From 4eb780ad2b1ed91c4e170699b742cc10b894ec24 Mon Sep 17 00:00:00 2001 From: KP <109694228@qq.com> Date: Fri, 4 Mar 2022 11:28:14 +0800 Subject: [PATCH] Add reference and doc string. --- paddleaudio/paddleaudio/compliance/kaldi.py | 1 + paddleaudio/paddleaudio/features/layers.py | 116 +++++++++++++----- .../paddleaudio/functional/functional.py | 13 +- 3 files changed, 94 insertions(+), 36 deletions(-) diff --git a/paddleaudio/paddleaudio/compliance/kaldi.py b/paddleaudio/paddleaudio/compliance/kaldi.py index 35d7072ca9e..8cb9b666053 100644 --- a/paddleaudio/paddleaudio/compliance/kaldi.py +++ b/paddleaudio/paddleaudio/compliance/kaldi.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +# Modified from torchaudio(https://github.com/pytorch/audio) import math from typing import Tuple diff --git a/paddleaudio/paddleaudio/features/layers.py b/paddleaudio/paddleaudio/features/layers.py index 16fa0081735..4a2c1673a02 100644 --- a/paddleaudio/paddleaudio/features/layers.py +++ b/paddleaudio/paddleaudio/features/layers.py @@ -44,22 +44,22 @@ def __init__(self, The spectorgram is defined as the complex norm of the short-time Fourier transformation. Parameters: - n_fft(int): the number of frequency components of the discrete Fourier transform. + n_fft (int): the number of frequency components of the discrete Fourier transform. The default value is 2048, - hop_length(int|None): the hop length of the short time FFT. If None, it is set to win_length//4. + hop_length (int|None): the hop length of the short time FFT. If None, it is set to win_length//4. The default value is None. win_length: the window length of the short time FFt. If None, it is set to same as n_fft. The default value is None. - window(str): the name of the window function applied to the single before the Fourier transform. + window (str): the name of the window function applied to the single before the Fourier transform. The folllowing window names are supported: 'hamming','hann','kaiser','gaussian', 'exponential','triang','bohman','blackman','cosine','tukey','taylor'. The default value is 'hann' - center(bool): if True, the signal is padded so that frame t is centered at x[t * hop_length]. + center (bool): if True, the signal is padded so that frame t is centered at x[t * hop_length]. If False, frame t begins at x[t * hop_length] The default value is True - pad_mode(str): the mode to pad the signal if necessary. The supported modes are 'reflect' + pad_mode (str): the mode to pad the signal if necessary. The supported modes are 'reflect' and 'constant'. The default value is 'reflect'. - dtype(str): the data type of input and window. + dtype (str): the data type of input and window. Notes: The Spectrogram transform relies on STFT transform to compute the spectrogram. By default, the weights are not learnable. To fine-tune the Fourier coefficients, @@ -190,39 +190,39 @@ def __init__(self, """Compute log-mel-spectrogram(also known as LogFBank) feature of a given signal, typically an audio waveform. Parameters: - sr(int): the audio sample rate. + sr (int): the audio sample rate. The default value is 22050. - n_fft(int): the number of frequency components of the discrete Fourier transform. + n_fft (int): the number of frequency components of the discrete Fourier transform. The default value is 2048, - hop_length(int|None): the hop length of the short time FFT. If None, it is set to win_length//4. + hop_length (int|None): the hop length of the short time FFT. If None, it is set to win_length//4. The default value is None. win_length: the window length of the short time FFt. If None, it is set to same as n_fft. The default value is None. - window(str): the name of the window function applied to the single before the Fourier transform. + window (str): the name of the window function applied to the single before the Fourier transform. The folllowing window names are supported: 'hamming','hann','kaiser','gaussian', 'exponential','triang','bohman','blackman','cosine','tukey','taylor'. The default value is 'hann' - center(bool): if True, the signal is padded so that frame t is centered at x[t * hop_length]. + center (bool): if True, the signal is padded so that frame t is centered at x[t * hop_length]. If False, frame t begins at x[t * hop_length] The default value is True - pad_mode(str): the mode to pad the signal if necessary. The supported modes are 'reflect' + pad_mode (str): the mode to pad the signal if necessary. The supported modes are 'reflect' and 'constant'. The default value is 'reflect'. - n_mels(int): the mel bins. - f_min(float): the lower cut-off frequency, below which the filter response is zero. - f_max(float): the upper cut-off frequency, above which the filter response is zeros. - ref_value(float): the reference value. If smaller than 1.0, the db level - htk(bool): whether to use HTK formula in computing fbank matrix. - norm(str|float): the normalization type in computing fbank matrix. Slaney-style is used by default. + n_mels (int): the mel bins. + f_min (float): the lower cut-off frequency, below which the filter response is zero. + f_max (float): the upper cut-off frequency, above which the filter response is zeros. + htk (bool): whether to use HTK formula in computing fbank matrix. + norm (str|float): the normalization type in computing fbank matrix. Slaney-style is used by default. You can specify norm=1.0/2.0 to use customized p-norm normalization. - dtype(str): the datatype of fbank matrix used in the transform. Use float64 to increase numerical - accuracy. Note that the final transform will be conducted in float32 regardless of dtype of fbank matrix. - amin(float): the minimum value of input magnitude, below which the input of the signal will be pulled up accordingly. + ref_value (float): the reference value. If smaller than 1.0, the db level + amin (float): the minimum value of input magnitude, below which the input of the signal will be pulled up accordingly. Otherwise, the db level is pushed down. magnitude is clipped(to amin). For numerical stability, set amin to a larger value, e.g., 1e-3. - top_db(float): the maximum db value of resulting spectrum, above which the + top_db (float): the maximum db value of resulting spectrum, above which the spectrum is clipped(to top_db). + dtype (str): the datatype of fbank matrix used in the transform. Use float64 to increase numerical + accuracy. Note that the final transform will be conducted in float32 regardless of dtype of fbank matrix. """ super(LogMelSpectrogram, self).__init__() @@ -260,24 +260,80 @@ class MFCC(nn.Layer): def __init__(self, sr: int=22050, n_mfcc: int=40, - norm: str='ortho', - dtype: str=paddle.float32, - **kwargs): + n_fft: int=512, + hop_length: Optional[int]=None, + win_length: Optional[int]=None, + window: str='hann', + center: bool=True, + pad_mode: str='reflect', + n_mels: int=64, + f_min: float=50.0, + f_max: Optional[float]=None, + htk: bool=False, + norm: Union[str, float]='slaney', + ref_value: float=1.0, + amin: float=1e-10, + top_db: Optional[float]=None, + dtype: str=paddle.float32): """Compute mel frequency cepstral coefficients(MFCCs) feature of given waveforms. Parameters: sr(int): the audio sample rate. The default value is 22050. n_mfcc (int, optional): Number of cepstra in MFCC. Defaults to 40. - norm(str|float): the normalization type in computing fbank matrix. Slaney-style is used by default. + n_fft (int): the number of frequency components of the discrete Fourier transform. + The default value is 2048, + hop_length (int|None): the hop length of the short time FFT. If None, it is set to win_length//4. + The default value is None. + win_length: the window length of the short time FFt. If None, it is set to same as n_fft. + The default value is None. + window (str): the name of the window function applied to the single before the Fourier transform. + The folllowing window names are supported: 'hamming','hann','kaiser','gaussian', + 'exponential','triang','bohman','blackman','cosine','tukey','taylor'. + The default value is 'hann' + center (bool): if True, the signal is padded so that frame t is centered at x[t * hop_length]. + If False, frame t begins at x[t * hop_length] + The default value is True + pad_mode (str): the mode to pad the signal if necessary. The supported modes are 'reflect' + and 'constant'. + The default value is 'reflect'. + n_mels (int): the mel bins. + f_min (float): the lower cut-off frequency, below which the filter response is zero. + f_max (float): the upper cut-off frequency, above which the filter response is zeros. + htk (bool): whether to use HTK formula in computing fbank matrix. + norm (str|float): the normalization type in computing fbank matrix. Slaney-style is used by default. You can specify norm=1.0/2.0 to use customized p-norm normalization. - dtype(str): the datatype of fbank matrix used in the transform. Use float64 to increase numerical + ref_value (float): the reference value. If smaller than 1.0, the db level + amin (float): the minimum value of input magnitude, below which the input of the signal will be pulled up accordingly. + Otherwise, the db level is pushed down. + magnitude is clipped(to amin). For numerical stability, set amin to a larger value, + e.g., 1e-3. + top_db (float): the maximum db value of resulting spectrum, above which the + spectrum is clipped(to top_db). + dtype (str): the datatype of fbank matrix used in the transform. Use float64 to increase numerical accuracy. Note that the final transform will be conducted in float32 regardless of dtype of fbank matrix. """ super(MFCC, self).__init__() - self._log_melspectrogram = LogMelSpectrogram(sr=sr, **kwargs) - self.dct_matrix = create_dct( - n_mfcc=n_mfcc, n_mels=self._log_melspectrogram.n_mels, norm=norm) + assert n_mfcc <= n_mels, 'n_mfcc cannot be larger than n_mels: %d vs %d' % ( + n_mfcc, n_mels) + self._log_melspectrogram = LogMelSpectrogram( + sr=sr, + n_fft=n_fft, + hop_length=hop_length, + win_length=win_length, + window=window, + center=center, + pad_mode=pad_mode, + n_mels=n_mels, + f_min=f_min, + f_max=f_max, + htk=htk, + norm=norm, + ref_value=ref_value, + amin=amin, + top_db=top_db, + dtype=dtype) + self.dct_matrix = create_dct(n_mfcc=n_mfcc, n_mels=n_mels, dtype=dtype) self.register_buffer('dct_matrix', self.dct_matrix) def forward(self, x): diff --git a/paddleaudio/paddleaudio/functional/functional.py b/paddleaudio/paddleaudio/functional/functional.py index c07f14fd830..c5ab30453e6 100644 --- a/paddleaudio/paddleaudio/functional/functional.py +++ b/paddleaudio/paddleaudio/functional/functional.py @@ -242,14 +242,15 @@ def power_to_db(magnitude: paddle.Tensor, def create_dct(n_mfcc: int, n_mels: int, norm: Optional[str]='ortho', - dtype: Optional[str]=paddle.float32): - """[summary] + dtype: Optional[str]=paddle.float32) -> paddle.Tensor: + """Create a discrete cosine transform(DCT) matrix. + Parameters: - n_mfcc (int): [description] - n_mels (int): [description] - norm (str, optional): [description]. Defaults to 'ortho'. + n_mfcc (int): Number of mel frequency cepstral coefficients. + n_mels (int): Number of mel filterbanks. + norm (str, optional): Normalizaiton type. Defaults to 'ortho'. Returns: - [type]: [description] + Tensor: The DCT matrix with shape (n_mels, n_mfcc). """ n = paddle.arange(n_mels, dtype=dtype) k = paddle.arange(n_mfcc, dtype=dtype).unsqueeze(1)