forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
145 lines (126 loc) · 4.57 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from paddleseg.cvlibs import manager, Config, SegBuilder
from paddleseg.utils import get_sys_env, logger, get_image_list, utils
from paddleseg.core import predict
from paddleseg.transforms import Compose
def parse_args():
parser = argparse.ArgumentParser(description='Model prediction')
# Common params
parser.add_argument("--config", help="The path of config file.", type=str)
parser.add_argument(
'--model_path',
help='The path of trained weights for prediction.',
type=str)
parser.add_argument(
'--image_path',
help='The image to predict, which can be a path of image, or a file list containing image paths, or a directory including images',
type=str)
parser.add_argument(
'--save_dir',
help='The directory for saving the predicted results.',
type=str,
default='./output/result')
parser.add_argument(
'--device',
help='Set the device place for predicting model.',
default='gpu',
choices=['cpu', 'gpu', 'xpu', 'npu', 'mlu'],
type=str)
# Data augment params
parser.add_argument(
'--aug_pred',
help='Whether to use mulit-scales and flip augment for prediction',
action='store_true')
parser.add_argument(
'--scales',
nargs='+',
help='Scales for augment, e.g., `--scales 0.75 1.0 1.25`.',
type=float,
default=1.0)
parser.add_argument(
'--flip_horizontal',
help='Whether to use flip horizontally augment',
action='store_true')
parser.add_argument(
'--flip_vertical',
help='Whether to use flip vertically augment',
action='store_true')
# Sliding window evaluation params
parser.add_argument(
'--is_slide',
help='Whether to predict images in sliding window method',
action='store_true')
parser.add_argument(
'--crop_size',
nargs=2,
help='The crop size of sliding window, the first is width and the second is height.'
'For example, `--crop_size 512 512`',
type=int)
parser.add_argument(
'--stride',
nargs=2,
help='The stride of sliding window, the first is width and the second is height.'
'For example, `--stride 512 512`',
type=int)
# Custom color map
parser.add_argument(
'--custom_color',
nargs='+',
help='Save images with a custom color map. Default: None, use paddleseg\'s default color map.',
type=int)
return parser.parse_args()
def merge_test_config(cfg, args):
test_config = cfg.test_config
if 'aug_eval' in test_config:
test_config.pop('aug_eval')
if args.aug_pred:
test_config['aug_pred'] = args.aug_pred
test_config['scales'] = args.scales
test_config['flip_horizontal'] = args.flip_horizontal
test_config['flip_vertical'] = args.flip_vertical
if args.is_slide:
test_config['is_slide'] = args.is_slide
test_config['crop_size'] = args.crop_size
test_config['stride'] = args.stride
if args.custom_color:
test_config['custom_color'] = args.custom_color
return test_config
def main(args):
assert args.config is not None, \
'No configuration file specified, please set --config'
cfg = Config(args.config)
builder = SegBuilder(cfg)
test_config = merge_test_config(cfg, args)
utils.show_env_info()
utils.show_cfg_info(cfg)
utils.set_device(args.device)
model = builder.model
transforms = Compose(builder.val_transforms)
image_list, image_dir = get_image_list(args.image_path)
logger.info('The number of images: {}'.format(len(image_list)))
predict(
model,
model_path=args.model_path,
transforms=transforms,
image_list=image_list,
image_dir=image_dir,
save_dir=args.save_dir,
**test_config)
if __name__ == '__main__':
args = parse_args()
main(args)