-
Notifications
You must be signed in to change notification settings - Fork 167
/
Copy pathvits_infer_stream.py
68 lines (58 loc) · 2.12 KB
/
vits_infer_stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import sys
import numpy as np
import torch
import utils
import argparse
from scipy.io import wavfile
from text.symbols import symbols
from text import cleaned_text_to_sequence
from vits_pinyin import VITS_PinYin
parser = argparse.ArgumentParser(description='Inference code for bert vits models')
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--model', type=str, required=True)
args = parser.parse_args()
def save_wav(wav, path, rate):
wav *= 32767 / max(0.01, np.max(np.abs(wav))) * 0.6
wavfile.write(path, rate, wav.astype(np.int16))
# device
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
# pinyin
tts_front = VITS_PinYin("./bert", device)
# config
hps = utils.get_hparams_from_file(args.config)
# model
net_g = utils.load_class(hps.train.eval_class)(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model)
# model_path = "logs/bert_vits/G_200000.pth"
# utils.save_model(net_g, "vits_bert_model.pth")
# model_path = "vits_bert_model.pth"
utils.load_model(args.model, net_g)
net_g.eval()
net_g.to(device)
os.makedirs("./vits_infer_out/", exist_ok=True)
if __name__ == "__main__":
n = 0
fo = open("vits_infer_item.txt", "r+", encoding='utf-8')
while (True):
try:
item = fo.readline().strip()
except Exception as e:
print('nothing of except:', e)
break
if (item == None or item == ""):
break
n = n + 1
phonemes, char_embeds = tts_front.chinese_to_phonemes(item)
input_ids = cleaned_text_to_sequence(phonemes)
with torch.no_grad():
x_tst = torch.LongTensor(input_ids).unsqueeze(0).to(device)
x_tst_lengths = torch.LongTensor([len(input_ids)]).to(device)
x_tst_prosody = torch.FloatTensor(char_embeds).unsqueeze(0).to(device)
audio = net_g.infer_stream(x_tst, x_tst_lengths, x_tst_prosody, noise_scale=0.5,length_scale=1)
save_wav(audio, f"./vits_infer_out/bert_vits_stream_{n}.wav", hps.data.sampling_rate)
fo.close()