-
Notifications
You must be signed in to change notification settings - Fork 415
/
Copy pathssim.py
277 lines (241 loc) · 11 KB
/
ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.image.ssim import _multiscale_ssim_compute, _ssim_compute, _ssim_update
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
class StructuralSimilarityIndexMeasure(Metric):
"""Computes Structual Similarity Index Measure (SSIM_).
Args:
preds: estimated image
target: ground truth image
gaussian_kernel: If ``True`` (default), a gaussian kernel is used, if ``False`` a uniform kernel is used
sigma: Standard deviation of the gaussian kernel, anisotropic kernels are possible.
Ignored if a uniform kernel is used
kernel_size: the size of the uniform kernel, anisotropic kernels are possible.
Ignored if a Gaussian kernel is used
reduction: a method to reduce metric score over labels.
- ``'elementwise_mean'``: takes the mean
- ``'sum'``: takes the sum
- ``'none'`` or ``None``: no reduction will be applied
data_range: Range of the image. If ``None``, it is determined from the image (max - min)
k1: Parameter of SSIM.
k2: Parameter of SSIM.
return_full_image: If true, the full ``ssim`` image is returned as a second argument.
Mutually exclusive with ``return_contrast_sensitivity``
return_contrast_sensitivity: If true, the constant term is returned as a second argument.
The luminance term can be obtained with luminance=ssim/contrast
Mutually exclusive with ``return_full_image``
compute_on_step:
Forward only calls ``update()`` and returns None if this is set to False.
.. deprecated:: v0.8
Argument has no use anymore and will be removed v0.9.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Return:
Tensor with SSIM score
Example:
>>> from torchmetrics import StructuralSimilarityIndexMeasure
>>> import torch
>>> preds = torch.rand([16, 1, 16, 16])
>>> target = preds * 0.75
>>> ssim = StructuralSimilarityIndexMeasure()
>>> ssim(preds, target)
tensor(0.9219)
"""
preds: List[Tensor]
target: List[Tensor]
higher_is_better = True
def __init__(
self,
gaussian_kernel: bool = True,
sigma: Union[float, Sequence[float]] = 1.5,
kernel_size: Union[int, Sequence[int]] = 11,
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean",
data_range: Optional[float] = None,
k1: float = 0.01,
k2: float = 0.03,
compute_on_step: Optional[bool] = None,
return_full_image: bool = False,
return_contrast_sensitivity: bool = False,
**kwargs: Dict[str, Any],
) -> None:
super().__init__(compute_on_step=compute_on_step, **kwargs)
rank_zero_warn(
"Metric `SSIM` will save all targets and"
" predictions in buffer. For large datasets this may lead"
" to large memory footprint."
)
self.add_state("preds", default=[], dist_reduce_fx="cat")
self.add_state("target", default=[], dist_reduce_fx="cat")
self.gaussian_kernel = gaussian_kernel
self.sigma = sigma
self.kernel_size = kernel_size
self.reduction = reduction
self.data_range = data_range
self.k1 = k1
self.k2 = k2
self.return_full_image = return_full_image
self.return_contrast_sensitivity = return_contrast_sensitivity
def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore
"""Update state with predictions and targets.
Args:
preds: Predictions from model
target: Ground truth values
"""
preds, target = _ssim_update(preds, target)
self.preds.append(preds)
self.target.append(target)
def compute(self) -> Tensor:
"""Computes explained variance over state."""
preds = dim_zero_cat(self.preds)
target = dim_zero_cat(self.target)
return _ssim_compute(
preds,
target,
self.gaussian_kernel,
self.sigma,
self.kernel_size,
self.reduction,
self.data_range,
self.k1,
self.k2,
self.return_full_image,
self.return_contrast_sensitivity,
)
class MultiScaleStructuralSimilarityIndexMeasure(Metric):
"""Computes `MultiScaleSSIM`_, Multi-scale Structural Similarity Index Measure, which is a generalization of
Structural Similarity Index Measure by incorporating image details at different resolution scores.
Args:
gaussian_kernel: If ``True`` (default), a gaussian kernel is used, if false a uniform kernel is used
kernel_size: size of the gaussian kernel
sigma: Standard deviation of the gaussian kernel
reduction: a method to reduce metric score over labels.
- ``'elementwise_mean'``: takes the mean
- ``'sum'``: takes the sum
- ``'none'`` or ``None``: no reduction will be applied
data_range: Range of the image. If ``None``, it is determined from the image (max - min)
k1: Parameter of structural similarity index measure.
k2: Parameter of structural similarity index measure.
betas: Exponent parameters for individual similarities and contrastive sensitivies returned by different image
resolutions.
normalize: When MultiScaleStructuralSimilarityIndexMeasure loss is used for training, it is desirable to use
normalizes to improve the training stability. This `normalize` argument is out of scope of the original
implementation [1], and it is adapted from https://github.com/jorge-pessoa/pytorch-msssim instead.
compute_on_step:
Forward only calls ``update()`` and returns None if this is set to False.
.. deprecated:: v0.8
Argument has no use anymore and will be removed v0.9.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Return:
Tensor with Multi-Scale SSIM score
Raises:
ValueError:
If ``kernel_size`` is not an int or a Sequence of ints with size 2 or 3.
ValueError:
If ``betas`` is not a tuple of floats with lengt 2.
ValueError:
If ``normalize`` is neither `None`, `ReLU` nor `simple`.
Example:
>>> from torchmetrics import MultiScaleStructuralSimilarityIndexMeasure
>>> import torch
>>> preds = torch.rand([1, 1, 256, 256], generator=torch.manual_seed(42))
>>> target = preds * 0.75
>>> ms_ssim = MultiScaleStructuralSimilarityIndexMeasure()
>>> ms_ssim(preds, target)
tensor(0.9558)
References:
[1] Multi-Scale Structural Similarity For Image Quality Assessment by Zhou Wang, Eero P. Simoncelli and Alan C.
Bovik `MultiScaleSSIM`_
"""
preds: List[Tensor]
target: List[Tensor]
higher_is_better = True
is_differentiable = True
def __init__(
self,
gaussian_kernel: bool = True,
kernel_size: Union[int, Sequence[int]] = 11,
sigma: Union[float, Sequence[float]] = 1.5,
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean",
data_range: Optional[float] = None,
k1: float = 0.01,
k2: float = 0.03,
betas: Tuple[float, ...] = (0.0448, 0.2856, 0.3001, 0.2363, 0.1333),
normalize: Literal["relu", "simple", None] = None,
compute_on_step: Optional[bool] = None,
**kwargs: Dict[str, Any],
) -> None:
super().__init__(compute_on_step=compute_on_step, **kwargs)
rank_zero_warn(
"Metric `MS_SSIM` will save all targets and"
" predictions in buffer. For large datasets this may lead"
" to large memory footprint."
)
self.add_state("preds", default=[], dist_reduce_fx="cat")
self.add_state("target", default=[], dist_reduce_fx="cat")
if not (isinstance(kernel_size, Sequence) or isinstance(kernel_size, int)):
raise ValueError(
f"Argument `kernel_size` expected to be an sequence or an int, or a single int. Got {kernel_size}"
)
if isinstance(kernel_size, Sequence) and (
len(kernel_size) not in (2, 3) or not all(isinstance(ks, int) for ks in kernel_size)
):
raise ValueError(
"Argument `kernel_size` expected to be an sequence of size 2 or 3 where each element is an int, "
f"or a single int. Got {kernel_size}"
)
self.gaussian_kernel = gaussian_kernel
self.sigma = sigma
self.kernel_size = kernel_size
self.reduction = reduction
self.data_range = data_range
self.k1 = k1
self.k2 = k2
if not isinstance(betas, tuple):
raise ValueError("Argument `betas` is expected to be of a type tuple.")
if isinstance(betas, tuple) and not all(isinstance(beta, float) for beta in betas):
raise ValueError("Argument `betas` is expected to be a tuple of floats.")
self.betas = betas
if normalize and normalize not in ("relu", "simple"):
raise ValueError("Argument `normalize` to be expected either `None` or one of 'relu' or 'simple'")
self.normalize = normalize
def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore
"""Update state with predictions and targets.
Args:
preds: Predictions from model of shape ``[N, C, H, W]``
target: Ground truth values of shape ``[N, C, H, W]``
"""
preds, target = _ssim_update(preds, target)
self.preds.append(preds)
self.target.append(target)
def compute(self) -> Tensor:
"""Computes explained variance over state."""
preds = dim_zero_cat(self.preds)
target = dim_zero_cat(self.target)
return _multiscale_ssim_compute(
preds,
target,
self.gaussian_kernel,
self.sigma,
self.kernel_size,
self.reduction,
self.data_range,
self.k1,
self.k2,
self.betas,
self.normalize,
)