val_batches,
limit_test_batches,
val_check_interval,
overfit_batches,
fast_dev_run,
)
# set precision
self.precision_connector.on_trainer_init(precision, amp_level, amp_backend)
# last thing are the plugins which override whatever the trainer used by default
self.plugin_connector.on_trainer_init(plugins)
# Callback system
self.on_init_end()
def setup_trainer(self, model: LightningModule):
"""
Sanity check a few things before starting actual training or testing.
Args:
model: The model to run sanity test on.
"""
# --------------------------
# Setup??
# --------------------------
ref_model = self.get_model()
# set the ranks and devices
self.accelerator_backend.dist.rank = self.global_rank
self.accelerator_backend.dist.device = ref_model.device
# set local properties on the model
self.model_connector.copy_trainer_model_properties(model)
# init amp. Must be done here instead of __init__ to allow ddp to work
if self.amp_backend == AMPType.NATIVE and self.precision == 16 and not self.use_tpu:
self.scaler = self.precision_connector.backend.scaler
# log hyper-parameters
if self.logger is not None:
# save exp to get started (this is where the first experiment logs are written)
self.logger.log_hyperparams(ref_model.hparams_initial)
self.logger.log_graph(ref_model)
self.logger.save()
# wait for all to join if on distributed
self.accelerator_backend.barrier("setup_trainer")
# register auto-resubmit when on SLURM
self.slurm_connector.register_slurm_signal_handlers()
# track model now.
# if cluster resets state, the model will update with the saved weights
self.model = model
def fit(
self,
model: LightningModule,
train_dataloader: Optional[DataLoader] = None,
val_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None,
datamodule: Optional[LightningDataModule] = None,
):
r"""
Runs the full optimization routine.
Args:
datamodule: A instance of :class:`LightningDataModule`.
model: Model to fit.
train_dataloader: A Pytorch DataLoader with training samples. If the model has
a predefined train_dataloader method this will be skipped.
val_dataloaders: Either a single Pytorch Dataloader or a list of them, specifying validation samples.
If the model has a predefined val_dataloaders method this will be skipped
"""
# bookkeeping
self._state = TrainerState.RUNNING
# ----------------------------
# LINK DATA
# ----------------------------
# setup data, etc...
self.train_loop.setup_fit(model, train_dataloader, val_dataloaders, datamodule)
# hook
self.data_connector.prepare_data(model)
# ----------------------------
# SET UP TRAINING
# ----------------------------
self.accelerator_backend = self.accelerator_connector.select_accelerator()
self.accelerator_backend.setup(model)
# ----------------------------
# INSPECT THESE FOR MAIN LOOPS
# ----------------------------
# assign training and eval functions... inspect these to see the train and eval loops :)
self.accelerator_backend.train_loop = self.train
self.accelerator_backend.validation_loop = self.run_evaluation
self.accelerator_backend.test_loop = self.run_evaluation
# ----------------------------
# TRAIN
# ----------------------------
# hook
self.call_hook('on_fit_start')
results = self.accelerator_backend.train()
self.accelerator_backend.teardown()
# ----------------------------
# POST-Training CLEAN UP
# ----------------------------
# hook
self.call_hook('on_fit_end')
# hook
self.teardown('fit')
if self.is_function_implemented('teardown'):
model.teardown('fit')
# return 1 when finished
# used for testing or when we need to know that training succeeded
if self._state != TrainerState.INTERRUPTED:
self._state = TrainerState.FINISHED
return results or 1
def train(self):
self.run_sanity_check(self.get_model())
# set stage for logging
self.logger_connector.set_stage("train")
self.checkpoint_connector.has_trained = False
# enable train mode
model = self.get_model()
model.train()
torch.set_grad_enabled(True)
# reload data when needed
self.train_loop.reset_train_val_dataloaders(model)
# hook
self.train_loop.on_train_start()
try:
if self.train_loop.should_skip_training():
return
# run all epochs
for epoch in range(self.current_epoch, self.max_epochs):
# hook
self.train_loop.on_train_epoch_start(epoch)
with self.profiler.profile("run_training_epoch"):
# run train epoch
self.train_loop.run_training_epoch()
if self.max_steps and self.max_steps <= self.global_step:
return
# update LR schedulers
self.optimizer_connector.update_learning_rates(interval='epoch')
# early stopping
met_min_epochs = epoch >= self.min_epochs - 1
met_min_steps = self.global_step >= self.min_steps if self.min_steps else True
if self.should_stop:
if met_min_epochs and met_min_steps:
return
log.info(
'Trainer was signaled to stop but required minimum epochs'
f' ({self.min_epochs}) or minimum steps ({self.min_steps}) has'
' not been met. Training will continue...'
)
except KeyboardInterrupt:
rank_zero_warn('Detected KeyboardInterrupt, attempting graceful shutdown...')
# user could press ctrl+c many times... only shutdown once
if not self.interrupted:
self.interrupted = True
self._state = TrainerState.INTERRUPTED
self.on_keyboard_interrupt()
finally:
# hook
self.train_loop.on_train_end()
def run_evaluation(self, max_batches=None):
# used to know if we are logging for val, test + reset cached results
self.logger_connector.set_stage(self.testing, reset=True)
# bookkeeping
self.evaluation_loop.testing = self.testing
# prepare dataloaders
dataloaders, max_batches = self.evaluation_loop.get_evaluation_dataloaders(max_batches)
# check if we want to skip this evaluation
if self.evaluation_loop.should_skip_evaluation(dataloaders, max_batches):
return [], []
# ref model
model = self.get_model()
# enable eval mode + no grads
self.evaluation_loop.on_evaluation_model_eval()
model.zero_grad()
torch.set_grad_enabled(False)
# hook
self.evaluation_loop.on_evaluation_start()
# set up the eval loop
self.evaluation_loop.setup(model, max_batches, dataloaders)
# hook
self.evaluation_loop.on_evaluation_epoch_start()
# run validation/testing
for dataloader_idx, dataloader in enumerate(dataloaders):
# bookkeeping
dl_outputs = []
dataloader = self.accelerator_backend.process_dataloader(dataloader)
dl_max_batches = self.evaluation_loop.max_batches[dataloader_idx]
for batch_idx, batch in enumerate(dataloader):
if batch is None:
continue
# stop short when running on limited batches
if batch_idx >= dl_max_batches:
break
# hook
self.evaluation_loop.on_evaluation_batch_start(batch, batch_idx, dataloader_idx)
# lightning module methods
with self.profiler.profile("evaluation_step_and_end"):
output = self.evaluation_loop.evaluation_step(batch, batch_idx, dataloader_idx)
output = self.evaluation_loop.evaluation_step_end(output)
# hook + store predictions
self.evaluation_loop.on_evaluation_batch_end(output, batch, batch_idx, dataloader_idx)
# log batch metrics
self.evaluation_loop.log_evaluation_step_metrics(output, batch_idx)
# track epoch level outputs
dl_outputs = self.track_output_for_epoch_end(dl_outputs, output)
# store batch level output per dataloader
self.evaluation_loop.outputs.append(dl_outputs)
# lightning module method
deprecated_eval_results = self.evaluation_loop.evaluation_epoch_end()
# hook
self.evaluation_loop.on_evaluation_epoch_end()
# hook
self.evaluation_loop.on_evaluation_end()
# log epoch metrics
eval_loop_results = self.evaluation_loop.log_epoch_metrics_on_evaluation_end()
# save predictions to disk
self.evaluation_loop.predictions.to_disk()
# enable train mode again
self.evaluation_loop.on_evaluation_model_train()
torch.set_grad_enabled(True)
return eval_loop_results, deprecated_eval_results
def track_output_for_epoch_end(self, outputs, output):
if output is not None:
if isinstance(output, Result):
output.detach()
if self.move_metrics_to_cpu:
output.cpu()
elif isinstance(output, dict):
output = recursive_detach(output, to_cpu=self.move_metrics_to_cpu)
elif isinstance(output, torch.Tensor) and output.is_cuda and self.move_metrics_to_cpu:
output = output.cpu()
outputs.append(output)
return outputs
def run_test(self):
# only load test dataloader for testing
# self.reset_test_dataloader(ref_model)
with self.profiler.profile("run_test_evaluation"):
eval_loop_results, _ = self.run_evaluation()
if len(eval_loop_results) == 0:
return 1
# remove the tensors from the eval results
for i, result in enumerate(eval_loop_results):
if isinstance(result, dict):
for k, v in result.items():
if isinstance(v, torch.Tensor):
result[k] = v.cpu().item()
return eval_loop_results
def run_sanity_check(self, ref_model):
using_val_step = ref_model.val_dataloader is not None and is_overridden('validation_step', ref_model)
should_sanity_check = using_val_step and self.num_sanity_val_steps > 0 and self.limit_val_batches > 0
# run tiny validation (if validation defined)
# to make sure program won't crash during val
if should_sanity_check:
self.reset_val_dataloader(ref_model)
self.num_sanity_val_batches = [
min(self.num_sanity_val_steps, val_batches) for val_batches in self.num_val_batches
]
# hook and callback
self.running_sanity_check = True
self.on_sanity_check_start()
# run eval step
_, eval_results = self.run_evaluation(max_batches=self.num_sanity_val_batches)
# allow no returns from eval
if eval_results is not None and len(eval_results) > 0:
# when we get a list back, used only the last item
if isinstance(eval_results, list):
eval_results = eval_results[-1]
if isinstance(eval_results, EvalResult):
callback_metrics = eval_results.callback_metrics
else:
_, _, _, callback_metrics, _ = self.process_dict_result(eval_results)
self.logger_connector.callback_metrics = callback_metrics
self.on_sanity_check_end()
self.running_sanity_check = False
def test(
self,
model: Optional[LightningModule] = None,
test_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None,
ckpt_path: Optional[str] = 'best',
verbose: bool = True,
datamodule: Optional[LightningDataModule] = None,
):
r"""
Separates from fit to make sure you never run on your test set until you want to.
Args:
ckpt_path: Either ``best`` or path to the checkpoint you wish to test.
If ``None``, use the weights from the last epoch to test. Default to ``best``.
datamodule: A instance of :class:`LightningDataModule`.
model: The model to test.
test_dataloaders: Either a single
Pytorch Dataloader or a list of them, specifying validation samples.
verbose: If True, prints the test results
Returns:
The final test result dictionary. If no test_epoch_end is defined returns a list of dictionaries
"""
# --------------------
# SETUP HOOK
# --------------------
self.verbose_test = verbose
self.logger_connector.set_stage("test")
# If you supply a datamodule you can't supply train_dataloader or val_dataloaders
if test_dataloaders and datamodule:
raise MisconfigurationException(
'You cannot pass test_dataloaders to trainer.test if you supply a datamodule'
)
# Attach datamodule to get setup/prepare_data added to model before the call to it below
self.data_connector.attach_datamodule(model or self.get_model(), datamodule, 'test')
if model is not None:
results = self.__test_given_model(model, test_dataloaders)
else:
results = self.__test_using_best_weights(ckpt_path, test_dataloaders)
self.teardown('test')
return results
def __test_using_best_weights(self, ckpt_path, test_dataloaders):
model = self.get_model()
# if user requests the best checkpoint but we don't have it, error
if ckpt_path == 'best' and not self.checkpoint_callback.best_model_path:
raise MisconfigurationException(
'ckpt_path is "best", but ModelCheckpoint is not configured to save the best model.'
)
# load best weights
if ckpt_path is not None:
# ckpt_path is 'best' so load the best model
if ckpt_path == 'best':
ckpt_path = self.checkpoint_callback.best_model_path
if len(ckpt_path) == 0:
rank_zero_warn(
f'.test() found no path for the best weights, {ckpt_path}. Please '
f'specify a path for a checkpoint .test(ckpt_path=PATH)'
)
return {}
if self.accelerator_backend is not None and not self.use_tpu:
self.accelerator_backend.barrier()
ckpt = pl_load(ckpt_path, map_location=lambda storage, loc: storage)
model.load_state_dict(ckpt['state_dict'])
# attach dataloaders
if test_dataloaders is not None:
self.data_connector.attach_dataloaders(model, test_dataloaders=test_dataloaders)
# run tests
self.tested_ckpt_path = ckpt_path
self.testing = True
self.model = model
results = self.fit(model)
self.testing = False
# teardown
if self.is_function_implemented('teardown'):
model_ref = self.get_model()
model_ref.teardown('test')
return results
def __test_given_model(self, model, test_dataloaders):
# attach data
if test_dataloaders is not None:
self.data_connector.attach_dataloaders(model, test_dataloaders=test_dataloaders)
# run test
# sets up testing so we short circuit to eval
self.testing = True
self.model = model
results = self.fit(model)
self.testing = False
# teardown
if self.is_function_implemented('teardown'):
model.teardown('test')
return results
def tune(
self,
model: LightningModule,
train_dataloader: Optional[DataLoader] = None,
val_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None,
datamodule: Optional[LightningDataModule] = None,
):
r"""
Runs routines to tune hyperparameters before training.
Args:
datamodule: A instance of :class:`LightningDataModule`.
model: Model to tune.
train_dataloader: A Pytorch DataLoader with training samples. If the model has
a predefined train_dataloader method this will be skipped.
val_dataloaders: Either a single Pytorch Dataloader or a list of them, specifying validation samples.
If the model has a predefined val_dataloaders method this will be skipped
"""
self.tuner.tune(model, train_dataloader, val_dataloaders, datamodule)
def call_setup_hook(self, model):
# call setup after the ddp process has connected
stage_name = 'test' if self.testing else 'fit'
if self.datamodule is not None:
called = self.datamodule.has_setup_test if self.testing else self.datamodule.has_setup_fit
if not called:
self.datamodule.setup(stage_name)
self.setup(model, stage_name)
model.setup(stage_name)
def _reset_result_and_set_hook_fx_name(self, hook_name):
# on_before_zero_grad is called within training_step
if "batch_start" in hook_name or "on_before_zero_grad" in hook_name:
return True
model_ref = self.get_model()
if model_ref is not None:
# used to track current hook name called
model_ref._results = Result()
model_ref._current_hook_fx_name = hook_name
return False
def _cache_logged_metrics(self):
model_ref = self.get_model()
if model_ref is not None:
# capture logging for this hook
self.logger_connector.cache_logged_metrics()
def call_hook(self, hook_name, *args, **kwargs):
# set hook_name to model + reset Result obj
skip = self._reset_result_and_set_hook_fx_name(hook_name)
# always profile hooks
with self.profiler.profile(hook_name):
# first call trainer hook
if hasattr(self, hook_name):
trainer_hook = getattr(self, hook_name)
trainer_hook(*args, **kwargs)
# next call hook in lightningModule
output = None
model_ref = self.get_model()
if is_overridden(hook_name, model_ref):
hook_fx = getattr(model_ref, hook_name)
output = hook_fx(*args, **kwargs)
# if the PL module doesn't have the hook then call the accelator
# used to auto-reduce things for the user with Results obj
elif hasattr(self.accelerator_backend, hook_name):
accelerator_hook = getattr(self.accelerator_backend, hook_name)
output = accelerator_hook(*args, **kwargs)
if not skip:
self._cache_logged_metrics()
return output
@staticmethod
def available_plugins():
"""
List of all available plugins that can be string arguments to the trainer.
Returns: List of all available plugins that are supported as string arguments.
"""
return PluginConnector.available_plugins()