-
Notifications
You must be signed in to change notification settings - Fork 167
/
Copy pathapp.py
108 lines (91 loc) · 5.04 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from models import SynthesizerTrn
from vits_pinyin import VITS_PinYin
from text import cleaned_text_to_sequence
from text.symbols import symbols
import gradio as gr
import utils
import torch
import argparse
import os
import re
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"
def create_calback(net_g: SynthesizerTrn, tts_front: VITS_PinYin):
def tts_calback(text, dur_scale):
if limitation:
text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
max_len = 150
if text_len > max_len:
return "Error: Text is too long", None
phonemes, char_embeds = tts_front.chinese_to_phonemes(text)
input_ids = cleaned_text_to_sequence(phonemes)
with torch.no_grad():
x_tst = torch.LongTensor(input_ids).unsqueeze(0).to(device)
x_tst_lengths = torch.LongTensor([len(input_ids)]).to(device)
x_tst_prosody = torch.FloatTensor(
char_embeds).unsqueeze(0).to(device)
audio = net_g.infer(x_tst, x_tst_lengths, x_tst_prosody, noise_scale=0.5,
length_scale=dur_scale)[0][0, 0].data.cpu().float().numpy()
del x_tst, x_tst_lengths, x_tst_prosody
return "Success", (16000, audio)
return tts_calback
example = [['天空呈现的透心的蓝,像极了当年。总在这样的时候,透过窗棂,心,在天空里无尽的游弋!柔柔的,浓浓的,痴痴的风,牵引起心底灵动的思潮;情愫悠悠,思情绵绵,风里默坐,红尘中的浅醉,诗词中的优柔,任那自在飞花轻似梦的情怀,裁一束霓衣,织就清浅淡薄的安寂。', 1],
['风的影子翻阅过淡蓝色的信笺,柔和的文字浅浅地漫过我安静的眸,一如几朵悠闲的云儿,忽而氤氲成汽,忽而修饰成花,铅华洗尽后的透彻和靓丽,爽爽朗朗,轻轻盈盈', 1],
['时光仿佛有穿越到了从前,在你诗情画意的眼波中,在你舒适浪漫的暇思里,我如风中的思绪徜徉广阔天际,仿佛一片沾染了快乐的羽毛,在云环影绕颤动里浸润着风的呼吸,风的诗韵,那清新的耳语,那婉约的甜蜜,那恬淡的温馨,将一腔情澜染得愈发的缠绵。', 1],]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true",
default=False, help="share gradio app")
args = parser.parse_args()
device = torch.device("cpu")
# pinyin
tts_front = VITS_PinYin("./bert", device)
# config
hps = utils.get_hparams_from_file("./configs/bert_vits.json")
# model
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model)
model_path = "vits_bert_model.pth"
utils.load_model(model_path, net_g)
net_g.eval()
net_g.to(device)
tts_calback = create_calback(net_g, tts_front)
app = gr.Blocks()
with app:
gr.Markdown("# Best TTS based on BERT and VITS with some Natural Speech Features Of Microsoft\n\n"
"code : github.com/PlayVoice/vits_chinese\n\n"
"1, Hidden prosody embedding from BERT,get natural pauses in grammar\n\n"
"2, Infer loss from NaturalSpeech,get less sound error\n\n"
"3, Framework of VITS,get high audio quality\n\n"
"<video id='video' controls='' preload='yes'>\n\n"
"<source id='mp4' src='https://user-images.githubusercontent.com/16432329/220678182-4775dec8-9229-4578-870f-2eebc3a5d660.mp4' type='video/mp4'>\n\n"
"</videos>\n\n"
)
with gr.Tabs():
with gr.TabItem("TTS"):
with gr.Row():
with gr.Column():
textbox = gr.TextArea(label="Text",
placeholder="Type your sentence here (Maximum 150 words)",
value="中文语音合成", elem_id=f"tts-input")
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1,
label='速度 Speed')
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(
label="Output Audio", elem_id="tts-audio")
btn = gr.Button("Generate!")
btn.click(tts_calback,
inputs=[textbox, duration_slider],
outputs=[text_output, audio_output])
gr.Examples(
examples=example,
inputs=[textbox, duration_slider],
outputs=[text_output, audio_output],
fn=tts_calback
)
app.queue(concurrency_count=3).launch(show_api=False, share=args.share)