-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdenoise2.py
43 lines (38 loc) · 1.19 KB
/
denoise2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# encoding:utf-8
import cv2
import numpy as np
import ocr
# 严苛的去噪版本
# 读入图像并转为灰度图像
src = cv2.imread('src.png')
img = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)
# 定义去噪函数
def img_denoise(img,kernel,noise_num):
output = img.copy()
# 获取图像大小
height, width = img.shape[:2]
# 循环遍历图像每一个像素
for i in range(1, height - 1):
for j in range(1, width - 1):
# 获取kernel x kernel核的像素值
roi = img[i - 1:i + kernel - 1, j - 1:j + kernel - 1]
# 判断是否有不少于noise_num个像素近于0,判定为黑色成行或成列,进行保留;否则为孤点,取值255为白
if np.sum(roi < 130) >= noise_num:
output[i, j] = img[i, j]
else:
output[i, j] = 255
return output
img = img_denoise(img,3,2)
# 二次过滤
img = img_denoise(img,5,3)
# 显示输出图像
# cv2.imshow('img', img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# 去噪图片储存
tmp_png_name = 'tmp.png'
cv2.imwrite(tmp_png_name,img)
# 获取识别结果文本
response = ocr.ocr_course(tmp_png_name)
# 文本整理输入到info.txt
ocr.info_format(response)