This repository has been archived by the owner on Oct 9, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 211
/
data.py
49 lines (36 loc) · 1.83 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
from flash.core.data.data_source import DefaultDataKeys, NumpyDataSource, PathsDataSource, TensorDataSource
from flash.core.utilities.imports import _TORCHVISION_AVAILABLE
if _TORCHVISION_AVAILABLE:
from torchvision.datasets.folder import default_loader, IMG_EXTENSIONS
from torchvision.transforms.functional import to_pil_image
else:
IMG_EXTENSIONS = []
class ImagePathsDataSource(PathsDataSource):
def __init__(self):
super().__init__(extensions=IMG_EXTENSIONS)
def load_sample(self, sample: Dict[str, Any], dataset: Optional[Any] = None) -> Dict[str, Any]:
sample[DefaultDataKeys.INPUT] = default_loader(sample[DefaultDataKeys.INPUT])
return sample
class ImageTensorDataSource(TensorDataSource):
def load_sample(self, sample: Dict[str, Any], dataset: Optional[Any] = None) -> Dict[str, Any]:
sample[DefaultDataKeys.INPUT] = to_pil_image(sample[DefaultDataKeys.INPUT])
return sample
class ImageNumpyDataSource(NumpyDataSource):
def load_sample(self, sample: Dict[str, Any], dataset: Optional[Any] = None) -> Dict[str, Any]:
sample[DefaultDataKeys.INPUT] = to_pil_image(torch.from_numpy(sample[DefaultDataKeys.INPUT]))
return sample