-
Notifications
You must be signed in to change notification settings - Fork 167
/
Copy pathvits_infer_onnx.py
107 lines (85 loc) · 2.76 KB
/
vits_infer_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
import onnxruntime
import soundfile
import torch
import os
import torch
import argparse
from text import cleaned_text_to_sequence
from vits_pinyin import VITS_PinYin
def display(sess):
for i in sess.get_inputs():
print(i)
print("-" * 10)
for o in sess.get_outputs():
print(o)
class OnnxModel:
def __init__(
self,
model: str,
):
session_opts = onnxruntime.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 4
self.session_opts = session_opts
self.model = onnxruntime.InferenceSession(
model,
sess_options=self.session_opts,
)
display(self.model)
meta = self.model.get_modelmeta().custom_metadata_map
self.add_blank = int(meta["add_blank"])
self.sample_rate = int(meta["sample_rate"])
print(meta)
def __call__(self, x: torch.Tensor):
"""
Args:
x:
A int64 tensor of shape (L,)
"""
x = x.unsqueeze(0)
x_length = torch.tensor([x.shape[1]], dtype=torch.int64)
noise_scale = torch.tensor([1], dtype=torch.float32)
length_scale = torch.tensor([1], dtype=torch.float32)
y = self.model.run(
[
self.model.get_outputs()[0].name,
],
{
self.model.get_inputs()[0].name: x.numpy(),
self.model.get_inputs()[1].name: x_length.numpy(),
self.model.get_inputs()[2].name: noise_scale.numpy(),
self.model.get_inputs()[3].name: length_scale.numpy(),
},
)[0]
return y
def main():
parser = argparse.ArgumentParser(
description='Inference code for bert vits models')
parser.add_argument('--model', type=str, required=True)
args = parser.parse_args()
print("Onnx model path:", args.model)
model = OnnxModel(args.model)
tts_front = VITS_PinYin(None, None, hasBert=False)
os.makedirs("./vits_infer_out/", exist_ok=True)
n = 0
fo = open("vits_infer_item.txt", "r+", encoding='utf-8')
while (True):
try:
item = fo.readline().strip()
except Exception as e:
print('nothing of except:', e)
break
if (item == None or item == ""):
break
n = n + 1
phonemes, _ = tts_front.chinese_to_phonemes(item)
input_ids = cleaned_text_to_sequence(phonemes)
x = torch.tensor(input_ids, dtype=torch.int64)
y = model(x)
soundfile.write(
f"./vits_infer_out/onnx_{n}.wav", y, model.sample_rate)
fo.close()
if __name__ == "__main__":
main()