-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpreparation_data_IS.py
96 lines (91 loc) · 3.63 KB
/
preparation_data_IS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import glob
from MetricsReloaded.processes.overall_process import ProcessEvaluation
import os
import nibabel as nib
import pickle as pkl
import pandas as pd
from MetricsReloaded.utility.utils import MorphologyOps
list_reffile = glob.glob("examples/data/Ref/CorrectLesion*CLA*")
list_predfile = glob.glob("examples/data/Pred/CorrectLesion*RAP94*")
list_det = []
list_seg = []
for f in list_reffile:
name = os.path.split(f)[1]
name = name.split("Ref")[0]
name = name.split("Lesion_")[1]
if not os.path.exists("examples/results/Det94AvFin_%s.csv" % name):
list_pospred = [c for c in list_predfile if name in c]
if len(list_pospred) == 1:
ref = nib.load(f).get_fdata()
pred = nib.load(list_pospred[0]).get_fdata()
# ref = nib.load('/Users/csudre/Data/B-RAPIDD/CLA66/CorrectLesion_B-RAP_0007_01_CLA66.nii.gz').get_fdata()
# pred = nib.load('/Users/csudre/Data/B-RAPIDD/RAP66/CorrectLesion_B-RAP_0007_01_RAP66.nii.gz').get_fdata()
ref_bin = ref >= 0.5
pred_bin = pred >= 0.5
print(f, list_pospred[0])
list_ref, _, _ = MorphologyOps(ref_bin, neigh=6).list_foreground_component()
list_pred, _, _ = MorphologyOps(
pred_bin, neigh=6
).list_foreground_component()
pred_prob = []
pred_class = []
ref_class = []
for k in list_pred:
pred_class.append(1)
pred_prob.append(1)
for k in list_ref:
ref_class.append(1)
list_values = [1]
file = list_pospred
dict_file = {}
dict_file["pred_loc"] = [list_pred]
dict_file["ref_loc"] = [list_ref]
dict_file["pred_prob"] = [pred_prob]
dict_file["ref_class"] = [ref_class]
dict_file["pred_class"] = [pred_class]
dict_file["list_values"] = list_values
dict_file["file"] = file
# f = open("TestDataBRAP_%s.pkl"%name, "wb") # Pickle file is newly created where foo1.py is
# pkl.dump(dict_file, f) # dump data to f
# f.close()
PE = ProcessEvaluation(
dict_file,
"Instance Segmentation",
localization="mask_iou",
file=list_pospred,
flag_map=True,
assignment="greedy_matching",
measures_overlap=[
"fbeta",
"numb_ref",
"numb_pred",
"numb_tp",
"numb_fp",
"numb_fn",
],
measures_mcc=[],
measures_pcc=[
"fbeta",
"numb_ref",
"numb_pred",
"numb_tp",
"numb_fp",
"numb_fn",
],
measures_mt=[],
measures_boundary=["masd", "nsd", "boundary_iou"],
measures_detseg=["PQ"],
thresh_ass=0.000001,
)
df_resdet, df_resseg, df_resmt, df_resmcc = PE.process_data()
df_resdet["id"] = name
df_resseg["id"] = name
df_resdet.to_csv("examples/results/Det94AvFin_%s.csv" % name)
df_resseg.to_csv("examples/results/Seg94AvFin_%s.csv" % name)
list_det.append(df_resdet)
list_seg.append(df_resseg)
df_resdetall = pd.concat(list_det)
df_ressegall = pd.concat(list_seg)
df_resdetall.to_csv("examples/results/Det94AvFin.csv")
df_ressegall.to_csv("examples/results/Seg94AvFin.csv")
print(df_resdet, df_resseg)