-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtaylor8.m
111 lines (100 loc) · 4.61 KB
/
taylor8.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
% How to create a taylor diagram with overlaid markers
%
% An eighth example of how to create a Taylor diagram given one set
% of reference observations and multiple model predictions for the
% quantity.
%
% This example is a variation on the seventh example (taylor7) where now a
% fourth data point having a negative correlation is overlaid on an
% existing Taylor diagram that already has 3 data points with positive
% correlations. It is chosen to have data points with positive correlations
% appear in red while data points with negative correlations are displayed
% in blue.
%
% All functions in the Skill Metrics Toolbox are designed to only work with
% one-dimensional arrays, e.g. time series of observations at a selected
% location. The one-dimensional data are read in as data structures via a
% mat file. The latter are stored in data structures in the format:
% ref.data, pred1.data, pred2.dat, and pred3.dat. The plot is written to a
% file in Portable Network Graphics (PNG) format.
%
% The reference data used in this example are cell concentrations of a
% phytoplankton collected from cruise surveys at selected locations and
% time. The model predictions are from three different simulations that
% have been space-time interpolated to the location and time of the sample
% collection. Details on the contents of the data structures (once loaded)
% can be obtained by simply entering the data structure variable name at
% the command prompt, e.g.
% >> ref
% ref =
% data: [57x1 double]
% date: {57x1 cell}
% depth: [57x1 double]
% latitude: [57x1 double]
% longitude: [57x1 double]
% station: [57x1 double]
% time: {57x1 cell}
% units: 'cell/L'
% jday: [57x1 double]
% Author: Peter A. Rochford
% Symplectic, LLC
% www.thesymplectic.com
% Close any previously open graphics windows
close all;
% Set the figure properties (optional)
set(gcf,'units','inches','position',[0,10.0,14.0,10.0]);
set(gcf,'DefaultLineLineWidth', 1.5); % linewidth for plots
set(gcf,'DefaultAxesFontSize',18); % font size of axes text
% Read in data from a mat file
load('taylor_data.mat');
% Calculate statistics for Taylor diagram
% The first array element corresponds to the reference series for the
% while the second is that for the predicted series.
taylor_stats1 = taylor_statistics(pred1,ref,'data');
taylor_stats2 = taylor_statistics(pred2,ref,'data');
taylor_stats3 = taylor_statistics(pred3,ref,'data');
% Store statistics in arrays
sdev = [taylor_stats1.sdev(1); taylor_stats1.sdev(2); ...
taylor_stats2.sdev(2); taylor_stats3.sdev(2)];
crmsd = [taylor_stats1.crmsd(1); taylor_stats1.crmsd(2); ...
taylor_stats2.crmsd(2); taylor_stats3.crmsd(2)];
ccoef = [taylor_stats1.ccoef(1); taylor_stats1.ccoef(2); ...
taylor_stats2.ccoef(2); taylor_stats3.ccoef(2)];
% Specify labels for points in a cell array (M1 for model prediction 1,
% etc.). Note that a label needs to be specified for the reference even
% though it is not used.
label = {'Non-Dimensional Observation', 'M1', 'M2', 'M3'};
% Produce the Taylor diagram.
%
% Display the data points for correlations that vary from -1 to 1 (2
% panels). Label the points and change the axis options for SDEV, CRMSD,
% and CCOEF. Increase the upper limit for the SDEV axis and rotate the
% CRMSD contour labels (counter-clockwise from x-axis). Exchange color and
% line style choices for SDEV, CRMSD, and CCOEFF variables to show effect.
% Increase the line width of all lines.
%
% For an exhaustive list of options to customize your diagram, please
% call the function without arguments:
% >> taylor_diagram
[hp, ht, axl] = taylor_diagram(sdev,crmsd,ccoef, ...
'numberPanels', 2, ...
'markerLabel',label, 'markerLabelColor', 'r', ...
'tickRMS',0.0:10.0:80.0,'tickRMSangle',150.0, ...
'colRMS','m', 'styleRMS', ':', 'widthRMS', 2.0, 'titleRMS', 'off', ...
'tickSTD',0.0:20.0:60.0, 'limSTD',60.0, ...
'colSTD','b', 'styleSTD', '-.', 'widthSTD', 1.0, ...
'colCOR','k', 'styleCOR', '--', 'widthCOR', 1.0);
% Calculate a negative correlation for one of the data values.
pred3.data = -pred3.data;
taylor_stats3 = taylor_statistics(pred3,ref,'data');
sdev = [taylor_stats3.sdev(1); taylor_stats3.sdev(2)];
crmsd = [taylor_stats3.crmsd(1); taylor_stats3.crmsd(2)];
ccoef = [taylor_stats1.ccoef(1); taylor_stats3.ccoef(2)];
% Overlay new data point (blue) on existing diagram
label = {'Non-Dimensional Observation', 'M4'};
taylor_diagram(sdev,crmsd,ccoef, ...
'overlay','on', ...
'markerLabel',label, 'markerLabelColor', 'b', 'markerColor','b');
% Write plot to file
writepng(gcf,'taylor8.png');