|
| 1 | +import numpy as np |
| 2 | +import pandas as pd |
| 3 | +import argparse |
| 4 | +import time |
| 5 | +import os |
| 6 | +import nltk |
| 7 | +from nltk.tokenize import word_tokenize |
| 8 | +import editdistance |
| 9 | +import rouge |
| 10 | +from bleu import * |
| 11 | +from nltk.translate.bleu_score import corpus_bleu |
| 12 | + |
| 13 | +def slice_11(my_list, n): |
| 14 | + composite_list = [my_list[x:x+n] for x in range(0, len(my_list),n)] |
| 15 | + return composite_list |
| 16 | + |
| 17 | + |
| 18 | +def bleu_scorer(ref, hyp, script='default'): |
| 19 | + refsend = [] |
| 20 | + for i in range(len(ref)): |
| 21 | + refsi = [] |
| 22 | + for j in range(len(ref[i])): |
| 23 | + refsi.append(ref[i][j].split()) |
| 24 | + refsend.append(refsi) |
| 25 | + |
| 26 | + gensend = [] |
| 27 | + for i in range(len(hyp)): |
| 28 | + gensend.append(hyp[i].split()) |
| 29 | + |
| 30 | + if script == 'nltk': |
| 31 | + metrics = corpus_bleu(refsend, gensend) |
| 32 | + return [metrics] |
| 33 | + |
| 34 | + metrics = compute_bleu(refsend, gensend) |
| 35 | + return metrics |
| 36 | + |
| 37 | +rouge_eval = rouge.Rouge(metrics=['rouge-1', 'rouge-2', 'rouge-l']) |
| 38 | + |
| 39 | +def select_posed_bleu(src, df_sub): |
| 40 | + poseds = [] |
| 41 | + for idx in list(df_sub.index): |
| 42 | + syn = df_sub.loc[idx, 'syn_paraphrase'] |
| 43 | + temp = df_sub.loc[idx, 'template'] |
| 44 | + syn_tags = list(zip(*nltk.pos_tag(word_tokenize(syn))))[1] |
| 45 | + temp_tags = list(zip(*nltk.pos_tag(word_tokenize(temp))))[1] |
| 46 | + posed = editdistance.eval(syn_tags, temp_tags) |
| 47 | + poseds.append(posed) |
| 48 | + |
| 49 | + min_posed = min(poseds) |
| 50 | + posed_idx = [i for i in range(len(poseds)) if poseds[i] == min_posed] |
| 51 | + max_bleu = -1 |
| 52 | + final_idx = None |
| 53 | + id_start = list(df_sub.index)[0] |
| 54 | + for idx in posed_idx: |
| 55 | + syn = df_sub.loc[id_start + idx, 'syn_paraphrase'] |
| 56 | + bleu = bleu_scorer([[src]], [syn])[0] |
| 57 | + if bleu > max_bleu: |
| 58 | + max_bleu = bleu |
| 59 | + final_idx = id_start + idx |
| 60 | + |
| 61 | + return final_idx |
| 62 | + |
| 63 | +def select_rouge(src, df_sub): |
| 64 | + max_rouge = -1 |
| 65 | + max_idx = None |
| 66 | + for idx in list(df_sub.index): |
| 67 | + syn = df_sub.loc[idx, 'syn_paraphrase'] |
| 68 | + rouge = rouge_eval.get_scores([syn], [src])[0]['rouge-1']['f'] |
| 69 | + if rouge > max_rouge: |
| 70 | + max_rouge = rouge |
| 71 | + max_idx = idx |
| 72 | + return max_idx |
| 73 | + |
| 74 | +def ranker_select_rouge(src, df_sub): |
| 75 | + max_rouge = -1 |
| 76 | + max_idx = None |
| 77 | + for idx in list(df_sub.index): |
| 78 | + syn = df_sub.loc[idx, 'syn_paraphrase'] |
| 79 | + rouge1 = rouge_eval.get_scores([syn], [src])[0]['rouge-1']['f'] |
| 80 | + rouge2 = rouge_eval.get_scores([syn], [src])[0]['rouge-2']['f'] |
| 81 | + rougel = rouge_eval.get_scores([syn], [src])[0]['rouge-l']['f'] |
| 82 | + rouge_general = 0.2 * rouge1 + 0.3 * rouge2 + 0.5 * rougel |
| 83 | + if rouge_general > max_rouge: |
| 84 | + max_rouge = rouge_general |
| 85 | + max_idx = idx |
| 86 | + return max_idx |
| 87 | + |
| 88 | +def select_bleu(src, df_sub): |
| 89 | + max_bleu = -1 |
| 90 | + max_idx = None |
| 91 | + for idx in list(df_sub.index): |
| 92 | + syn = df_sub.loc[idx, 'syn_paraphrase'] |
| 93 | + bleu = bleu_scorer([[src]], [syn])[1][0] |
| 94 | + if bleu > max_bleu: |
| 95 | + max_bleu = bleu |
| 96 | + max_idx = idx |
| 97 | + return max_idx |
| 98 | + |
| 99 | +def select_maxht(df_sub): |
| 100 | + max_ht = -1 |
| 101 | + max_idx = None |
| 102 | + for idx in list(df_sub.index): |
| 103 | + ht = int(df_sub.loc[idx, 'height']) |
| 104 | + if ht > max_ht: |
| 105 | + max_ht = ht |
| 106 | + max_idx = idx |
| 107 | + |
| 108 | + return max_idx |
| 109 | + |
| 110 | +if __name__ == "__main__": |
| 111 | + |
| 112 | + parser = argparse.ArgumentParser('Convert trees file to sentence file') |
| 113 | + parser.add_argument('-mode', default = 'test', help = '') |
| 114 | + parser.add_argument('-gen_dir', help = ' ', default="./") |
| 115 | + parser.add_argument('-output_file', help="the name of the output_file") |
| 116 | + # parser.add_argument('-clean_gen_file', required = True, help = 'name of the file') |
| 117 | + # parser.add_argument('-res_file', required = True, help = 'name of the file') |
| 118 | + parser.add_argument('-crt', choices = ['posed','rouge', 'bleu', 'maxht', 'rouge-general'], |
| 119 | + default ='bleu', |
| 120 | + help = "Criteria to select best generation") |
| 121 | + parser.add_argument('-sample', type=int, default=10) |
| 122 | + parser.add_argument('-scbart_generate', help="the file scbart generated", default="output/template-based-diverse-wr.txt") |
| 123 | + parser.add_argument('-target', help="the target file", default="eval_data/template-based3-set1.target") |
| 124 | + args = parser.parse_args() |
| 125 | + |
| 126 | + generate_lines = open(args.scbart_generate, "r").readlines() |
| 127 | + target_lines = open(args.target,"r").readlines() |
| 128 | + target_lines = [line.split("<sep>")[0].strip() for line in target_lines] |
| 129 | + assert len(generate_lines) == len(target_lines) |
| 130 | + df_ls = [] |
| 131 | + for i in range(0, len(generate_lines)): |
| 132 | + generate = generate_lines[i] |
| 133 | + target = target_lines[i] |
| 134 | + df_ls.append({ |
| 135 | + "source": target, |
| 136 | + "syn_paraphrase": generate |
| 137 | + }) |
| 138 | + df = pd.DataFrame(df_ls) |
| 139 | + |
| 140 | + # df = pd.read_csv(os.path.join(args.gen_dir, args.clean_gen_file)) |
| 141 | + srcs_unq = [] |
| 142 | + idss = [] |
| 143 | + ids = [] |
| 144 | + prev_src = None |
| 145 | + prev_temp = None |
| 146 | + it = 0 |
| 147 | + |
| 148 | + srcs_unq = [ls[0].strip("\n") for ls in slice_11(df["source"].values, args.sample)] |
| 149 | + idss = slice_11(df["source"].index, args.sample) |
| 150 | + |
| 151 | + assert len(idss) == len(srcs_unq) |
| 152 | + elites = [] |
| 153 | + for src, ids in zip(srcs_unq, idss): |
| 154 | + df_sub = df.loc[ids] |
| 155 | + |
| 156 | + if args.crt == 'posed': |
| 157 | + final_idx = select_posed_bleu(src, df_sub) |
| 158 | + elif args.crt == 'bleu': |
| 159 | + final_idx = select_bleu(src, df_sub) |
| 160 | + elif args.crt == 'maxht': |
| 161 | + final_idx = select_maxht(df_sub) |
| 162 | + elif args.crt == 'rouge-general': |
| 163 | + final_idx = ranker_select_rouge(src, df_sub) |
| 164 | + else: |
| 165 | + final_idx = select_rouge(src, df_sub) |
| 166 | + elites.append(final_idx) |
| 167 | + |
| 168 | + df_elite = df[df.index.isin(elites)] |
| 169 | + |
| 170 | + assert len(df_elite) == len(srcs_unq) |
| 171 | + try: |
| 172 | + references = df_elite['reference'].values |
| 173 | + except: |
| 174 | + references = [] |
| 175 | + syn_paras = df_elite['syn_paraphrase'].values |
| 176 | + sources = df_elite['source'].values |
| 177 | + |
| 178 | + # para_f, source_f = open(os.path.join(args.gen_dir, 'para.txt'), "w+"), \ |
| 179 | + # open(os.path.join(args.gen_dir, 'source.txt'), "w+") |
| 180 | + # para_f = open(os.path.join(args.gen_dir, 'QQPPos-para.txt'), "w+") |
| 181 | + para_f = open(os.path.join(args.gen_dir, args.output_file), "w+") |
| 182 | + for i, row in df_elite.iterrows(): |
| 183 | + syn_para, source = row["syn_paraphrase"].strip("\n").strip(), row["source"].strip("\n").strip() |
| 184 | + para_f.write(syn_para + "\n") |
| 185 | + # source_f.write(source + "\n") |
| 186 | + |
| 187 | + |
| 188 | + |
| 189 | + |
| 190 | + |
| 191 | + |
| 192 | + |
0 commit comments