-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
546 lines (455 loc) · 23.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import datetime
import torch
import torch.nn as nn
from sklearn.metrics import precision_recall_fscore_support as prfs
from utils.parser import get_parser_with_args
from utils.helpers import (get_loaders, get_criterion, load_gan_generator, load_gan_discrimitor,
load_model, initialize_metrics, get_mean_metrics,
set_metrics, LambdaLR, ReplayBuffer, load_gan_discrimitor_result)
from utils.metrics import Evaluator
import os
import logging
import json
from tensorboardX import SummaryWriter
from tqdm import tqdm
import random
import numpy as np
import time
import itertools
from torch.autograd import Variable
import torchvision.transforms as transforms
if __name__ == '__main__':
"""
Initialize Parser and define arguments
"""
print("start")
parser, metadata = get_parser_with_args()
opt = parser.parse_args()
"""
Initialize experiments log
"""
logging.basicConfig(level=logging.INFO)
os.makedirs(opt.log_dir + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/', exist_ok=True)
path = opt.log_dir + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/'
writer = SummaryWriter(path)
"""
Set up environment: define paths, download data, and set device
"""
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
if torch.cuda.is_available():
dev = torch.device('cuda')
opt.cuda = True
else:
dev = torch.device('cpu')
opt.cuda = False
# dev = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
logging.info('GPU AVAILABLE? ' + str(torch.cuda.is_available()))
# ##############################################################################################
if opt.cuda:
try:
opt.gpu_ids = [int(s) for s in opt.gpu_ids.split(',')]
except ValueError:
raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only')
num_gpus = len(opt.gpu_ids)
opt.distributed = num_gpus>1
if opt.distributed:
torch.cuda.set_device(opt.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://")
device_ids = opt.gpu_ids
ngpus_per_node=len(device_ids)
opt.batch_size = int(opt.batch_size/ngpus_per_node)
if opt.sync_bn is None:
if opt.cuda and len(opt.gpu_ids) > 1:
opt.sync_bn = True
else:
opt.sync_bn = False
# ################################################################################################
def seed_torch(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
seed_torch(seed=777)
train_loader,train_sampler, val_loader = get_loaders(opt)
"""
Load Model then define other aspects of the model
"""
logging.info('LOADING Model')
model = load_model(opt, dev)
G_AB = load_gan_generator(opt, dev)
G_BA = load_gan_generator(opt, dev)
D_A = load_gan_discrimitor(opt, dev)
D_B = load_gan_discrimitor(opt, dev)
D_C = load_gan_discrimitor_result(opt, dev)
opt.start_epoch = 0
criterion = get_criterion(opt)
criterion_GAN = nn.MSELoss()
criterion_cycle = nn.L1Loss()
criterion_identity = nn.L1Loss()
if opt.cuda:
# criterion.cuda()
criterion_GAN.cuda()
criterion_cycle.cuda()
criterion_identity.cuda()
if opt.resume_cd is not None:
if not os.path.isfile(opt.resume_cd):
raise RuntimeError("=> no checkpoint found at '{}'".format(opt.resume_cd))
checkpoint_cd = torch.load(opt.resume_cd, map_location='cpu')
checkpoint_g_ab = torch.load(opt.resume_g_ab, map_location='cpu')
checkpoint_g_ba = torch.load(opt.resume_g_ba, map_location='cpu')
checkpoint_d_a = torch.load(opt.resume_d_a, map_location='cpu')
checkpoint_d_b = torch.load(opt.resume_d_b, map_location='cpu')
opt.start_epoch = int(opt.resume_cd.split('.')[0].split('/')[-1].split('_')[-1]) + 1
if opt.cuda:
model.load_state_dict(checkpoint_cd)
G_AB.load_state_dict(checkpoint_g_ab)
G_BA.load_state_dict(checkpoint_g_ba)
D_A.load_state_dict(checkpoint_d_a)
D_B.load_state_dict(checkpoint_d_b)
else:
model.load_state_dict(checkpoint_cd)
print("=> loaded checkpoint '{}' (epoch {})" .format(opt.resume_cd, opt.start_epoch))
# if you pre-train the GAN or CDNet, use these code to load the pre-trained model
# checkpoint_g_ab = torch.load(opt.resume_g_ab,map_location='cpu')
# checkpoint_g_ba = torch.load(opt.resume_g_ba,map_location='cpu')
# checkpoint_d_a = torch.load(opt.resume_d_a,map_location='cpu')
# checkpoint_d_b = torch.load(opt.resume_d_b,map_location='cpu')
# G_AB.load_state_dict(checkpoint_g_ab)
# G_BA.load_state_dict(checkpoint_g_ba)
# D_A.load_state_dict(checkpoint_d_a)
# D_B.load_state_dict(checkpoint_d_b)
#
# model_dict = model.state_dict()
# pretrained_dict = torch.load(opt.pretrain_cd,map_location='cpu')
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# model_dict.update(pretrained_dict)
# model.load_state_dict(model_dict)
# # G_AB.load_state_dict({k.replace('module.', ''): v for k, v in checkpoint_g_ab.items()})
# # G_BA.load_state_dict({k.replace('module.', ''): v for k, v in checkpoint_g_ba.items()})
# # D_A.load_state_dict({k.replace('module.', ''): v for k, v in checkpoint_d_a.items()})
# # D_B.load_state_dict({k.replace('module.', ''): v for k, v in checkpoint_d_b.items()})
# print("=> loaded checkpoint '{}' (epoch {})".format(opt.resume_g_ab, opt.start_epoch))
optimizer = torch.optim.Adam(model.parameters(), lr=opt.learning_rate) # Be careful when you adjust learning rate, you can refer to the linear scaling rule
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [70,80,90,100,105,110], 0.5)
optimizer_G = torch.optim.Adam(itertools.chain(G_AB.parameters(), G_BA.parameters()), lr=opt.lr_gan, betas=(opt.gan_b1, opt.gan_b2))
optimizer_D_A = torch.optim.Adam(D_A.parameters(), lr=opt.lr_gan, betas=(opt.gan_b1, opt.gan_b2))
optimizer_D_B = torch.optim.Adam(D_B.parameters(), lr=opt.lr_gan, betas=(opt.gan_b1, opt.gan_b2))
optimizer_D_C = torch.optim.Adam(D_C.parameters(), lr=opt.lr_gan, betas=(opt.gan_b1, opt.gan_b2))
lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(optimizer_G, lr_lambda=LambdaLR(opt.epochs, opt.start_epoch, opt.decay_epoch).step)
lr_scheduler_D_A = torch.optim.lr_scheduler.LambdaLR(optimizer_D_A, lr_lambda=LambdaLR(opt.epochs, opt.start_epoch, opt.decay_epoch).step)
lr_scheduler_D_B = torch.optim.lr_scheduler.LambdaLR(optimizer_D_B, lr_lambda=LambdaLR(opt.epochs, opt.start_epoch, opt.decay_epoch).step)
lr_scheduler_D_C = torch.optim.lr_scheduler.LambdaLR(optimizer_D_C, lr_lambda=LambdaLR(opt.epochs, opt.start_epoch, opt.decay_epoch).step)
Tensor = torch.cuda.FloatTensor if opt.cuda else torch.Tensor
fake_A_buffer = ReplayBuffer()
recov_A_buffer = ReplayBuffer()
fake_B_buffer = ReplayBuffer()
recov_B_buffer = ReplayBuffer()
fake_C_buffer_1 = ReplayBuffer()
fake_C_buffer_2 = ReplayBuffer()
fake_C_buffer_3 = ReplayBuffer()
def unnormalize(tensor):
tensor = tensor.clone() # avoid modifying tensor in-place
def norm_ip(img, low, high):
img.clamp_(min=low, max=high)
img.sub_(low).div_(max(high - low, 1e-5))
def norm_range(t):
norm_ip(t, float(t.min()), float(t.max()))
norm_range(tensor)
return tensor
transform1 = transforms.Compose([transforms.Normalize(mean=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225))])
"""
Set starting values
"""
best_metrics = {'cd_f1scores_fusion': -1, 'cd_recalls_fusion': -1, 'cd_precisions_fusion': -1}
logging.info('STARTING training')
total_step = -1
for epoch in range(opt.start_epoch, opt.epochs):
train_sampler.set_epoch(epoch)
train_metrics = initialize_metrics()
val_metrics = initialize_metrics()
evaluator_1 = Evaluator(opt.num_class)
evaluator_2 = Evaluator(opt.num_class)
evaluator_3 = Evaluator(opt.num_class)
evaluator_feature_fusion = Evaluator(opt.num_class)
"""
Begin Training
"""
# model.train()
logging.info('SET model mode to train!')
confusion_matrix = torch.zeros(opt.num_class, opt.num_class)
batch_iter = 0
train_loss = 0.0
tbar = tqdm(train_loader)
loss_print = []
loss_G_print = []
loss_GAN_print = []
loss_cycle_print = []
loss_identity_print = []
loss_D_print = []
loss_D_C_print = []
for i, [batch_img1, batch_img2, labels] in enumerate(tbar):
tbar.set_description("epoch {} info ".format(epoch) + str(batch_iter) + " - " + str(batch_iter+opt.batch_size))
batch_iter = batch_iter+opt.batch_size
total_step += 1
# Set variables for training
batch_img1 = batch_img1.float().to(dev)
batch_img2 = batch_img2.float().to(dev)
labels = labels.long().to(dev)
model.train()
optimizer.zero_grad()
real_A = Variable(batch_img1.type(Tensor))
real_B = Variable(batch_img2.type(Tensor))
valid = Variable(torch.full([real_A.size(0), *D_C.module.output_shape],1/3),requires_grad=False).to(dev)
fake_B = G_AB(real_A).detach()
fake_A = G_BA(real_B).detach()
real_A_norm2 = unnormalize(real_A)
real_A_norm2=transform1(real_A_norm2)
real_B_norm2 = unnormalize(real_B)
real_B_norm2 = transform1(real_B_norm2)
fake_A_norm2 = unnormalize(fake_A)
fake_A_norm2 = transform1(fake_A_norm2)
fake_B_norm2 = unnormalize(fake_B)
fake_B_norm2 = transform1(fake_B_norm2)
[cd_preds_1, cd_preds_2, cd_preds_3, cd_preds] = model(real_A_norm2, real_B_norm2, fake_B_norm2, fake_A_norm2)
cd_loss = criterion(cd_preds_1, labels) + criterion(cd_preds_2, labels) + criterion(cd_preds_3, labels) + criterion(cd_preds, labels)
loss_CD_GAN_1 = criterion_GAN(D_C(cd_preds_1[-1]), valid)
loss_CD_GAN_2 = criterion_GAN(D_C(cd_preds_2[-1]), valid)
loss_CD_GAN_3 = criterion_GAN(D_C(cd_preds_3[-1]), valid)
cd_loss += ((loss_CD_GAN_1 + loss_CD_GAN_2 + loss_CD_GAN_3) / 3) * 0.1
loss_print.append(cd_loss.data.cpu().numpy())
cd_loss.backward()
optimizer.step()
valid = Variable(Tensor(np.ones((real_A.size(0), *D_A.module.output_shape))), requires_grad=False)
fake = Variable(Tensor(np.zeros((real_A.size(0), *D_A.module.output_shape))), requires_grad=False)
G_AB.train()
G_BA.train()
optimizer_G.zero_grad()
# Identity loss
loss_id_A = criterion_identity(G_BA(real_A), real_A)
loss_id_B = criterion_identity(G_AB(real_B), real_B)
loss_identity = (loss_id_A + loss_id_B) / 2
# GAN loss
fake_B = G_AB(real_A)
D_test = D_B(fake_B)
loss_GAN_AB = criterion_GAN(D_B(fake_B), valid)
fake_A = G_BA(real_B)
loss_GAN_BA = criterion_GAN(D_A(fake_A), valid)
# loss_GAN = (loss_GAN_AB + loss_GAN_BA) / 2
# Cycle loss
recov_A = G_BA(fake_B)
loss_cycle_A = criterion_cycle(recov_A, real_A)
loss_GAN_cycle_A = criterion_GAN(D_A(recov_A),valid)
recov_B = G_AB(fake_A)
loss_cycle_B = criterion_cycle(recov_B, real_B)
loss_GAN_cycle_B = criterion_GAN(D_B(recov_B),valid)
loss_GAN = (loss_GAN_AB + loss_GAN_BA + loss_GAN_cycle_A + loss_GAN_cycle_B) / 4
loss_cycle = (loss_cycle_A + loss_cycle_B) / 2
# Total loss
loss_G = loss_GAN + opt.lambda_cyc * loss_cycle + opt.lambda_id * loss_identity
loss_G.backward()
optimizer_G.step()
loss_G_print.append(loss_G.data.cpu().numpy())
loss_GAN_print.append(loss_GAN.data.cpu().numpy())
loss_cycle_print.append(loss_cycle.data.cpu().numpy())
loss_identity_print.append(loss_identity.data.cpu().numpy())
# -----------------------
# Train Discriminator A
# -----------------------
optimizer_D_A.zero_grad()
# Real loss
loss_real = criterion_GAN(D_A(real_A), valid)
# Fake loss (on batch of previously generated samples)
fake_A_ = fake_A_buffer.push_and_pop(fake_A)
loss_fake = criterion_GAN(D_A(fake_A_.detach()), fake)
recov_A_ = recov_A_buffer.push_and_pop(recov_A)
loss_fake_cycle = criterion_GAN(D_A(recov_A_.detach()),fake)
# Total loss
loss_D_A = (loss_real + loss_fake + loss_fake_cycle) / 3
loss_D_A.backward()
optimizer_D_A.step()
# -----------------------
# Train Discriminator B
# -----------------------
optimizer_D_B.zero_grad()
# Real loss
loss_real = criterion_GAN(D_B(real_B), valid)
# Fake loss (on batch of previously generated samples)
fake_B_ = fake_B_buffer.push_and_pop(fake_B)
loss_fake = criterion_GAN(D_B(fake_B_.detach()), fake)
recov_B_ = recov_B_buffer.push_and_pop(recov_B)
loss_fake_cycle = criterion_GAN(D_B(recov_B_.detach()), fake)
# Total loss
loss_D_B = (loss_real + loss_fake + loss_fake_cycle) / 3
loss_D_B.backward()
optimizer_D_B.step()
loss_D = (loss_D_A + loss_D_B) / 2
loss_D_print.append(loss_D.data.cpu().numpy())
valid_1 = torch.cat([torch.ones([real_A.size(0), *D_A.module.output_shape]),torch.zeros([real_A.size(0), *D_A.module.output_shape]),torch.zeros([real_A.size(0), *D_A.module.output_shape])],dim=1).to(dev)
valid_2 = torch.cat([torch.zeros([real_A.size(0), *D_A.module.output_shape]),torch.ones([real_A.size(0), *D_A.module.output_shape]),torch.zeros([real_A.size(0), *D_A.module.output_shape])],dim=1).to(dev)
valid_3 = torch.cat([torch.zeros([real_A.size(0), *D_A.module.output_shape]),torch.zeros([real_A.size(0), *D_A.module.output_shape]),torch.ones([real_A.size(0), *D_A.module.output_shape])],dim=1).to(dev)
optimizer_D_C.zero_grad()
real_C_1 = fake_C_buffer_1.push_and_pop(cd_preds_1[-1])
loss_real_1 = criterion_GAN(D_C(real_C_1.detach()),valid_1)
real_C_2 = fake_C_buffer_2.push_and_pop(cd_preds_2[-1])
loss_real_2 = criterion_GAN(D_C(real_C_2.detach()),valid_2)
real_C_3 = fake_C_buffer_3.push_and_pop(cd_preds_3[-1])
loss_real_3 = criterion_GAN(D_C(real_C_3.detach()),valid_3)
loss_D_C = (loss_real_1+loss_real_2+loss_real_3) / 3
loss_D_C.backward()
optimizer_D_C.step()
loss_D_C_print.append(loss_D_C.data.cpu().numpy())
# clear batch variables from memory
del batch_img1, batch_img2, labels
scheduler.step()
lr_scheduler_G.step()
lr_scheduler_D_A.step()
lr_scheduler_D_B.step()
lr_scheduler_D_C.step()
loss_mean = np.mean(loss_print)
print("train_loss:", loss_mean)
loss_G_mean = np.mean(loss_G_print)
print("G_loss", loss_G_mean)
loss_cycle_mean = np.mean(loss_cycle_print)
print("cycle_loss", loss_cycle_mean)
loss_identity_mean = np.mean(loss_identity_print)
print("loss_identity:",loss_identity_mean)
loss_D_mean = np.mean(loss_D_print)
print("D_loss", loss_D_mean)
loss_D_C_print = np.mean(loss_D_C_print)
print("D_C_loss", loss_D_C_print)
# logging.info("EPOCH {} TRAIN METRICS".format(epoch) + str(mean_train_metrics))
"""
Begin Validation
"""
total_step = -1
batch_iter = 0
test_loss = 0.0
model.eval()
G_AB.eval()
G_BA.eval()
evaluator_1.reset()
evaluator_2.reset()
evaluator_3.reset()
evaluator_feature_fusion.reset()
val_loss_list = []
# val_loss_2_list = []
# val_loss_3_list = []
tbar = tqdm(val_loader, desc='\r')
with torch.no_grad():
for batch_img1, batch_img2, labels in tbar:
# Set variables for training
tbar.set_description("epoch {} info ".format(epoch) + str(batch_iter) + " - " + str(batch_iter + opt.batch_size))
batch_iter = batch_iter + opt.batch_size
batch_img1 = batch_img1.float().to(dev)
batch_img2 = batch_img2.float().to(dev)
labels = labels.long().to(dev)
real_A = Variable(batch_img1.type(Tensor))
real_B = Variable(batch_img2.type(Tensor))
# Get predictions and calculate loss
fake_B = G_AB(real_A)
fake_A = G_BA(real_B)
real_A_norm2 = unnormalize(real_A)
real_A_norm2 = transform1(real_A_norm2)
real_B_norm2 = unnormalize(real_B)
real_B_norm2 = transform1(real_B_norm2)
fake_A_norm2 = unnormalize(fake_A)
fake_A_norm2 = transform1(fake_A_norm2)
fake_B_norm2 = unnormalize(fake_B)
fake_B_norm2 = transform1(fake_B_norm2)
[cd_preds_1, cd_preds_2, cd_preds_3, cd_preds] = model(real_A_norm2, real_B_norm2,
fake_B_norm2, fake_A_norm2)
cd_loss = criterion(cd_preds_1, labels) +criterion(cd_preds_2, labels) + criterion(cd_preds_3, labels) + criterion(cd_preds, labels)
val_loss_list.append(cd_loss.data.cpu().numpy())
cd_preds_1 = cd_preds_1[-1]
_, cd_preds_1 = torch.max(cd_preds_1, 1)
cd_preds_2 = cd_preds_2[-1]
_, cd_preds_2 = torch.max(cd_preds_2, 1)
cd_preds_3 = cd_preds_3[-1]
_, cd_preds_3 = torch.max(cd_preds_3, 1)
cd_preds = cd_preds[-1]
_, cd_preds = torch.max(cd_preds, 1)
evaluator_1.add_batch(labels, cd_preds_1)
evaluator_2.add_batch(labels, cd_preds_2)
evaluator_3.add_batch(labels, cd_preds_3)
evaluator_feature_fusion.add_batch(labels, cd_preds)
mIoU_1 = evaluator_1.Mean_Intersection_over_Union()
mIoU_2 = evaluator_2.Mean_Intersection_over_Union()
mIoU_3 = evaluator_3.Mean_Intersection_over_Union()
mIoU_4 = evaluator_feature_fusion.Mean_Intersection_over_Union()
Precision_1= evaluator_1.Precision()
Precision_2 = evaluator_2.Precision()
Precision_3 = evaluator_3.Precision()
Precision_4 = evaluator_feature_fusion.Precision()
Recall_1 = evaluator_1.Recall()
Recall_2 = evaluator_2.Recall()
Recall_3 = evaluator_3.Recall()
Recall_4 = evaluator_feature_fusion.Recall()
F1_1 = evaluator_1.F1()
F1_2 = evaluator_2.F1()
F1_3 = evaluator_3.F1()
F1_4 = evaluator_feature_fusion.F1()
val_loss = np.mean(val_loss_list)
mean_val_metrics={}
mean_val_metrics['val_loss'] = val_loss
# mean_val_metrics['val_loss_2'] = val_loss_2
# mean_val_metrics['val_loss_3'] = val_loss_3
mean_val_metrics['cd_precisions_1'] = Precision_1.data.cpu()
mean_val_metrics['cd_precisions_2'] = Precision_2.data.cpu()
mean_val_metrics['cd_precisions_3'] = Precision_3.data.cpu()
mean_val_metrics['cd_precisions_fusion'] = Precision_4.data.cpu()
mean_val_metrics['cd_recalls_1'] = Recall_1.data.cpu()
mean_val_metrics['cd_recalls_2'] = Recall_2.data.cpu()
mean_val_metrics['cd_recalls_3'] = Recall_3.data.cpu()
mean_val_metrics['cd_recalls_fusion'] = Recall_4.data.cpu()
mean_val_metrics['cd_f1scores_1'] = F1_1.data.cpu()
mean_val_metrics['cd_f1scores_2'] = F1_2.data.cpu()
mean_val_metrics['cd_f1scores_3'] = F1_3.data.cpu()
mean_val_metrics['cd_f1scores_fusion'] = F1_4.data.cpu()
mean_val_metrics['cd_miou_1'] = mIoU_1
mean_val_metrics['cd_miou_2'] = mIoU_2
mean_val_metrics['cd_miou_3'] = mIoU_3
mean_val_metrics['cd_miou_fusion'] = mIoU_4
logging.info("EPOCH {} VALIDATION METRICS".format(epoch)+str(mean_val_metrics))
"""
Store the weights of good epochs based on validation results
"""
if ((mean_val_metrics['cd_precisions_fusion'] > best_metrics['cd_precisions_fusion'])
or
(mean_val_metrics['cd_recalls_fusion'] > best_metrics['cd_recalls_fusion'])
or
(mean_val_metrics['cd_f1scores_fusion'] > best_metrics['cd_f1scores_fusion'])):
# Insert training and epoch information to metadata dictionary
logging.info('updata the model')
metadata['validation_metrics'] = mean_val_metrics
# Save model and log
if not os.path.exists('./tmp'):
os.makedirs('./tmp', exist_ok=True)
with open('./tmp/metadata_epoch_' + str(epoch) + '.json', 'w') as fout:
json.dump(str(metadata), fout)
if opt.local_rank==0:
torch.save(model.state_dict(), './tmp/checkpoint_cd_epoch_'+str(epoch)+'.pt')
torch.save(G_AB.state_dict(), './tmp/checkpoint_gab_epoch_'+str(epoch)+'.pt')
torch.save(G_BA.state_dict(), './tmp/checkpoint_gba_epoch_'+str(epoch)+'.pt')
torch.save(D_A.state_dict(), './tmp/checkpoint_da_epoch_'+str(epoch)+'.pt')
torch.save(D_B.state_dict(), './tmp/checkpoint_db_epoch_'+str(epoch)+'.pt')
torch.save(D_C.state_dict(), './tmp/checkpoint_dc_epoch_'+str(epoch)+'.pt')
# comet.log_asset(upload_metadata_file_path)
if mean_val_metrics['cd_f1scores_fusion'] > best_metrics['cd_f1scores_fusion']:
if opt.local_rank==0:
torch.save(model.state_dict(), './tmp/checkpoint_cd_epoch_'+'best'+'.pt')
torch.save(G_AB.state_dict(), './tmp/checkpoint_gab_epoch_'+'best'+'.pt')
torch.save(G_BA.state_dict(), './tmp/checkpoint_gba_epoch_'+'best'+'.pt')
torch.save(D_A.state_dict(), './tmp/checkpoint_da_epoch_'+'best'+'.pt')
torch.save(D_B.state_dict(), './tmp/checkpoint_db_epoch_'+'best'+'.pt')
torch.save(D_C.state_dict(), './tmp/checkpoint_dc_epoch_' + 'best'+'.pt')
with open('./tmp/metadata_epoch_' + 'best' + '.json', 'w') as fout:
json.dump(str(metadata), fout)
best_metrics = mean_val_metrics
print('An epoch finished.')
writer.close() # close tensor board
print('Done!')