forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
152 lines (132 loc) · 4.87 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from paddleseg.cvlibs import manager, Config, SegBuilder
from paddleseg.core import evaluate
from paddleseg.utils import get_sys_env, logger, utils
def parse_args():
parser = argparse.ArgumentParser(description='Model evaluation')
# Common params
parser.add_argument("--config", help="The path of config file.", type=str)
parser.add_argument(
'--model_path',
help='The path of trained weights to be loaded for evaluation.',
type=str)
parser.add_argument(
'--num_workers',
help='Number of workers for data loader. Bigger num_workers can speed up data processing.',
type=int,
default=0)
parser.add_argument(
'--device',
help='Set the device place for evaluating model.',
default='gpu',
choices=['cpu', 'gpu', 'xpu', 'npu', 'mlu'],
type=str)
# Data augment params
parser.add_argument(
'--aug_eval',
help='Whether to use mulit-scales and flip augment for evaluation.',
action='store_true')
parser.add_argument(
'--scales',
nargs='+',
help='Scales for data augment.',
type=float,
default=1.0)
parser.add_argument(
'--flip_horizontal',
help='Whether to use flip horizontally augment.',
action='store_true')
parser.add_argument(
'--flip_vertical',
help='Whether to use flip vertically augment.',
action='store_true')
# Sliding window evaluation params
parser.add_argument(
'--is_slide',
help='Whether to evaluate images in sliding window method.',
action='store_true')
parser.add_argument(
'--crop_size',
nargs=2,
help='The crop size of sliding window, the first is width and the second is height.'
'For example, `--crop_size 512 512`',
type=int)
parser.add_argument(
'--stride',
nargs=2,
help='The stride of sliding window, the first is width and the second is height.'
'For example, `--stride 512 512`',
type=int)
# Other params
parser.add_argument(
'--data_format',
help='Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW".',
type=str,
default='NCHW')
parser.add_argument(
'--auc_roc',
help='Whether to use auc_roc metric.',
type=bool,
default=False)
parser.add_argument(
'--opts',
help='Update the key-value pairs of all options.',
default=None,
nargs='+')
return parser.parse_args()
def merge_test_config(cfg, args):
test_config = cfg.test_config
if args.aug_eval:
test_config['aug_eval'] = args.aug_eval
test_config['scales'] = args.scales
test_config['flip_horizontal'] = args.flip_horizontal
test_config['flip_vertical'] = args.flip_vertical
if args.is_slide:
test_config['is_slide'] = args.is_slide
test_config['crop_size'] = args.crop_size
test_config['stride'] = args.stride
return test_config
def main(args):
assert args.config is not None, \
'No configuration file specified, please set --config'
cfg = Config(args.config, opts=args.opts)
builder = SegBuilder(cfg)
test_config = merge_test_config(cfg, args)
utils.show_env_info()
utils.show_cfg_info(cfg)
utils.set_device(args.device)
# TODO refactor
# Only support for the DeepLabv3+ model
if args.data_format == 'NHWC':
if cfg.dic['model']['type'] != 'DeepLabV3P':
raise ValueError(
'The "NHWC" data format only support the DeepLabV3P model!')
cfg.dic['model']['data_format'] = args.data_format
cfg.dic['model']['backbone']['data_format'] = args.data_format
loss_len = len(cfg.dic['loss']['types'])
for i in range(loss_len):
cfg.dic['loss']['types'][i]['data_format'] = args.data_format
model = builder.model
if args.model_path:
utils.load_entire_model(model, args.model_path)
logger.info('Loaded trained weights successfully.')
val_dataset = builder.val_dataset
evaluate(model, val_dataset, num_workers=args.num_workers, **test_config)
if __name__ == '__main__':
args = parse_args()
main(args)