-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
119 lines (99 loc) · 4.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import copy
import time
import torch
import torch.nn as nn
import dataset
from models import create_model
from utils import get_optimizer
from torch.optim import lr_scheduler
accuracies = []
def train_model(model, criterion, optimizer, scheduler, device, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
train_loader = torch.utils.data.DataLoader(dataset.cifar10, batch_size=128, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset.cifar10_val, batch_size=128, shuffle=False)
dataloaders = {
'train': train_loader,
'val': test_loader}
n_train, n_val = 0, 0
dataset_sizes = {}
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
n_train += inputs.size(0)
dataset_sizes[phase] = n_train
else:
n_val += inputs.size(0)
dataset_sizes[phase] = n_val
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
accuracies.append(best_acc.item())
# load best model weights
model.load_state_dict(best_model_wts)
return model
def fine_tune(limit=14):
model = create_model('vit_lite_h')
device = (torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'))
model.to(device)
checkpoint = torch.load(f"./checkpoints/vit_lite_h_200.pt")
model.load_state_dict(checkpoint['model_state_dict'])
print(f"Model : is loaded to {device}")
for param in model.parameters():
param.requires_grad = False
fc_in_features = model.classifier.fc.in_features
fc_out_features = model.classifier.fc.out_features
model.classifier.fc = nn.Linear(fc_in_features, fc_out_features).to(device)
model.classifier.blocks = model.classifier.blocks[:limit]
criterion = nn.CrossEntropyLoss()
optimizer = get_optimizer('adamw', model.parameters(), 0.001, 3e-2)
cos_lr_scheduler = lr_scheduler.CosineAnnealingLR(optimizer, 100)
print(model)
model_fine_tuned = train_model(model, criterion, optimizer, cos_lr_scheduler, device, 20)
if __name__ == '__main__':
print("Fine tuning script")
for i in range(32,0,-1):
print(f"Number of transformer layers Active {i}")
fine_tune(limit=i)
print(accuracies)