-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_semseg.py
203 lines (172 loc) · 9.19 KB
/
test_semseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
Author: Benny
Date: Nov 2019
"""
import argparse
import os
from data_utils.S3DISDataLoader import ScannetDatasetWholeScene
from data_utils.indoor3d_util import g_label2color
import torch
import logging
from pathlib import Path
import sys
import importlib
from tqdm import tqdm
import provider
import numpy as np
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
classes = ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase',
'board', 'clutter']
class2label = {cls: i for i, cls in enumerate(classes)}
seg_classes = class2label
seg_label_to_cat = {}
for i, cat in enumerate(seg_classes.keys()):
seg_label_to_cat[i] = cat
def parse_args():
'''PARAMETERS'''
parser = argparse.ArgumentParser('Model')
parser.add_argument('--batch_size', type=int, default=32, help='batch size in testing [default: 32]')
parser.add_argument('--gpu', type=str, default='0', help='specify gpu device')
parser.add_argument('--num_point', type=int, default=4096, help='point number [default: 4096]')
parser.add_argument('--log_dir', type=str, required=True, help='experiment root')
parser.add_argument('--visual', action='store_true', default=False, help='visualize result [default: False]')
parser.add_argument('--test_area', type=int, default=5, help='area for testing, option: 1-6 [default: 5]')
parser.add_argument('--num_votes', type=int, default=3, help='aggregate segmentation scores with voting [default: 5]')
return parser.parse_args()
def add_vote(vote_label_pool, point_idx, pred_label, weight):
B = pred_label.shape[0]
N = pred_label.shape[1]
for b in range(B):
for n in range(N):
if weight[b, n] != 0 and not np.isinf(weight[b, n]):
vote_label_pool[int(point_idx[b, n]), int(pred_label[b, n])] += 1
return vote_label_pool
def main(args):
def log_string(str):
logger.info(str)
print(str)
'''HYPER PARAMETER'''
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
experiment_dir = 'log/sem_seg/' + args.log_dir
visual_dir = experiment_dir + '/visual/'
visual_dir = Path(visual_dir)
visual_dir.mkdir(exist_ok=True)
'''LOG'''
args = parse_args()
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/eval.txt' % experiment_dir)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER ...')
log_string(args)
NUM_CLASSES = 13
BATCH_SIZE = args.batch_size
NUM_POINT = args.num_point
root = 'data/s3dis/stanford_indoor3d/'
TEST_DATASET_WHOLE_SCENE = ScannetDatasetWholeScene(root, split='test', test_area=args.test_area, block_points=NUM_POINT)
log_string("The number of test data is: %d" % len(TEST_DATASET_WHOLE_SCENE))
'''MODEL LOADING'''
model_name = os.listdir(experiment_dir + '/logs')[0].split('.')[0]
MODEL = importlib.import_module(model_name)
classifier = MODEL.get_model(NUM_CLASSES).cuda()
checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth')
classifier.load_state_dict(checkpoint['model_state_dict'])
classifier = classifier.eval()
with torch.no_grad():
scene_id = TEST_DATASET_WHOLE_SCENE.file_list
scene_id = [x[:-4] for x in scene_id]
num_batches = len(TEST_DATASET_WHOLE_SCENE)
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
total_iou_deno_class = [0 for _ in range(NUM_CLASSES)]
log_string('---- EVALUATION WHOLE SCENE----')
for batch_idx in range(num_batches):
print("Inference [%d/%d] %s ..." % (batch_idx + 1, num_batches, scene_id[batch_idx]))
total_seen_class_tmp = [0 for _ in range(NUM_CLASSES)]
total_correct_class_tmp = [0 for _ in range(NUM_CLASSES)]
total_iou_deno_class_tmp = [0 for _ in range(NUM_CLASSES)]
if args.visual:
fout = open(os.path.join(visual_dir, scene_id[batch_idx] + '_pred.obj'), 'w')
fout_gt = open(os.path.join(visual_dir, scene_id[batch_idx] + '_gt.obj'), 'w')
whole_scene_data = TEST_DATASET_WHOLE_SCENE.scene_points_list[batch_idx]
whole_scene_label = TEST_DATASET_WHOLE_SCENE.semantic_labels_list[batch_idx]
vote_label_pool = np.zeros((whole_scene_label.shape[0], NUM_CLASSES))
for _ in tqdm(range(args.num_votes), total=args.num_votes):
scene_data, scene_label, scene_smpw, scene_point_index = TEST_DATASET_WHOLE_SCENE[batch_idx]
num_blocks = scene_data.shape[0]
s_batch_num = (num_blocks + BATCH_SIZE - 1) // BATCH_SIZE
batch_data = np.zeros((BATCH_SIZE, NUM_POINT, 9))
batch_label = np.zeros((BATCH_SIZE, NUM_POINT))
batch_point_index = np.zeros((BATCH_SIZE, NUM_POINT))
batch_smpw = np.zeros((BATCH_SIZE, NUM_POINT))
for sbatch in range(s_batch_num):
start_idx = sbatch * BATCH_SIZE
end_idx = min((sbatch + 1) * BATCH_SIZE, num_blocks)
real_batch_size = end_idx - start_idx
batch_data[0:real_batch_size, ...] = scene_data[start_idx:end_idx, ...]
batch_label[0:real_batch_size, ...] = scene_label[start_idx:end_idx, ...]
batch_point_index[0:real_batch_size, ...] = scene_point_index[start_idx:end_idx, ...]
batch_smpw[0:real_batch_size, ...] = scene_smpw[start_idx:end_idx, ...]
batch_data[:, :, 3:6] /= 1.0
torch_data = torch.Tensor(batch_data)
torch_data = torch_data.float().cuda()
torch_data = torch_data.transpose(2, 1)
seg_pred, _ = classifier(torch_data)
batch_pred_label = seg_pred.contiguous().cpu().data.max(2)[1].numpy()
vote_label_pool = add_vote(vote_label_pool, batch_point_index[0:real_batch_size, ...],
batch_pred_label[0:real_batch_size, ...],
batch_smpw[0:real_batch_size, ...])
pred_label = np.argmax(vote_label_pool, 1)
for l in range(NUM_CLASSES):
total_seen_class_tmp[l] += np.sum((whole_scene_label == l))
total_correct_class_tmp[l] += np.sum((pred_label == l) & (whole_scene_label == l))
total_iou_deno_class_tmp[l] += np.sum(((pred_label == l) | (whole_scene_label == l)))
total_seen_class[l] += total_seen_class_tmp[l]
total_correct_class[l] += total_correct_class_tmp[l]
total_iou_deno_class[l] += total_iou_deno_class_tmp[l]
iou_map = np.array(total_correct_class_tmp) / (np.array(total_iou_deno_class_tmp, dtype=np.float) + 1e-6)
print(iou_map)
arr = np.array(total_seen_class_tmp)
tmp_iou = np.mean(iou_map[arr != 0])
log_string('Mean IoU of %s: %.4f' % (scene_id[batch_idx], tmp_iou))
print('----------------------------')
filename = os.path.join(visual_dir, scene_id[batch_idx] + '.txt')
with open(filename, 'w') as pl_save:
for i in pred_label:
pl_save.write(str(int(i)) + '\n')
pl_save.close()
for i in range(whole_scene_label.shape[0]):
color = g_label2color[pred_label[i]]
color_gt = g_label2color[whole_scene_label[i]]
if args.visual:
fout.write('v %f %f %f %d %d %d\n' % (
whole_scene_data[i, 0], whole_scene_data[i, 1], whole_scene_data[i, 2], color[0], color[1],
color[2]))
fout_gt.write(
'v %f %f %f %d %d %d\n' % (
whole_scene_data[i, 0], whole_scene_data[i, 1], whole_scene_data[i, 2], color_gt[0],
color_gt[1], color_gt[2]))
if args.visual:
fout.close()
fout_gt.close()
IoU = np.array(total_correct_class) / (np.array(total_iou_deno_class, dtype=np.float) + 1e-6)
iou_per_class_str = '------- IoU --------\n'
for l in range(NUM_CLASSES):
iou_per_class_str += 'class %s, IoU: %.3f \n' % (
seg_label_to_cat[l] + ' ' * (14 - len(seg_label_to_cat[l])),
total_correct_class[l] / float(total_iou_deno_class[l]))
log_string(iou_per_class_str)
log_string('eval point avg class IoU: %f' % np.mean(IoU))
log_string('eval whole scene point avg class acc: %f' % (
np.mean(np.array(total_correct_class) / (np.array(total_seen_class, dtype=np.float) + 1e-6))))
log_string('eval whole scene point accuracy: %f' % (
np.sum(total_correct_class) / float(np.sum(total_seen_class) + 1e-6)))
print("Done!")
if __name__ == '__main__':
args = parse_args()
main(args)