forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
195 lines (177 loc) · 6.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import random
import paddle
import numpy as np
import cv2
from paddleseg.cvlibs import Config, SegBuilder
from paddleseg.utils import get_sys_env, logger, utils
from paddleseg.core import train
def parse_args():
parser = argparse.ArgumentParser(description='Model training')
# Common params
parser.add_argument("--config", help="The path of config file.", type=str)
parser.add_argument(
'--device',
help='Set the device place for training model.',
default='gpu',
choices=['cpu', 'gpu', 'xpu', 'npu', 'mlu'],
type=str)
parser.add_argument(
'--save_dir',
help='The directory for saving the model snapshot.',
type=str,
default='./output')
parser.add_argument(
'--num_workers',
help='Number of workers for data loader. Bigger num_workers can speed up data processing.',
type=int,
default=0)
parser.add_argument(
'--do_eval',
help='Whether to do evaluation in training.',
action='store_true')
parser.add_argument(
'--use_vdl',
help='Whether to record the data to VisualDL in training.',
action='store_true')
parser.add_argument(
'--use_ema',
help='Whether to ema the model in training.',
action='store_true')
# Runntime params
parser.add_argument(
'--resume_model',
help='The path of the model to resume training.',
type=str)
parser.add_argument('--iters', help='Iterations in training.', type=int)
parser.add_argument(
'--batch_size', help='Mini batch size of one gpu or cpu. ', type=int)
parser.add_argument('--learning_rate', help='Learning rate.', type=float)
parser.add_argument(
'--save_interval',
help='How many iters to save a model snapshot once during training.',
type=int,
default=1000)
parser.add_argument(
'--log_iters',
help='Display logging information at every `log_iters`.',
default=10,
type=int)
parser.add_argument(
'--keep_checkpoint_max',
help='Maximum number of checkpoints to save.',
type=int,
default=5)
# Other params
parser.add_argument(
'--seed',
help='Set the random seed in training.',
default=None,
type=int)
parser.add_argument(
"--precision",
default="fp32",
type=str,
choices=["fp32", "fp16"],
help="Use AMP (Auto mixed precision) if precision='fp16'. If precision='fp32', the training is normal."
)
parser.add_argument(
"--amp_level",
default="O1",
type=str,
choices=["O1", "O2"],
help="Auto mixed precision level. Accepted values are “O1” and “O2”: O1 represent mixed precision, the input \
data type of each operator will be casted by white_list and black_list; O2 represent Pure fp16, all operators \
parameters and input data will be casted to fp16, except operators in black_list, don’t support fp16 kernel \
and batchnorm. Default is O1(amp).")
parser.add_argument(
'--profiler_options',
type=str,
help='The option of train profiler. If profiler_options is not None, the train ' \
'profiler is enabled. Refer to the paddleseg/utils/train_profiler.py for details.'
)
parser.add_argument(
'--data_format',
help='Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW".',
type=str,
default='NCHW')
parser.add_argument(
'--repeats',
type=int,
default=1,
help="Repeat the samples in the dataset for `repeats` times in each epoch."
)
parser.add_argument(
'--opts', help='Update the key-value pairs of all options.', nargs='+')
return parser.parse_args()
def main(args):
assert args.config is not None, \
'No configuration file specified, please set --config'
cfg = Config(
args.config,
learning_rate=args.learning_rate,
iters=args.iters,
batch_size=args.batch_size,
opts=args.opts)
builder = SegBuilder(cfg)
utils.show_env_info()
utils.show_cfg_info(cfg)
utils.set_seed(args.seed)
utils.set_device(args.device)
utils.set_cv2_num_threads(args.num_workers)
# TODO refactor
# Only support for the DeepLabv3+ model
if args.data_format == 'NHWC':
if cfg.dic['model']['type'] != 'DeepLabV3P':
raise ValueError(
'The "NHWC" data format only support the DeepLabV3P model!')
cfg.dic['model']['data_format'] = args.data_format
cfg.dic['model']['backbone']['data_format'] = args.data_format
loss_len = len(cfg.dic['loss']['types'])
for i in range(loss_len):
cfg.dic['loss']['types'][i]['data_format'] = args.data_format
model = utils.convert_sync_batchnorm(builder.model, args.device)
train_dataset = builder.train_dataset
# TODO refactor
if args.repeats > 1:
train_dataset.file_list *= args.repeats
val_dataset = builder.val_dataset if args.do_eval else None
optimizer = builder.optimizer
loss = builder.loss
train(
model,
train_dataset,
val_dataset=val_dataset,
optimizer=optimizer,
save_dir=args.save_dir,
iters=cfg.iters,
batch_size=cfg.batch_size,
resume_model=args.resume_model,
save_interval=args.save_interval,
log_iters=args.log_iters,
num_workers=args.num_workers,
use_vdl=args.use_vdl,
use_ema=args.use_ema,
losses=loss,
keep_checkpoint_max=args.keep_checkpoint_max,
test_config=cfg.test_config,
precision=args.precision,
amp_level=args.amp_level,
profiler_options=args.profiler_options,
to_static_training=cfg.to_static_training)
if __name__ == '__main__':
args = parse_args()
main(args)