diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
index 7fb01708a3d..09e92a66759 100644
--- a/.pre-commit-config.yaml
+++ b/.pre-commit-config.yaml
@@ -50,13 +50,13 @@ repos:
entry: bash .pre-commit-hooks/clang-format.hook -i
language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|cuh|proto)$
- exclude: (?=speechx/speechx/kaldi).*(\.cpp|\.cc|\.h|\.py)$
+ exclude: (?=speechx/speechx/kaldi|speechx/patch).*(\.cpp|\.cc|\.h|\.py)$
- id: copyright_checker
name: copyright_checker
entry: python .pre-commit-hooks/copyright-check.hook
language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$
- exclude: (?=third_party|pypinyin|speechx/speechx/kaldi).*(\.cpp|\.cc|\.h|\.py)$
+ exclude: (?=third_party|pypinyin|speechx/speechx/kaldi|speechx/patch).*(\.cpp|\.cc|\.h|\.py)$
- repo: https://github.com/asottile/reorder_python_imports
rev: v2.4.0
hooks:
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 6e8315e76c7..62fead47015 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,4 +1,13 @@
# Changelog
+Date: 2022-3-08, Author: yt605155624.
+Add features to: T2S:
+ - Add aishell3 hifigan egs.
+ - PRLink: https://github.com/PaddlePaddle/PaddleSpeech/pull/1545
+
+Date: 2022-3-08, Author: yt605155624.
+Add features to: T2S:
+ - Add vctk hifigan egs.
+ - PRLink: https://github.com/PaddlePaddle/PaddleSpeech/pull/1544
Date: 2022-1-29, Author: yt605155624.
Add features to: T2S:
diff --git a/README.md b/README.md
index 46f492e9980..ceef15af62c 100644
--- a/README.md
+++ b/README.md
@@ -178,7 +178,7 @@ Via the easy-to-use, efficient, flexible and scalable implementation, our vision
-- 🤗 2021.12.14: Our PaddleSpeech [ASR](https://huggingface.co/spaces/KPatrick/PaddleSpeechASR) and [TTS](https://huggingface.co/spaces/akhaliq/paddlespeech) Demos on Hugging Face Spaces are available!
+- 🤗 2021.12.14: Our PaddleSpeech [ASR](https://huggingface.co/spaces/KPatrick/PaddleSpeechASR) and [TTS](https://huggingface.co/spaces/KPatrick/PaddleSpeechTTS) Demos on Hugging Face Spaces are available!
- 👏🏻 2021.12.10: PaddleSpeech CLI is available for Audio Classification, Automatic Speech Recognition, Speech Translation (English to Chinese) and Text-to-Speech.
### Community
@@ -207,6 +207,7 @@ paddlespeech cls --input input.wav
```shell
paddlespeech asr --lang zh --input input_16k.wav
```
+- web demo for Automatic Speech Recognition is integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See Demo: [ASR Demo](https://huggingface.co/spaces/KPatrick/PaddleSpeechASR)
**Speech Translation** (English to Chinese)
(not support for Mac and Windows now)
@@ -218,7 +219,7 @@ paddlespeech st --input input_16k.wav
```shell
paddlespeech tts --input "你好,欢迎使用飞桨深度学习框架!" --output output.wav
```
-- web demo for Text to Speech is integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See Demo: [TTS Demo](https://huggingface.co/spaces/akhaliq/paddlespeech)
+- web demo for Text to Speech is integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See Demo: [TTS Demo](https://huggingface.co/spaces/KPatrick/PaddleSpeechTTS)
**Text Postprocessing**
- Punctuation Restoration
@@ -397,9 +398,9 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
HiFiGAN |
- CSMSC |
+ LJSpeech / VCTK / CSMSC / AISHELL-3 |
- HiFiGAN-csmsc
+ HiFiGAN-ljspeech / HiFiGAN-vctk / HiFiGAN-csmsc / HiFiGAN-aishell3
|
@@ -573,7 +574,6 @@ You are warmly welcome to submit questions in [discussions](https://github.com/P
- Many thanks to [yeyupiaoling](https://github.com/yeyupiaoling)/[PPASR](https://github.com/yeyupiaoling/PPASR)/[PaddlePaddle-DeepSpeech](https://github.com/yeyupiaoling/PaddlePaddle-DeepSpeech)/[VoiceprintRecognition-PaddlePaddle](https://github.com/yeyupiaoling/VoiceprintRecognition-PaddlePaddle)/[AudioClassification-PaddlePaddle](https://github.com/yeyupiaoling/AudioClassification-PaddlePaddle) for years of attention, constructive advice and great help.
-- Many thanks to [AK391](https://github.com/AK391) for TTS web demo on Huggingface Spaces using Gradio.
- Many thanks to [mymagicpower](https://github.com/mymagicpower) for the Java implementation of ASR upon [short](https://github.com/mymagicpower/AIAS/tree/main/3_audio_sdks/asr_sdk) and [long](https://github.com/mymagicpower/AIAS/tree/main/3_audio_sdks/asr_long_audio_sdk) audio files.
- Many thanks to [JiehangXie](https://github.com/JiehangXie)/[PaddleBoBo](https://github.com/JiehangXie/PaddleBoBo) for developing Virtual Uploader(VUP)/Virtual YouTuber(VTuber) with PaddleSpeech TTS function.
- Many thanks to [745165806](https://github.com/745165806)/[PaddleSpeechTask](https://github.com/745165806/PaddleSpeechTask) for contributing Punctuation Restoration model.
diff --git a/README_cn.md b/README_cn.md
index e8494737299..8ea91e98d42 100644
--- a/README_cn.md
+++ b/README_cn.md
@@ -392,9 +392,9 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
HiFiGAN |
- CSMSC |
+ LJSpeech / VCTK / CSMSC / AISHELL-3 |
- HiFiGAN-csmsc
+ HiFiGAN-ljspeech / HiFiGAN-vctk / HiFiGAN-csmsc / HiFiGAN-aishell3
|
diff --git a/demos/speech_recognition/README.md b/demos/speech_recognition/README.md
index 5d964fceac7..636548801b4 100644
--- a/demos/speech_recognition/README.md
+++ b/demos/speech_recognition/README.md
@@ -84,5 +84,8 @@ Here is a list of pretrained models released by PaddleSpeech that can be used by
| Model | Language | Sample Rate
| :--- | :---: | :---: |
-| conformer_wenetspeech| zh| 16000
-| transformer_librispeech| en| 16000
+| conformer_wenetspeech| zh| 16k
+| transformer_librispeech| en| 16k
+| deepspeech2offline_aishell| zh| 16k
+| deepspeech2online_aishell | zh | 16k
+|deepspeech2offline_librispeech|en| 16k
diff --git a/demos/speech_recognition/README_cn.md b/demos/speech_recognition/README_cn.md
index ba1f1d65c5c..8033dbd8130 100644
--- a/demos/speech_recognition/README_cn.md
+++ b/demos/speech_recognition/README_cn.md
@@ -81,5 +81,8 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
| 模型 | 语言 | 采样率
| :--- | :---: | :---: |
-| conformer_wenetspeech| zh| 16000
-| transformer_librispeech| en| 16000
+| conformer_wenetspeech | zh | 16k
+| transformer_librispeech | en | 16k
+| deepspeech2offline_aishell| zh| 16k
+| deepspeech2online_aishell | zh | 16k
+| deepspeech2offline_librispeech | en | 16k
diff --git a/demos/speech_server/.gitignore b/demos/speech_server/.gitignore
new file mode 100644
index 00000000000..d8dd7532abc
--- /dev/null
+++ b/demos/speech_server/.gitignore
@@ -0,0 +1 @@
+*.wav
diff --git a/demos/speech_server/README.md b/demos/speech_server/README.md
index a2f6f221320..10489e71314 100644
--- a/demos/speech_server/README.md
+++ b/demos/speech_server/README.md
@@ -110,21 +110,22 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import ASRClientExecutor
+ import json
asrclient_executor = ASRClientExecutor()
- asrclient_executor(
+ res = asrclient_executor(
input="./zh.wav",
server_ip="127.0.0.1",
port=8090,
sample_rate=16000,
lang="zh_cn",
audio_format="wav")
+ print(res.json())
```
Output:
```bash
{'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'transcription': '我认为跑步最重要的就是给我带来了身体健康'}}
- time cost 0.604353 s.
```
### 5. TTS Client Usage
@@ -146,7 +147,7 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- `speed`: Audio speed, the value should be set between 0 and 3. Default: 1.0
- `volume`: Audio volume, the value should be set between 0 and 3. Default: 1.0
- `sample_rate`: Sampling rate, choice: [0, 8000, 16000], the default is the same as the model. Default: 0
- - `output`: Output wave filepath. Default: `output.wav`.
+ - `output`: Output wave filepath. Default: None, which means not to save the audio to the local.
Output:
```bash
@@ -160,9 +161,10 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import TTSClientExecutor
+ import json
ttsclient_executor = TTSClientExecutor()
- ttsclient_executor(
+ res = ttsclient_executor(
input="您好,欢迎使用百度飞桨语音合成服务。",
server_ip="127.0.0.1",
port=8090,
@@ -171,6 +173,11 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
volume=1.0,
sample_rate=0,
output="./output.wav")
+
+ response_dict = res.json()
+ print(response_dict["message"])
+ print("Save synthesized audio successfully on %s." % (response_dict['result']['save_path']))
+ print("Audio duration: %f s." %(response_dict['result']['duration']))
```
Output:
@@ -178,7 +185,52 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
{'description': 'success.'}
Save synthesized audio successfully on ./output.wav.
Audio duration: 3.612500 s.
- Response time: 0.388317 s.
+
+ ```
+
+### 6. CLS Client Usage
+**Note:** The response time will be slightly longer when using the client for the first time
+- Command Line (Recommended)
+ ```
+ paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
+ ```
+
+ Usage:
+
+ ```bash
+ paddlespeech_client cls --help
+ ```
+ Arguments:
+ - `server_ip`: server ip. Default: 127.0.0.1
+ - `port`: server port. Default: 8090
+ - `input`(required): Audio file to be classified.
+ - `topk`: topk scores of classification result.
+
+ Output:
+ ```bash
+ [2022-03-09 20:44:39,974] [ INFO] - {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
+ [2022-03-09 20:44:39,975] [ INFO] - Response time 0.104360 s.
+
+
+ ```
+
+- Python API
+ ```python
+ from paddlespeech.server.bin.paddlespeech_client import CLSClientExecutor
+ import json
+
+ clsclient_executor = CLSClientExecutor()
+ res = clsclient_executor(
+ input="./zh.wav",
+ server_ip="127.0.0.1",
+ port=8090,
+ topk=1)
+ print(res.json())
+ ```
+
+ Output:
+ ```bash
+ {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
```
@@ -189,3 +241,6 @@ Get all models supported by the ASR service via `paddlespeech_server stats --tas
### TTS model
Get all models supported by the TTS service via `paddlespeech_server stats --task tts`, where static models can be used for paddle inference inference.
+
+### CLS model
+Get all models supported by the CLS service via `paddlespeech_server stats --task cls`, where static models can be used for paddle inference inference.
diff --git a/demos/speech_server/README_cn.md b/demos/speech_server/README_cn.md
index 762248a117f..2bd8af6c91f 100644
--- a/demos/speech_server/README_cn.md
+++ b/demos/speech_server/README_cn.md
@@ -80,7 +80,7 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
```
-### 4. ASR客户端使用方法
+### 4. ASR 客户端使用方法
**注意:** 初次使用客户端时响应时间会略长
- 命令行 (推荐使用)
```
@@ -111,25 +111,26 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import ASRClientExecutor
+ import json
asrclient_executor = ASRClientExecutor()
- asrclient_executor(
+ res = asrclient_executor(
input="./zh.wav",
server_ip="127.0.0.1",
port=8090,
sample_rate=16000,
lang="zh_cn",
audio_format="wav")
+ print(res.json())
```
输出:
```bash
{'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'transcription': '我认为跑步最重要的就是给我带来了身体健康'}}
- time cost 0.604353 s.
```
-### 5. TTS客户端使用方法
+### 5. TTS 客户端使用方法
**注意:** 初次使用客户端时响应时间会略长
- 命令行 (推荐使用)
@@ -150,7 +151,7 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- `speed`: 音频速度,该值应设置在 0 到 3 之间。 默认值:1.0
- `volume`: 音频音量,该值应设置在 0 到 3 之间。 默认值: 1.0
- `sample_rate`: 采样率,可选 [0, 8000, 16000],默认与模型相同。 默认值:0
- - `output`: 输出音频的路径, 默认值:output.wav。
+ - `output`: 输出音频的路径, 默认值:None,表示不保存音频到本地。
输出:
```bash
@@ -163,9 +164,10 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import TTSClientExecutor
+ import json
ttsclient_executor = TTSClientExecutor()
- ttsclient_executor(
+ res = ttsclient_executor(
input="您好,欢迎使用百度飞桨语音合成服务。",
server_ip="127.0.0.1",
port=8090,
@@ -174,6 +176,11 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
volume=1.0,
sample_rate=0,
output="./output.wav")
+
+ response_dict = res.json()
+ print(response_dict["message"])
+ print("Save synthesized audio successfully on %s." % (response_dict['result']['save_path']))
+ print("Audio duration: %f s." %(response_dict['result']['duration']))
```
输出:
@@ -181,13 +188,63 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
{'description': 'success.'}
Save synthesized audio successfully on ./output.wav.
Audio duration: 3.612500 s.
- Response time: 0.388317 s.
```
+ ### 5. CLS 客户端使用方法
+ **注意:** 初次使用客户端时响应时间会略长
+ - 命令行 (推荐使用)
+ ```
+ paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
+ ```
+
+ 使用帮助:
+
+ ```bash
+ paddlespeech_client cls --help
+ ```
+ 参数:
+ - `server_ip`: 服务端ip地址,默认: 127.0.0.1。
+ - `port`: 服务端口,默认: 8090。
+ - `input`(必须输入): 用于分类的音频文件。
+ - `topk`: 分类结果的topk。
+
+ 输出:
+ ```bash
+ [2022-03-09 20:44:39,974] [ INFO] - {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
+ [2022-03-09 20:44:39,975] [ INFO] - Response time 0.104360 s.
+
+
+ ```
+
+- Python API
+ ```python
+ from paddlespeech.server.bin.paddlespeech_client import CLSClientExecutor
+ import json
+
+ clsclient_executor = CLSClientExecutor()
+ res = clsclient_executor(
+ input="./zh.wav",
+ server_ip="127.0.0.1",
+ port=8090,
+ topk=1)
+ print(res.json())
+
+ ```
+
+ 输出:
+ ```bash
+ {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
+
+ ```
+
+
## 服务支持的模型
### ASR支持的模型
通过 `paddlespeech_server stats --task asr` 获取ASR服务支持的所有模型,其中静态模型可用于 paddle inference 推理。
### TTS支持的模型
通过 `paddlespeech_server stats --task tts` 获取TTS服务支持的所有模型,其中静态模型可用于 paddle inference 推理。
+
+### CLS支持的模型
+通过 `paddlespeech_server stats --task cls` 获取CLS服务支持的所有模型,其中静态模型可用于 paddle inference 推理。
diff --git a/demos/speech_server/cls_client.sh b/demos/speech_server/cls_client.sh
new file mode 100644
index 00000000000..5797aa204f6
--- /dev/null
+++ b/demos/speech_server/cls_client.sh
@@ -0,0 +1,4 @@
+#!/bin/bash
+
+wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav
+paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input ./zh.wav --topk 1
diff --git a/demos/speech_server/conf/application.yaml b/demos/speech_server/conf/application.yaml
index 6048450b7ba..2b1a0599808 100644
--- a/demos/speech_server/conf/application.yaml
+++ b/demos/speech_server/conf/application.yaml
@@ -9,12 +9,14 @@ port: 8090
# The task format in the engin_list is: _
# task choices = ['asr_python', 'asr_inference', 'tts_python', 'tts_inference']
-engine_list: ['asr_python', 'tts_python']
+engine_list: ['asr_python', 'tts_python', 'cls_python']
#################################################################################
# ENGINE CONFIG #
#################################################################################
+
+################################### ASR #########################################
################### speech task: asr; engine_type: python #######################
asr_python:
model: 'conformer_wenetspeech'
@@ -46,6 +48,7 @@ asr_inference:
summary: True # False -> do not show predictor config
+################################### TTS #########################################
################### speech task: tts; engine_type: python #######################
tts_python:
# am (acoustic model) choices=['speedyspeech_csmsc', 'fastspeech2_csmsc',
@@ -105,3 +108,30 @@ tts_inference:
# others
lang: 'zh'
+
+################################### CLS #########################################
+################### speech task: cls; engine_type: python #######################
+cls_python:
+ # model choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
+ model: 'panns_cnn14'
+ cfg_path: # [optional] Config of cls task.
+ ckpt_path: # [optional] Checkpoint file of model.
+ label_file: # [optional] Label file of cls task.
+ device: # set 'gpu:id' or 'cpu'
+
+
+################### speech task: cls; engine_type: inference #######################
+cls_inference:
+ # model_type choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
+ model_type: 'panns_cnn14'
+ cfg_path:
+ model_path: # the pdmodel file of am static model [optional]
+ params_path: # the pdiparams file of am static model [optional]
+ label_file: # [optional] Label file of cls task.
+
+ predictor_conf:
+ device: # set 'gpu:id' or 'cpu'
+ switch_ir_optim: True
+ glog_info: False # True -> print glog
+ summary: True # False -> do not show predictor config
+
diff --git a/docs/source/reference.md b/docs/source/reference.md
index a8327e92e9d..f1a02d20009 100644
--- a/docs/source/reference.md
+++ b/docs/source/reference.md
@@ -35,3 +35,7 @@ We borrowed a lot of code from these repos to build `model` and `engine`, thanks
* [librosa](https://github.com/librosa/librosa/blob/main/LICENSE.md)
- ISC License
- Audio feature
+
+* [ThreadPool](https://github.com/progschj/ThreadPool/blob/master/COPYING)
+- zlib License
+- ThreadPool
diff --git a/docs/source/released_model.md b/docs/source/released_model.md
index 8f855f7cf1e..62986da03d1 100644
--- a/docs/source/released_model.md
+++ b/docs/source/released_model.md
@@ -49,17 +49,19 @@ Model Type | Dataset| Example Link | Pretrained Models| Static Models|Size (stat
WaveFlow| LJSpeech |[waveflow-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc0)|[waveflow_ljspeech_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/waveflow/waveflow_ljspeech_ckpt_0.3.zip)|||
Parallel WaveGAN| CSMSC |[PWGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc1)|[pwg_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_ckpt_0.4.zip)|[pwg_baker_static_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_static_0.4.zip)|5.1MB|
Parallel WaveGAN| LJSpeech |[PWGAN-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc1)|[pwg_ljspeech_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_ljspeech_ckpt_0.5.zip)|||
-Parallel WaveGAN|AISHELL-3 |[PWGAN-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/voc1)|[pwg_aishell3_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_aishell3_ckpt_0.5.zip)|||
+Parallel WaveGAN| AISHELL-3 |[PWGAN-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/voc1)|[pwg_aishell3_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_aishell3_ckpt_0.5.zip)|||
Parallel WaveGAN| VCTK |[PWGAN-vctk](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/voc1)|[pwg_vctk_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_vctk_ckpt_0.5.zip)|||
|Multi Band MelGAN | CSMSC |[MB MelGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc3) | [mb_melgan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_ckpt_0.1.1.zip)
[mb_melgan_baker_finetune_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_baker_finetune_ckpt_0.5.zip)|[mb_melgan_csmsc_static_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_static_0.1.1.zip) |8.2MB|
Style MelGAN | CSMSC |[Style MelGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc4)|[style_melgan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/style_melgan/style_melgan_csmsc_ckpt_0.1.1.zip)| | |
HiFiGAN | CSMSC |[HiFiGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc5)|[hifigan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_ckpt_0.1.1.zip)|[hifigan_csmsc_static_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_static_0.1.1.zip)|50MB|
+HiFiGAN | AISHELL-3 |[HiFiGAN-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/voc5)|[hifigan_aishell3_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip)|||
+HiFiGAN | VCTK |[HiFiGAN-vctk](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/voc5)|[hifigan_aishell3_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip)|||
WaveRNN | CSMSC |[WaveRNN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc6)|[wavernn_csmsc_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_ckpt_0.2.0.zip)|[wavernn_csmsc_static_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_static_0.2.0.zip)|18MB|
### Voice Cloning
Model Type | Dataset| Example Link | Pretrained Models
-:-------------:| :------------:| :-----: | :-----:
+:-------------:| :------------:| :-----: | :-----: |
GE2E| AISHELL-3, etc. |[ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e)|[ge2e_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ge2e/ge2e_ckpt_0.3.zip)
GE2E + Tactron2| AISHELL-3 |[ge2e-tactron2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc0)|[tacotron2_aishell3_ckpt_vc0_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_aishell3_ckpt_vc0_0.2.0.zip)
GE2E + FastSpeech2 | AISHELL-3 |[ge2e-fastspeech2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc1)|[fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip)
@@ -67,9 +69,9 @@ GE2E + FastSpeech2 | AISHELL-3 |[ge2e-fastspeech2-aishell3](https://github.com/
## Audio Classification Models
-Model Type | Dataset| Example Link | Pretrained Models
-:-------------:| :------------:| :-----: | :-----:
-PANN | Audioset| [audioset_tagging_cnn](https://github.com/qiuqiangkong/audioset_tagging_cnn) | [panns_cnn6.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn6.pdparams), [panns_cnn10.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn10.pdparams), [panns_cnn14.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn14.pdparams)
+Model Type | Dataset| Example Link | Pretrained Models | Static Models
+:-------------:| :------------:| :-----: | :-----: | :-----:
+PANN | Audioset| [audioset_tagging_cnn](https://github.com/qiuqiangkong/audioset_tagging_cnn) | [panns_cnn6.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn6.pdparams), [panns_cnn10.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn10.pdparams), [panns_cnn14.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn14.pdparams) | [panns_cnn6_static.tar.gz](https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn6_static.tar.gz)(18M), [panns_cnn10_static.tar.gz](https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn10_static.tar.gz)(19M), [panns_cnn14_static.tar.gz](https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn14_static.tar.gz)(289M)
PANN | ESC-50 |[pann-esc50](../../examples/esc50/cls0)|[esc50_cnn6.tar.gz](https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn6.tar.gz), [esc50_cnn10.tar.gz](https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn10.tar.gz), [esc50_cnn14.tar.gz](https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn14.tar.gz)
## Punctuation Restoration Models
diff --git a/examples/aishell3/tts3/local/synthesize.sh b/examples/aishell3/tts3/local/synthesize.sh
index b1fc96a2d67..d3978833faa 100755
--- a/examples/aishell3/tts3/local/synthesize.sh
+++ b/examples/aishell3/tts3/local/synthesize.sh
@@ -4,18 +4,44 @@ config_path=$1
train_output_path=$2
ckpt_name=$3
-FLAGS_allocator_strategy=naive_best_fit \
-FLAGS_fraction_of_gpu_memory_to_use=0.01 \
-python3 ${BIN_DIR}/../synthesize.py \
- --am=fastspeech2_aishell3 \
- --am_config=${config_path} \
- --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
- --am_stat=dump/train/speech_stats.npy \
- --voc=pwgan_aishell3 \
- --voc_config=pwg_aishell3_ckpt_0.5/default.yaml \
- --voc_ckpt=pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \
- --voc_stat=pwg_aishell3_ckpt_0.5/feats_stats.npy \
- --test_metadata=dump/test/norm/metadata.jsonl \
- --output_dir=${train_output_path}/test \
- --phones_dict=dump/phone_id_map.txt \
- --speaker_dict=dump/speaker_id_map.txt
+stage=0
+stop_stage=0
+
+# pwgan
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+ FLAGS_allocator_strategy=naive_best_fit \
+ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
+ python3 ${BIN_DIR}/../synthesize.py \
+ --am=fastspeech2_aishell3 \
+ --am_config=${config_path} \
+ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
+ --am_stat=dump/train/speech_stats.npy \
+ --voc=pwgan_aishell3 \
+ --voc_config=pwg_aishell3_ckpt_0.5/default.yaml \
+ --voc_ckpt=pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \
+ --voc_stat=pwg_aishell3_ckpt_0.5/feats_stats.npy \
+ --test_metadata=dump/test/norm/metadata.jsonl \
+ --output_dir=${train_output_path}/test \
+ --phones_dict=dump/phone_id_map.txt \
+ --speaker_dict=dump/speaker_id_map.txt
+fi
+
+# hifigan
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+ FLAGS_allocator_strategy=naive_best_fit \
+ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
+ python3 ${BIN_DIR}/../synthesize.py \
+ --am=fastspeech2_aishell3 \
+ --am_config=${config_path} \
+ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
+ --am_stat=dump/train/speech_stats.npy \
+ --voc=hifigan_aishell3 \
+ --voc_config=hifigan_aishell3_ckpt_0.2.0/default.yaml \
+ --voc_ckpt=hifigan_aishell3_ckpt_0.2.0/snapshot_iter_2500000.pd \
+ --voc_stat=hifigan_aishell3_ckpt_0.2.0/feats_stats.npy \
+ --test_metadata=dump/test/norm/metadata.jsonl \
+ --output_dir=${train_output_path}/test \
+ --phones_dict=dump/phone_id_map.txt \
+ --speaker_dict=dump/speaker_id_map.txt
+fi
+
diff --git a/examples/aishell3/tts3/local/synthesize_e2e.sh b/examples/aishell3/tts3/local/synthesize_e2e.sh
index 60e1a5cee19..ff3608be7ae 100755
--- a/examples/aishell3/tts3/local/synthesize_e2e.sh
+++ b/examples/aishell3/tts3/local/synthesize_e2e.sh
@@ -4,21 +4,50 @@ config_path=$1
train_output_path=$2
ckpt_name=$3
-FLAGS_allocator_strategy=naive_best_fit \
-FLAGS_fraction_of_gpu_memory_to_use=0.01 \
-python3 ${BIN_DIR}/../synthesize_e2e.py \
- --am=fastspeech2_aishell3 \
- --am_config=${config_path} \
- --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
- --am_stat=dump/train/speech_stats.npy \
- --voc=pwgan_aishell3 \
- --voc_config=pwg_aishell3_ckpt_0.5/default.yaml \
- --voc_ckpt=pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \
- --voc_stat=pwg_aishell3_ckpt_0.5/feats_stats.npy \
- --lang=zh \
- --text=${BIN_DIR}/../sentences.txt \
- --output_dir=${train_output_path}/test_e2e \
- --phones_dict=dump/phone_id_map.txt \
- --speaker_dict=dump/speaker_id_map.txt \
- --spk_id=0 \
- --inference_dir=${train_output_path}/inference
+stage=0
+stop_stage=0
+
+# pwgan
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+ FLAGS_allocator_strategy=naive_best_fit \
+ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
+ python3 ${BIN_DIR}/../synthesize_e2e.py \
+ --am=fastspeech2_aishell3 \
+ --am_config=${config_path} \
+ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
+ --am_stat=dump/train/speech_stats.npy \
+ --voc=pwgan_aishell3 \
+ --voc_config=pwg_aishell3_ckpt_0.5/default.yaml \
+ --voc_ckpt=pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \
+ --voc_stat=pwg_aishell3_ckpt_0.5/feats_stats.npy \
+ --lang=zh \
+ --text=${BIN_DIR}/../sentences.txt \
+ --output_dir=${train_output_path}/test_e2e \
+ --phones_dict=dump/phone_id_map.txt \
+ --speaker_dict=dump/speaker_id_map.txt \
+ --spk_id=0 \
+ --inference_dir=${train_output_path}/inference
+fi
+
+# hifigan
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+ echo "in hifigan syn_e2e"
+ FLAGS_allocator_strategy=naive_best_fit \
+ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
+ python3 ${BIN_DIR}/../synthesize_e2e.py \
+ --am=fastspeech2_aishell3 \
+ --am_config=${config_path} \
+ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
+ --am_stat=fastspeech2_nosil_aishell3_ckpt_0.4/speech_stats.npy \
+ --voc=hifigan_aishell3 \
+ --voc_config=hifigan_aishell3_ckpt_0.2.0/default.yaml \
+ --voc_ckpt=hifigan_aishell3_ckpt_0.2.0/snapshot_iter_2500000.pdz \
+ --voc_stat=hifigan_aishell3_ckpt_0.2.0/feats_stats.npy \
+ --lang=zh \
+ --text=${BIN_DIR}/../sentences.txt \
+ --output_dir=${train_output_path}/test_e2e \
+ --phones_dict=fastspeech2_nosil_aishell3_ckpt_0.4/phone_id_map.txt \
+ --speaker_dict=fastspeech2_nosil_aishell3_ckpt_0.4/speaker_id_map.txt \
+ --spk_id=0 \
+ --inference_dir=${train_output_path}/inference
+ fi
diff --git a/examples/aishell3/vc0/local/preprocess.sh b/examples/aishell3/vc0/local/preprocess.sh
index 069cf94c4ee..e458c7063b2 100755
--- a/examples/aishell3/vc0/local/preprocess.sh
+++ b/examples/aishell3/vc0/local/preprocess.sh
@@ -1,6 +1,6 @@
#!/bin/bash
-stage=3
+stage=0
stop_stage=100
config_path=$1
diff --git a/examples/aishell3/voc1/run.sh b/examples/aishell3/voc1/run.sh
index 4f426ea02e1..cab1ac38b1a 100755
--- a/examples/aishell3/voc1/run.sh
+++ b/examples/aishell3/voc1/run.sh
@@ -3,7 +3,7 @@
set -e
source path.sh
-gpus=0
+gpus=0,1
stage=0
stop_stage=100
diff --git a/examples/aishell3/voc5/README.md b/examples/aishell3/voc5/README.md
new file mode 100644
index 00000000000..ebe2530beec
--- /dev/null
+++ b/examples/aishell3/voc5/README.md
@@ -0,0 +1,156 @@
+# HiFiGAN with AISHELL-3
+This example contains code used to train a [HiFiGAN](https://arxiv.org/abs/2010.05646) model with [AISHELL-3](http://www.aishelltech.com/aishell_3).
+
+AISHELL-3 is a large-scale and high-fidelity multi-speaker Mandarin speech corpus that could be used to train multi-speaker Text-to-Speech (TTS) systems.
+## Dataset
+### Download and Extract
+Download AISHELL-3.
+```bash
+wget https://www.openslr.org/resources/93/data_aishell3.tgz
+```
+Extract AISHELL-3.
+```bash
+mkdir data_aishell3
+tar zxvf data_aishell3.tgz -C data_aishell3
+```
+### Get MFA Result and Extract
+We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for aishell3_fastspeech2.
+You can download from here [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo.
+
+## Get Started
+Assume the path to the dataset is `~/datasets/data_aishell3`.
+Assume the path to the MFA result of AISHELL-3 is `./aishell3_alignment_tone`.
+Run the command below to
+1. **source path**.
+2. preprocess the dataset.
+3. train the model.
+4. synthesize wavs.
+ - synthesize waveform from `metadata.jsonl`.
+```bash
+./run.sh
+```
+You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, run the following command will only preprocess the dataset.
+```bash
+./run.sh --stage 0 --stop-stage 0
+```
+### Data Preprocessing
+```bash
+./local/preprocess.sh ${conf_path}
+```
+When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
+
+```text
+dump
+├── dev
+│ ├── norm
+│ └── raw
+├── test
+│ ├── norm
+│ └── raw
+└── train
+ ├── norm
+ ├── raw
+ └── feats_stats.npy
+```
+
+The dataset is split into 3 parts, namely `train`, `dev`, and `test`, each of which contains a `norm` and `raw` subfolder. The `raw` folder contains the log magnitude of the mel spectrogram of each utterance, while the norm folder contains the normalized spectrogram. The statistics used to normalize the spectrogram are computed from the training set, which is located in `dump/train/feats_stats.npy`.
+
+Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains id and paths to the spectrogram of each utterance.
+
+### Model Training
+```bash
+CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
+```
+`./local/train.sh` calls `${BIN_DIR}/train.py`.
+Here's the complete help message.
+
+```text
+usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
+ [--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
+ [--ngpu NGPU] [--batch-size BATCH_SIZE] [--max-iter MAX_ITER]
+ [--run-benchmark RUN_BENCHMARK]
+ [--profiler_options PROFILER_OPTIONS]
+
+Train a ParallelWaveGAN model.
+
+optional arguments:
+ -h, --help show this help message and exit
+ --config CONFIG config file to overwrite default config.
+ --train-metadata TRAIN_METADATA
+ training data.
+ --dev-metadata DEV_METADATA
+ dev data.
+ --output-dir OUTPUT_DIR
+ output dir.
+ --ngpu NGPU if ngpu == 0, use cpu.
+
+benchmark:
+ arguments related to benchmark.
+
+ --batch-size BATCH_SIZE
+ batch size.
+ --max-iter MAX_ITER train max steps.
+ --run-benchmark RUN_BENCHMARK
+ runing benchmark or not, if True, use the --batch-size
+ and --max-iter.
+ --profiler_options PROFILER_OPTIONS
+ The option of profiler, which should be in format
+ "key1=value1;key2=value2;key3=value3".
+```
+
+1. `--config` is a config file in yaml format to overwrite the default config, which can be found at `conf/default.yaml`.
+2. `--train-metadata` and `--dev-metadata` should be the metadata file in the normalized subfolder of `train` and `dev` in the `dump` folder.
+3. `--output-dir` is the directory to save the results of the experiment. Checkpoints are saved in `checkpoints/` inside this directory.
+4. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
+
+### Synthesizing
+`./local/synthesize.sh` calls `${BIN_DIR}/../synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
+```bash
+CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
+```
+```text
+usage: synthesize.py [-h] [--generator-type GENERATOR_TYPE] [--config CONFIG]
+ [--checkpoint CHECKPOINT] [--test-metadata TEST_METADATA]
+ [--output-dir OUTPUT_DIR] [--ngpu NGPU]
+
+Synthesize with GANVocoder.
+
+optional arguments:
+ -h, --help show this help message and exit
+ --generator-type GENERATOR_TYPE
+ type of GANVocoder, should in {pwgan, mb_melgan,
+ style_melgan, } now
+ --config CONFIG GANVocoder config file.
+ --checkpoint CHECKPOINT
+ snapshot to load.
+ --test-metadata TEST_METADATA
+ dev data.
+ --output-dir OUTPUT_DIR
+ output dir.
+ --ngpu NGPU if ngpu == 0, use cpu.
+```
+
+1. `--config` config file. You should use the same config with which the model is trained.
+2. `--checkpoint` is the checkpoint to load. Pick one of the checkpoints from `checkpoints` inside the training output directory.
+3. `--test-metadata` is the metadata of the test dataset. Use the `metadata.jsonl` in the `dev/norm` subfolder from the processed directory.
+4. `--output-dir` is the directory to save the synthesized audio files.
+5. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
+## Pretrained Models
+The pretrained model can be downloaded here [hifigan_aishell3_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip).
+
+
+Model | Step | eval/generator_loss | eval/mel_loss| eval/feature_matching_loss
+:-------------:| :------------:| :-----: | :-----: | :--------:
+default| 1(gpu) x 2500000|24.060|0.1068|7.499
+
+HiFiGAN checkpoint contains files listed below.
+
+```text
+hifigan_aishell3_ckpt_0.2.0
+├── default.yaml # default config used to train hifigan
+├── feats_stats.npy # statistics used to normalize spectrogram when training hifigan
+└── snapshot_iter_2500000.pdz # generator parameters of hifigan
+```
+
+## Acknowledgement
+We adapted some code from https://github.com/kan-bayashi/ParallelWaveGAN.
diff --git a/examples/aishell3/voc5/conf/default.yaml b/examples/aishell3/voc5/conf/default.yaml
new file mode 100644
index 00000000000..728a9036909
--- /dev/null
+++ b/examples/aishell3/voc5/conf/default.yaml
@@ -0,0 +1,168 @@
+# This is the configuration file for AISHELL-3 dataset.
+# This configuration is based on HiFiGAN V1, which is
+# an official configuration. But I found that the optimizer
+# setting does not work well with my implementation.
+# So I changed optimizer settings as follows:
+# - AdamW -> Adam
+# - betas: [0.8, 0.99] -> betas: [0.5, 0.9]
+# - Scheduler: ExponentialLR -> MultiStepLR
+# To match the shift size difference, the upsample scales
+# is also modified from the original 256 shift setting.
+###########################################################
+# FEATURE EXTRACTION SETTING #
+###########################################################
+fs: 24000 # Sampling rate.
+n_fft: 2048 # FFT size (samples).
+n_shift: 300 # Hop size (samples). 12.5ms
+win_length: 1200 # Window length (samples). 50ms
+ # If set to null, it will be the same as fft_size.
+window: "hann" # Window function.
+n_mels: 80 # Number of mel basis.
+fmin: 80 # Minimum freq in mel basis calculation. (Hz)
+fmax: 7600 # Maximum frequency in mel basis calculation. (Hz)
+
+###########################################################
+# GENERATOR NETWORK ARCHITECTURE SETTING #
+###########################################################
+generator_params:
+ in_channels: 80 # Number of input channels.
+ out_channels: 1 # Number of output channels.
+ channels: 512 # Number of initial channels.
+ kernel_size: 7 # Kernel size of initial and final conv layers.
+ upsample_scales: [5, 5, 4, 3] # Upsampling scales.
+ upsample_kernel_sizes: [10, 10, 8, 6] # Kernel size for upsampling layers.
+ resblock_kernel_sizes: [3, 7, 11] # Kernel size for residual blocks.
+ resblock_dilations: # Dilations for residual blocks.
+ - [1, 3, 5]
+ - [1, 3, 5]
+ - [1, 3, 5]
+ use_additional_convs: True # Whether to use additional conv layer in residual blocks.
+ bias: True # Whether to use bias parameter in conv.
+ nonlinear_activation: "leakyrelu" # Nonlinear activation type.
+ nonlinear_activation_params: # Nonlinear activation paramters.
+ negative_slope: 0.1
+ use_weight_norm: True # Whether to apply weight normalization.
+
+
+###########################################################
+# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
+###########################################################
+discriminator_params:
+ scales: 3 # Number of multi-scale discriminator.
+ scale_downsample_pooling: "AvgPool1D" # Pooling operation for scale discriminator.
+ scale_downsample_pooling_params:
+ kernel_size: 4 # Pooling kernel size.
+ stride: 2 # Pooling stride.
+ padding: 2 # Padding size.
+ scale_discriminator_params:
+ in_channels: 1 # Number of input channels.
+ out_channels: 1 # Number of output channels.
+ kernel_sizes: [15, 41, 5, 3] # List of kernel sizes.
+ channels: 128 # Initial number of channels.
+ max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
+ max_groups: 16 # Maximum number of groups in downsampling conv layers.
+ bias: True
+ downsample_scales: [4, 4, 4, 4, 1] # Downsampling scales.
+ nonlinear_activation: "leakyrelu" # Nonlinear activation.
+ nonlinear_activation_params:
+ negative_slope: 0.1
+ follow_official_norm: True # Whether to follow the official norm setting.
+ periods: [2, 3, 5, 7, 11] # List of period for multi-period discriminator.
+ period_discriminator_params:
+ in_channels: 1 # Number of input channels.
+ out_channels: 1 # Number of output channels.
+ kernel_sizes: [5, 3] # List of kernel sizes.
+ channels: 32 # Initial number of channels.
+ downsample_scales: [3, 3, 3, 3, 1] # Downsampling scales.
+ max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
+ bias: True # Whether to use bias parameter in conv layer."
+ nonlinear_activation: "leakyrelu" # Nonlinear activation.
+ nonlinear_activation_params: # Nonlinear activation paramters.
+ negative_slope: 0.1
+ use_weight_norm: True # Whether to apply weight normalization.
+ use_spectral_norm: False # Whether to apply spectral normalization.
+
+
+###########################################################
+# STFT LOSS SETTING #
+###########################################################
+use_stft_loss: False # Whether to use multi-resolution STFT loss.
+use_mel_loss: True # Whether to use Mel-spectrogram loss.
+mel_loss_params:
+ fs: 24000
+ fft_size: 2048
+ hop_size: 300
+ win_length: 1200
+ window: "hann"
+ num_mels: 80
+ fmin: 0
+ fmax: 12000
+ log_base: null
+generator_adv_loss_params:
+ average_by_discriminators: False # Whether to average loss by #discriminators.
+discriminator_adv_loss_params:
+ average_by_discriminators: False # Whether to average loss by #discriminators.
+use_feat_match_loss: True
+feat_match_loss_params:
+ average_by_discriminators: False # Whether to average loss by #discriminators.
+ average_by_layers: False # Whether to average loss by #layers in each discriminator.
+ include_final_outputs: False # Whether to include final outputs in feat match loss calculation.
+
+###########################################################
+# ADVERSARIAL LOSS SETTING #
+###########################################################
+lambda_aux: 45.0 # Loss balancing coefficient for STFT loss.
+lambda_adv: 1.0 # Loss balancing coefficient for adversarial loss.
+lambda_feat_match: 2.0 # Loss balancing coefficient for feat match loss..
+
+###########################################################
+# DATA LOADER SETTING #
+###########################################################
+batch_size: 16 # Batch size.
+batch_max_steps: 8400 # Length of each audio in batch. Make sure dividable by hop_size.
+num_workers: 2 # Number of workers in DataLoader.
+
+###########################################################
+# OPTIMIZER & SCHEDULER SETTING #
+###########################################################
+generator_optimizer_params:
+ beta1: 0.5
+ beta2: 0.9
+ weight_decay: 0.0 # Generator's weight decay coefficient.
+generator_scheduler_params:
+ learning_rate: 2.0e-4 # Generator's learning rate.
+ gamma: 0.5 # Generator's scheduler gamma.
+ milestones: # At each milestone, lr will be multiplied by gamma.
+ - 200000
+ - 400000
+ - 600000
+ - 800000
+generator_grad_norm: -1 # Generator's gradient norm.
+discriminator_optimizer_params:
+ beta1: 0.5
+ beta2: 0.9
+ weight_decay: 0.0 # Discriminator's weight decay coefficient.
+discriminator_scheduler_params:
+ learning_rate: 2.0e-4 # Discriminator's learning rate.
+ gamma: 0.5 # Discriminator's scheduler gamma.
+ milestones: # At each milestone, lr will be multiplied by gamma.
+ - 200000
+ - 400000
+ - 600000
+ - 800000
+discriminator_grad_norm: -1 # Discriminator's gradient norm.
+
+###########################################################
+# INTERVAL SETTING #
+###########################################################
+generator_train_start_steps: 1 # Number of steps to start to train discriminator.
+discriminator_train_start_steps: 0 # Number of steps to start to train discriminator.
+train_max_steps: 2500000 # Number of training steps.
+save_interval_steps: 5000 # Interval steps to save checkpoint.
+eval_interval_steps: 1000 # Interval steps to evaluate the network.
+
+###########################################################
+# OTHER SETTING #
+###########################################################
+num_snapshots: 10 # max number of snapshots to keep while training
+seed: 42 # random seed for paddle, random, and np.random
diff --git a/examples/aishell3/voc5/local/preprocess.sh b/examples/aishell3/voc5/local/preprocess.sh
new file mode 100755
index 00000000000..44cc3dbe460
--- /dev/null
+++ b/examples/aishell3/voc5/local/preprocess.sh
@@ -0,0 +1,55 @@
+#!/bin/bash
+
+stage=0
+stop_stage=100
+
+config_path=$1
+
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+ # get durations from MFA's result
+ echo "Generate durations.txt from MFA results ..."
+ python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
+ --inputdir=./aishell3_alignment_tone \
+ --output=durations.txt \
+ --config=${config_path}
+fi
+
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+ # extract features
+ echo "Extract features ..."
+ python3 ${BIN_DIR}/../preprocess.py \
+ --rootdir=~/datasets/data_aishell3/ \
+ --dataset=aishell3 \
+ --dumpdir=dump \
+ --dur-file=durations.txt \
+ --config=${config_path} \
+ --cut-sil=True \
+ --num-cpu=20
+fi
+
+if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
+ # get features' stats(mean and std)
+ echo "Get features' stats ..."
+ python3 ${MAIN_ROOT}/utils/compute_statistics.py \
+ --metadata=dump/train/raw/metadata.jsonl \
+ --field-name="feats"
+fi
+
+if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
+ # normalize, dev and test should use train's stats
+ echo "Normalize ..."
+
+ python3 ${BIN_DIR}/../normalize.py \
+ --metadata=dump/train/raw/metadata.jsonl \
+ --dumpdir=dump/train/norm \
+ --stats=dump/train/feats_stats.npy
+ python3 ${BIN_DIR}/../normalize.py \
+ --metadata=dump/dev/raw/metadata.jsonl \
+ --dumpdir=dump/dev/norm \
+ --stats=dump/train/feats_stats.npy
+
+ python3 ${BIN_DIR}/../normalize.py \
+ --metadata=dump/test/raw/metadata.jsonl \
+ --dumpdir=dump/test/norm \
+ --stats=dump/train/feats_stats.npy
+fi
diff --git a/examples/aishell3/voc5/local/synthesize.sh b/examples/aishell3/voc5/local/synthesize.sh
new file mode 100755
index 00000000000..6478961756f
--- /dev/null
+++ b/examples/aishell3/voc5/local/synthesize.sh
@@ -0,0 +1,14 @@
+#!/bin/bash
+
+config_path=$1
+train_output_path=$2
+ckpt_name=$3
+
+FLAGS_allocator_strategy=naive_best_fit \
+FLAGS_fraction_of_gpu_memory_to_use=0.01 \
+python3 ${BIN_DIR}/../synthesize.py \
+ --config=${config_path} \
+ --checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
+ --test-metadata=dump/test/norm/metadata.jsonl \
+ --output-dir=${train_output_path}/test \
+ --generator-type=hifigan
diff --git a/examples/aishell3/voc5/local/train.sh b/examples/aishell3/voc5/local/train.sh
new file mode 100755
index 00000000000..9695631ef02
--- /dev/null
+++ b/examples/aishell3/voc5/local/train.sh
@@ -0,0 +1,13 @@
+#!/bin/bash
+
+config_path=$1
+train_output_path=$2
+
+FLAGS_cudnn_exhaustive_search=true \
+FLAGS_conv_workspace_size_limit=4000 \
+python ${BIN_DIR}/train.py \
+ --train-metadata=dump/train/norm/metadata.jsonl \
+ --dev-metadata=dump/dev/norm/metadata.jsonl \
+ --config=${config_path} \
+ --output-dir=${train_output_path} \
+ --ngpu=1
diff --git a/examples/aishell3/voc5/path.sh b/examples/aishell3/voc5/path.sh
new file mode 100755
index 00000000000..7451b3218e2
--- /dev/null
+++ b/examples/aishell3/voc5/path.sh
@@ -0,0 +1,13 @@
+#!/bin/bash
+export MAIN_ROOT=`realpath ${PWD}/../../../`
+
+export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
+export LC_ALL=C
+
+export PYTHONDONTWRITEBYTECODE=1
+# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
+export PYTHONIOENCODING=UTF-8
+export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
+
+MODEL=hifigan
+export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/gan_vocoder/${MODEL}
diff --git a/examples/aishell3/voc5/run.sh b/examples/aishell3/voc5/run.sh
new file mode 100755
index 00000000000..4f426ea02e1
--- /dev/null
+++ b/examples/aishell3/voc5/run.sh
@@ -0,0 +1,32 @@
+#!/bin/bash
+
+set -e
+source path.sh
+
+gpus=0
+stage=0
+stop_stage=100
+
+conf_path=conf/default.yaml
+train_output_path=exp/default
+ckpt_name=snapshot_iter_5000.pdz
+
+# with the following command, you can choose the stage range you want to run
+# such as `./run.sh --stage 0 --stop-stage 0`
+# this can not be mixed use with `$1`, `$2` ...
+source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
+
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+ # prepare data
+ ./local/preprocess.sh ${conf_path} || exit -1
+fi
+
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+ # train model, all `ckpt` under `train_output_path/checkpoints/` dir
+ CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
+fi
+
+if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
+ # synthesize
+ CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
+fi
diff --git a/examples/ami/sd0/local/ami_prepare.py b/examples/ami/sd0/local/ami_prepare.py
index d03810a777a..01582dbdd33 100644
--- a/examples/ami/sd0/local/ami_prepare.py
+++ b/examples/ami/sd0/local/ami_prepare.py
@@ -17,11 +17,8 @@
Download: http://groups.inf.ed.ac.uk/ami/download/
Prepares metadata files (JSON) from manual annotations "segments/" using RTTM format (Oracle VAD).
-
-Authors
- * qingenz123@126.com (Qingen ZHAO) 2022
-
"""
+
import argparse
import glob
import json
diff --git a/examples/ami/sd0/local/ami_splits.py b/examples/ami/sd0/local/ami_splits.py
index 010638a3969..a8bc5dc8485 100644
--- a/examples/ami/sd0/local/ami_splits.py
+++ b/examples/ami/sd0/local/ami_splits.py
@@ -15,10 +15,6 @@
AMI corpus contained 100 hours of meeting recording.
This script returns the standard train, dev and eval split for AMI corpus.
For more information on dataset please refer to http://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml
-
-Authors
- * qingenz123@126.com (Qingen ZHAO) 2022
-
"""
ALLOWED_OPTIONS = ["scenario_only", "full_corpus", "full_corpus_asr"]
diff --git a/examples/ami/sd0/local/dataio.py b/examples/ami/sd0/local/dataio.py
index f7fe881573c..4ff76bd5bd1 100644
--- a/examples/ami/sd0/local/dataio.py
+++ b/examples/ami/sd0/local/dataio.py
@@ -13,10 +13,6 @@
# limitations under the License.
"""
Data reading and writing.
-
-Authors
- * qingenz123@126.com (Qingen ZHAO) 2022
-
"""
import os
import pickle
diff --git a/examples/csmsc/tts0/local/synthesize_e2e.sh b/examples/csmsc/tts0/local/synthesize_e2e.sh
index f7675873386..4c3b08dc1f5 100755
--- a/examples/csmsc/tts0/local/synthesize_e2e.sh
+++ b/examples/csmsc/tts0/local/synthesize_e2e.sh
@@ -7,7 +7,7 @@ ckpt_name=$3
stage=0
stop_stage=0
-# TODO: tacotron2 动转静的结果没有静态图的响亮, 可能还是 decode 的时候某个函数动静不对齐
+# TODO: tacotron2 动转静的结果没有动态图的响亮, 可能还是 decode 的时候某个函数动静不对齐
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
diff --git a/examples/csmsc/tts2/local/synthesize.sh b/examples/csmsc/tts2/local/synthesize.sh
index 37b2981831e..b8982a16da2 100755
--- a/examples/csmsc/tts2/local/synthesize.sh
+++ b/examples/csmsc/tts2/local/synthesize.sh
@@ -14,7 +14,7 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
- --am_stat=dump/train/speech_stats.npy \
+ --am_stat=dump/train/feats_stats.npy \
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
@@ -34,7 +34,7 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
- --am_stat=dump/train/speech_stats.npy \
+ --am_stat=dump/train/feats_stats.npy \
--voc=mb_melgan_csmsc \
--voc_config=mb_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=mb_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1000000.pdz\
@@ -53,7 +53,7 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
- --am_stat=dump/train/speech_stats.npy \
+ --am_stat=dump/train/feats_stats.npy \
--voc=style_melgan_csmsc \
--voc_config=style_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=style_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1500000.pdz \
@@ -73,7 +73,7 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
- --am_stat=dump/train/speech_stats.npy \
+ --am_stat=dump/train/feats_stats.npy \
--voc=hifigan_csmsc \
--voc_config=hifigan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=hifigan_csmsc_ckpt_0.1.1/snapshot_iter_2500000.pdz \
@@ -93,7 +93,7 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
- --am_stat=dump/train/speech_stats.npy \
+ --am_stat=dump/train/feats_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
diff --git a/examples/ljspeech/voc5/README.md b/examples/ljspeech/voc5/README.md
new file mode 100644
index 00000000000..21082942845
--- /dev/null
+++ b/examples/ljspeech/voc5/README.md
@@ -0,0 +1,133 @@
+# HiFiGAN with the LJSpeech-1.1
+This example contains code used to train a [HiFiGAN](https://arxiv.org/abs/2010.05646) model with [LJSpeech-1.1](https://keithito.com/LJ-Speech-Dataset/).
+## Dataset
+### Download and Extract
+Download LJSpeech-1.1 from the [official website](https://keithito.com/LJ-Speech-Dataset/).
+### Get MFA Result and Extract
+We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) results to cut the silence in the edge of audio.
+You can download from here [ljspeech_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/ljspeech_alignment.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
+
+## Get Started
+Assume the path to the dataset is `~/datasets/LJSpeech-1.1`.
+Assume the path to the MFA result of LJSpeech-1.1 is `./ljspeech_alignment`.
+Run the command below to
+1. **source path**.
+2. preprocess the dataset.
+3. train the model.
+4. synthesize wavs.
+ - synthesize waveform from `metadata.jsonl`.
+```bash
+./run.sh
+```
+You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
+```bash
+./run.sh --stage 0 --stop-stage 0
+```
+### Data Preprocessing
+```bash
+./local/preprocess.sh ${conf_path}
+```
+When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
+
+```text
+dump
+├── dev
+│ ├── norm
+│ └── raw
+├── test
+│ ├── norm
+│ └── raw
+└── train
+ ├── norm
+ ├── raw
+ └── feats_stats.npy
+```
+
+The dataset is split into 3 parts, namely `train`, `dev`, and `test`, each of which contains a `norm` and `raw` subfolder. The `raw` folder contains the log magnitude of the mel spectrogram of each utterance, while the norm folder contains the normalized spectrogram. The statistics used to normalize the spectrogram are computed from the training set, which is located in `dump/train/feats_stats.npy`.
+
+Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains id and paths to the spectrogram of each utterance.
+
+### Model Training
+`./local/train.sh` calls `${BIN_DIR}/train.py`.
+```bash
+CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
+```
+Here's the complete help message.
+
+```text
+usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
+ [--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
+ [--ngpu NGPU] [--batch-size BATCH_SIZE] [--max-iter MAX_ITER]
+ [--run-benchmark RUN_BENCHMARK]
+ [--profiler_options PROFILER_OPTIONS]
+
+Train a ParallelWaveGAN model.
+
+optional arguments:
+ -h, --help show this help message and exit
+ --config CONFIG config file to overwrite default config.
+ --train-metadata TRAIN_METADATA
+ training data.
+ --dev-metadata DEV_METADATA
+ dev data.
+ --output-dir OUTPUT_DIR
+ output dir.
+ --ngpu NGPU if ngpu == 0, use cpu.
+
+benchmark:
+ arguments related to benchmark.
+
+ --batch-size BATCH_SIZE
+ batch size.
+ --max-iter MAX_ITER train max steps.
+ --run-benchmark RUN_BENCHMARK
+ runing benchmark or not, if True, use the --batch-size
+ and --max-iter.
+ --profiler_options PROFILER_OPTIONS
+ The option of profiler, which should be in format
+ "key1=value1;key2=value2;key3=value3".
+```
+
+1. `--config` is a config file in yaml format to overwrite the default config, which can be found at `conf/default.yaml`.
+2. `--train-metadata` and `--dev-metadata` should be the metadata file in the normalized subfolder of `train` and `dev` in the `dump` folder.
+3. `--output-dir` is the directory to save the results of the experiment. Checkpoints are saved in `checkpoints/` inside this directory.
+4. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
+
+### Synthesizing
+`./local/synthesize.sh` calls `${BIN_DIR}/../synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
+```bash
+CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
+```
+```text
+usage: synthesize.py [-h] [--generator-type GENERATOR_TYPE] [--config CONFIG]
+ [--checkpoint CHECKPOINT] [--test-metadata TEST_METADATA]
+ [--output-dir OUTPUT_DIR] [--ngpu NGPU]
+
+Synthesize with GANVocoder.
+
+optional arguments:
+ -h, --help show this help message and exit
+ --generator-type GENERATOR_TYPE
+ type of GANVocoder, should in {pwgan, mb_melgan,
+ style_melgan, } now
+ --config CONFIG GANVocoder config file.
+ --checkpoint CHECKPOINT
+ snapshot to load.
+ --test-metadata TEST_METADATA
+ dev data.
+ --output-dir OUTPUT_DIR
+ output dir.
+ --ngpu NGPU if ngpu == 0, use cpu.
+```
+
+1. `--config` parallel wavegan config file. You should use the same config with which the model is trained.
+2. `--checkpoint` is the checkpoint to load. Pick one of the checkpoints from `checkpoints` inside the training output directory.
+3. `--test-metadata` is the metadata of the test dataset. Use the `metadata.jsonl` in the `dev/norm` subfolder from the processed directory.
+4. `--output-dir` is the directory to save the synthesized audio files.
+5. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
+
+## Pretrained Model
+
+
+## Acknowledgement
+We adapted some code from https://github.com/kan-bayashi/ParallelWaveGAN.
diff --git a/examples/ljspeech/voc5/conf/default.yaml b/examples/ljspeech/voc5/conf/default.yaml
new file mode 100644
index 00000000000..97c51220409
--- /dev/null
+++ b/examples/ljspeech/voc5/conf/default.yaml
@@ -0,0 +1,167 @@
+# This is the configuration file for LJSpeech dataset.
+# This configuration is based on HiFiGAN V1, which is an official configuration.
+# But I found that the optimizer setting does not work well with my implementation.
+# So I changed optimizer settings as follows:
+# - AdamW -> Adam
+# - betas: [0.8, 0.99] -> betas: [0.5, 0.9]
+# - Scheduler: ExponentialLR -> MultiStepLR
+# To match the shift size difference, the upsample scales is also modified from the original 256 shift setting.
+
+###########################################################
+# FEATURE EXTRACTION SETTING #
+###########################################################
+fs: 22050 # Sampling rate.
+n_fft: 1024 # FFT size (samples).
+n_shift: 256 # Hop size (samples). 11.6ms
+win_length: null # Window length (samples).
+ # If set to null, it will be the same as fft_size.
+window: "hann" # Window function.
+n_mels: 80 # Number of mel basis.
+fmin: 80 # Minimum freq in mel basis calculation. (Hz)
+fmax: 7600 # Maximum frequency in mel basis calculation. (Hz)
+
+###########################################################
+# GENERATOR NETWORK ARCHITECTURE SETTING #
+###########################################################
+generator_params:
+ in_channels: 80 # Number of input channels.
+ out_channels: 1 # Number of output channels.
+ channels: 512 # Number of initial channels.
+ kernel_size: 7 # Kernel size of initial and final conv layers.
+ upsample_scales: [8, 8, 2, 2] # Upsampling scales.
+ upsample_kernel_sizes: [16, 16, 4, 4] # Kernel size for upsampling layers.
+ resblock_kernel_sizes: [3, 7, 11] # Kernel size for residual blocks.
+ resblock_dilations: # Dilations for residual blocks.
+ - [1, 3, 5]
+ - [1, 3, 5]
+ - [1, 3, 5]
+ use_additional_convs: True # Whether to use additional conv layer in residual blocks.
+ bias: True # Whether to use bias parameter in conv.
+ nonlinear_activation: "leakyrelu" # Nonlinear activation type.
+ nonlinear_activation_params: # Nonlinear activation paramters.
+ negative_slope: 0.1
+ use_weight_norm: True # Whether to apply weight normalization.
+
+
+###########################################################
+# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
+###########################################################
+discriminator_params:
+ scales: 3 # Number of multi-scale discriminator.
+ scale_downsample_pooling: "AvgPool1D" # Pooling operation for scale discriminator.
+ scale_downsample_pooling_params:
+ kernel_size: 4 # Pooling kernel size.
+ stride: 2 # Pooling stride.
+ padding: 2 # Padding size.
+ scale_discriminator_params:
+ in_channels: 1 # Number of input channels.
+ out_channels: 1 # Number of output channels.
+ kernel_sizes: [15, 41, 5, 3] # List of kernel sizes.
+ channels: 128 # Initial number of channels.
+ max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
+ max_groups: 16 # Maximum number of groups in downsampling conv layers.
+ bias: True
+ downsample_scales: [4, 4, 4, 4, 1] # Downsampling scales.
+ nonlinear_activation: "leakyrelu" # Nonlinear activation.
+ nonlinear_activation_params:
+ negative_slope: 0.1
+ follow_official_norm: True # Whether to follow the official norm setting.
+ periods: [2, 3, 5, 7, 11] # List of period for multi-period discriminator.
+ period_discriminator_params:
+ in_channels: 1 # Number of input channels.
+ out_channels: 1 # Number of output channels.
+ kernel_sizes: [5, 3] # List of kernel sizes.
+ channels: 32 # Initial number of channels.
+ downsample_scales: [3, 3, 3, 3, 1] # Downsampling scales.
+ max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
+ bias: True # Whether to use bias parameter in conv layer."
+ nonlinear_activation: "leakyrelu" # Nonlinear activation.
+ nonlinear_activation_params: # Nonlinear activation paramters.
+ negative_slope: 0.1
+ use_weight_norm: True # Whether to apply weight normalization.
+ use_spectral_norm: False # Whether to apply spectral normalization.
+
+
+###########################################################
+# STFT LOSS SETTING #
+###########################################################
+use_stft_loss: False # Whether to use multi-resolution STFT loss.
+use_mel_loss: True # Whether to use Mel-spectrogram loss.
+mel_loss_params:
+ fs: 22050
+ fft_size: 1024
+ hop_size: 256
+ win_length: null
+ window: "hann"
+ num_mels: 80
+ fmin: 0
+ fmax: 11025
+ log_base: null
+generator_adv_loss_params:
+ average_by_discriminators: False # Whether to average loss by #discriminators.
+discriminator_adv_loss_params:
+ average_by_discriminators: False # Whether to average loss by #discriminators.
+use_feat_match_loss: True
+feat_match_loss_params:
+ average_by_discriminators: False # Whether to average loss by #discriminators.
+ average_by_layers: False # Whether to average loss by #layers in each discriminator.
+ include_final_outputs: False # Whether to include final outputs in feat match loss calculation.
+
+###########################################################
+# ADVERSARIAL LOSS SETTING #
+###########################################################
+lambda_aux: 45.0 # Loss balancing coefficient for STFT loss.
+lambda_adv: 1.0 # Loss balancing coefficient for adversarial loss.
+lambda_feat_match: 2.0 # Loss balancing coefficient for feat match loss..
+
+###########################################################
+# DATA LOADER SETTING #
+###########################################################
+batch_size: 16 # Batch size.
+batch_max_steps: 8192 # Length of each audio in batch. Make sure dividable by hop_size.
+num_workers: 2 # Number of workers in DataLoader.
+
+###########################################################
+# OPTIMIZER & SCHEDULER SETTING #
+###########################################################
+generator_optimizer_params:
+ beta1: 0.5
+ beta2: 0.9
+ weight_decay: 0.0 # Generator's weight decay coefficient.
+generator_scheduler_params:
+ learning_rate: 2.0e-4 # Generator's learning rate.
+ gamma: 0.5 # Generator's scheduler gamma.
+ milestones: # At each milestone, lr will be multiplied by gamma.
+ - 200000
+ - 400000
+ - 600000
+ - 800000
+generator_grad_norm: -1 # Generator's gradient norm.
+discriminator_optimizer_params:
+ beta1: 0.5
+ beta2: 0.9
+ weight_decay: 0.0 # Discriminator's weight decay coefficient.
+discriminator_scheduler_params:
+ learning_rate: 2.0e-4 # Discriminator's learning rate.
+ gamma: 0.5 # Discriminator's scheduler gamma.
+ milestones: # At each milestone, lr will be multiplied by gamma.
+ - 200000
+ - 400000
+ - 600000
+ - 800000
+discriminator_grad_norm: -1 # Discriminator's gradient norm.
+
+###########################################################
+# INTERVAL SETTING #
+###########################################################
+generator_train_start_steps: 1 # Number of steps to start to train discriminator.
+discriminator_train_start_steps: 0 # Number of steps to start to train discriminator.
+train_max_steps: 2500000 # Number of training steps.
+save_interval_steps: 5000 # Interval steps to save checkpoint.
+eval_interval_steps: 1000 # Interval steps to evaluate the network.
+
+###########################################################
+# OTHER SETTING #
+###########################################################
+num_snapshots: 10 # max number of snapshots to keep while training
+seed: 42 # random seed for paddle, random, and np.random
diff --git a/examples/ljspeech/voc5/local/preprocess.sh b/examples/ljspeech/voc5/local/preprocess.sh
new file mode 100755
index 00000000000..d1af60dad6a
--- /dev/null
+++ b/examples/ljspeech/voc5/local/preprocess.sh
@@ -0,0 +1,55 @@
+#!/bin/bash
+
+stage=0
+stop_stage=100
+
+config_path=$1
+
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+ # get durations from MFA's result
+ echo "Generate durations.txt from MFA results ..."
+ python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
+ --inputdir=./ljspeech_alignment \
+ --output=durations.txt \
+ --config=${config_path}
+fi
+
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+ # extract features
+ echo "Extract features ..."
+ python3 ${BIN_DIR}/../preprocess.py \
+ --rootdir=~/datasets/LJSpeech-1.1/ \
+ --dataset=ljspeech \
+ --dumpdir=dump \
+ --dur-file=durations.txt \
+ --config=${config_path} \
+ --cut-sil=True \
+ --num-cpu=20
+fi
+
+if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
+ # get features' stats(mean and std)
+ echo "Get features' stats ..."
+ python3 ${MAIN_ROOT}/utils/compute_statistics.py \
+ --metadata=dump/train/raw/metadata.jsonl \
+ --field-name="feats"
+fi
+
+if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
+ # normalize, dev and test should use train's stats
+ echo "Normalize ..."
+
+ python3 ${BIN_DIR}/../normalize.py \
+ --metadata=dump/train/raw/metadata.jsonl \
+ --dumpdir=dump/train/norm \
+ --stats=dump/train/feats_stats.npy
+ python3 ${BIN_DIR}/../normalize.py \
+ --metadata=dump/dev/raw/metadata.jsonl \
+ --dumpdir=dump/dev/norm \
+ --stats=dump/train/feats_stats.npy
+
+ python3 ${BIN_DIR}/../normalize.py \
+ --metadata=dump/test/raw/metadata.jsonl \
+ --dumpdir=dump/test/norm \
+ --stats=dump/train/feats_stats.npy
+fi
diff --git a/examples/ljspeech/voc5/local/synthesize.sh b/examples/ljspeech/voc5/local/synthesize.sh
new file mode 100755
index 00000000000..6478961756f
--- /dev/null
+++ b/examples/ljspeech/voc5/local/synthesize.sh
@@ -0,0 +1,14 @@
+#!/bin/bash
+
+config_path=$1
+train_output_path=$2
+ckpt_name=$3
+
+FLAGS_allocator_strategy=naive_best_fit \
+FLAGS_fraction_of_gpu_memory_to_use=0.01 \
+python3 ${BIN_DIR}/../synthesize.py \
+ --config=${config_path} \
+ --checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
+ --test-metadata=dump/test/norm/metadata.jsonl \
+ --output-dir=${train_output_path}/test \
+ --generator-type=hifigan
diff --git a/examples/ljspeech/voc5/local/train.sh b/examples/ljspeech/voc5/local/train.sh
new file mode 100755
index 00000000000..9695631ef02
--- /dev/null
+++ b/examples/ljspeech/voc5/local/train.sh
@@ -0,0 +1,13 @@
+#!/bin/bash
+
+config_path=$1
+train_output_path=$2
+
+FLAGS_cudnn_exhaustive_search=true \
+FLAGS_conv_workspace_size_limit=4000 \
+python ${BIN_DIR}/train.py \
+ --train-metadata=dump/train/norm/metadata.jsonl \
+ --dev-metadata=dump/dev/norm/metadata.jsonl \
+ --config=${config_path} \
+ --output-dir=${train_output_path} \
+ --ngpu=1
diff --git a/examples/ljspeech/voc5/path.sh b/examples/ljspeech/voc5/path.sh
new file mode 100755
index 00000000000..7451b3218e2
--- /dev/null
+++ b/examples/ljspeech/voc5/path.sh
@@ -0,0 +1,13 @@
+#!/bin/bash
+export MAIN_ROOT=`realpath ${PWD}/../../../`
+
+export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
+export LC_ALL=C
+
+export PYTHONDONTWRITEBYTECODE=1
+# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
+export PYTHONIOENCODING=UTF-8
+export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
+
+MODEL=hifigan
+export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/gan_vocoder/${MODEL}
diff --git a/examples/ljspeech/voc5/run.sh b/examples/ljspeech/voc5/run.sh
new file mode 100755
index 00000000000..cab1ac38b1a
--- /dev/null
+++ b/examples/ljspeech/voc5/run.sh
@@ -0,0 +1,32 @@
+#!/bin/bash
+
+set -e
+source path.sh
+
+gpus=0,1
+stage=0
+stop_stage=100
+
+conf_path=conf/default.yaml
+train_output_path=exp/default
+ckpt_name=snapshot_iter_5000.pdz
+
+# with the following command, you can choose the stage range you want to run
+# such as `./run.sh --stage 0 --stop-stage 0`
+# this can not be mixed use with `$1`, `$2` ...
+source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
+
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+ # prepare data
+ ./local/preprocess.sh ${conf_path} || exit -1
+fi
+
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+ # train model, all `ckpt` under `train_output_path/checkpoints/` dir
+ CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
+fi
+
+if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
+ # synthesize
+ CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
+fi
diff --git a/examples/vctk/tts3/local/synthesize.sh b/examples/vctk/tts3/local/synthesize.sh
index 8381af464e6..9e03f9b8a47 100755
--- a/examples/vctk/tts3/local/synthesize.sh
+++ b/examples/vctk/tts3/local/synthesize.sh
@@ -4,18 +4,43 @@ config_path=$1
train_output_path=$2
ckpt_name=$3
-FLAGS_allocator_strategy=naive_best_fit \
-FLAGS_fraction_of_gpu_memory_to_use=0.01 \
-python3 ${BIN_DIR}/../synthesize.py \
- --am=fastspeech2_vctk \
- --am_config=${config_path} \
- --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
- --am_stat=dump/train/speech_stats.npy \
- --voc=pwgan_vctk \
- --voc_config=pwg_vctk_ckpt_0.1.1/default.yaml \
- --voc_ckpt=pwg_vctk_ckpt_0.1.1/snapshot_iter_1500000.pdz \
- --voc_stat=pwg_vctk_ckpt_0.1.1/feats_stats.npy \
- --test_metadata=dump/test/norm/metadata.jsonl \
- --output_dir=${train_output_path}/test \
- --phones_dict=dump/phone_id_map.txt \
- --speaker_dict=dump/speaker_id_map.txt
+stage=0
+stop_stage=0
+
+# pwgan
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+ FLAGS_allocator_strategy=naive_best_fit \
+ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
+ python3 ${BIN_DIR}/../synthesize.py \
+ --am=fastspeech2_vctk \
+ --am_config=${config_path} \
+ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
+ --am_stat=dump/train/speech_stats.npy \
+ --voc=pwgan_vctk \
+ --voc_config=pwg_vctk_ckpt_0.1.1/default.yaml \
+ --voc_ckpt=pwg_vctk_ckpt_0.1.1/snapshot_iter_1500000.pdz \
+ --voc_stat=pwg_vctk_ckpt_0.1.1/feats_stats.npy \
+ --test_metadata=dump/test/norm/metadata.jsonl \
+ --output_dir=${train_output_path}/test \
+ --phones_dict=dump/phone_id_map.txt \
+ --speaker_dict=dump/speaker_id_map.txt
+fi
+
+# hifigan
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+ FLAGS_allocator_strategy=naive_best_fit \
+ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
+ python3 ${BIN_DIR}/../synthesize.py \
+ --am=fastspeech2_aishell3 \
+ --am_config=${config_path} \
+ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
+ --am_stat=dump/train/speech_stats.npy \
+ --voc=hifigan_vctk \
+ --voc_config=hifigan_vctk_ckpt_0.2.0/default.yaml \
+ --voc_ckpt=hifigan_vctk_ckpt_0.2.0/snapshot_iter_2500000.pdz \
+ --voc_stat=hifigan_vctk_ckpt_0.2.0/feats_stats.npy \
+ --test_metadata=dump/test/norm/metadata.jsonl \
+ --output_dir=${train_output_path}/test \
+ --phones_dict=dump/phone_id_map.txt \
+ --speaker_dict=dump/speaker_id_map.txt
+fi
diff --git a/examples/vctk/tts3/local/synthesize_e2e.sh b/examples/vctk/tts3/local/synthesize_e2e.sh
index 60d56d1c9cb..a89f42b50da 100755
--- a/examples/vctk/tts3/local/synthesize_e2e.sh
+++ b/examples/vctk/tts3/local/synthesize_e2e.sh
@@ -4,21 +4,49 @@ config_path=$1
train_output_path=$2
ckpt_name=$3
-FLAGS_allocator_strategy=naive_best_fit \
-FLAGS_fraction_of_gpu_memory_to_use=0.01 \
-python3 ${BIN_DIR}/../synthesize_e2e.py \
- --am=fastspeech2_vctk \
- --am_config=${config_path} \
- --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
- --am_stat=dump/train/speech_stats.npy \
- --voc=pwgan_vctk \
- --voc_config=pwg_vctk_ckpt_0.1.1/default.yaml \
- --voc_ckpt=pwg_vctk_ckpt_0.1.1/snapshot_iter_1500000.pdz \
- --voc_stat=pwg_vctk_ckpt_0.1.1/feats_stats.npy \
- --lang=en \
- --text=${BIN_DIR}/../sentences_en.txt \
- --output_dir=${train_output_path}/test_e2e \
- --phones_dict=dump/phone_id_map.txt \
- --speaker_dict=dump/speaker_id_map.txt \
- --spk_id=0 \
- --inference_dir=${train_output_path}/inference
+stage=0
+stop_stage=0
+
+# pwgan
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+ FLAGS_allocator_strategy=naive_best_fit \
+ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
+ python3 ${BIN_DIR}/../synthesize_e2e.py \
+ --am=fastspeech2_vctk \
+ --am_config=${config_path} \
+ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
+ --am_stat=dump/train/speech_stats.npy \
+ --voc=pwgan_vctk \
+ --voc_config=pwg_vctk_ckpt_0.1.1/default.yaml \
+ --voc_ckpt=pwg_vctk_ckpt_0.1.1/snapshot_iter_1500000.pdz \
+ --voc_stat=pwg_vctk_ckpt_0.1.1/feats_stats.npy \
+ --lang=en \
+ --text=${BIN_DIR}/../sentences_en.txt \
+ --output_dir=${train_output_path}/test_e2e \
+ --phones_dict=dump/phone_id_map.txt \
+ --speaker_dict=dump/speaker_id_map.txt \
+ --spk_id=0 \
+ --inference_dir=${train_output_path}/inference
+fi
+
+# hifigan
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+ FLAGS_allocator_strategy=naive_best_fit \
+ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
+ python3 ${BIN_DIR}/../synthesize_e2e.py \
+ --am=fastspeech2_vctk \
+ --am_config=${config_path} \
+ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
+ --am_stat=dump/train/speech_stats.npy \
+ --voc=hifigan_vctk \
+ --voc_config=hifigan_vctk_ckpt_0.2.0/default.yaml \
+ --voc_ckpt=hifigan_vctk_ckpt_0.2.0/snapshot_iter_2500000.pdz \
+ --voc_stat=hifigan_vctk_ckpt_0.2.0/feats_stats.npy \
+ --lang=en \
+ --text=${BIN_DIR}/../sentences_en.txt \
+ --output_dir=${train_output_path}/test_e2e \
+ --phones_dict=dump/phone_id_map.txt \
+ --speaker_dict=dump/speaker_id_map.txt \
+ --spk_id=0 \
+ --inference_dir=${train_output_path}/inference
+fi
diff --git a/examples/vctk/voc5/README.md b/examples/vctk/voc5/README.md
new file mode 100644
index 00000000000..b4be341c0e5
--- /dev/null
+++ b/examples/vctk/voc5/README.md
@@ -0,0 +1,153 @@
+# HiFiGAN with VCTK
+This example contains code used to train a [HiFiGAN](https://arxiv.org/abs/2010.05646) model with [VCTK](https://datashare.ed.ac.uk/handle/10283/3443).
+
+## Dataset
+### Download and Extract
+Download VCTK-0.92 from the [official website](https://datashare.ed.ac.uk/handle/10283/3443) and extract it to `~/datasets`. Then the dataset is in directory `~/datasets/VCTK-Corpus-0.92`.
+
+### Get MFA Result and Extract
+We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) results to cut the silence in the edge of audio.
+You can download from here [vctk_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/VCTK-Corpus-0.92/vctk_alignment.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
+ps: we remove three speakers in VCTK-0.92 (see [reorganize_vctk.py](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/examples/other/mfa/local/reorganize_vctk.py)):
+1. `p315`, because of no text for it.
+2. `p280` and `p362`, because no *_mic2.flac (which is better than *_mic1.flac) for them.
+
+## Get Started
+Assume the path to the dataset is `~/datasets/VCTK-Corpus-0.92`.
+Assume the path to the MFA result of VCTK is `./vctk_alignment`.
+Run the command below to
+1. **source path**.
+2. preprocess the dataset.
+3. train the model.
+4. synthesize wavs.
+ - synthesize waveform from `metadata.jsonl`.
+```bash
+./run.sh
+```
+You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
+```bash
+./run.sh --stage 0 --stop-stage 0
+```
+### Data Preprocessing
+```bash
+./local/preprocess.sh ${conf_path}
+```
+When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
+
+```text
+dump
+├── dev
+│ ├── norm
+│ └── raw
+├── test
+│ ├── norm
+│ └── raw
+└── train
+ ├── norm
+ ├── raw
+ └── feats_stats.npy
+```
+
+The dataset is split into 3 parts, namely `train`, `dev`, and `test`, each of which contains a `norm` and `raw` subfolder. The `raw` folder contains the log magnitude of the mel spectrogram of each utterance, while the norm folder contains the normalized spectrogram. The statistics used to normalize the spectrogram are computed from the training set, which is located in `dump/train/feats_stats.npy`.
+
+Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains id and paths to the spectrogram of each utterance.
+
+### Model Training
+```bash
+CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
+```
+`./local/train.sh` calls `${BIN_DIR}/train.py`.
+Here's the complete help message.
+
+```text
+usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
+ [--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
+ [--ngpu NGPU] [--batch-size BATCH_SIZE] [--max-iter MAX_ITER]
+ [--run-benchmark RUN_BENCHMARK]
+ [--profiler_options PROFILER_OPTIONS]
+
+Train a ParallelWaveGAN model.
+
+optional arguments:
+ -h, --help show this help message and exit
+ --config CONFIG config file to overwrite default config.
+ --train-metadata TRAIN_METADATA
+ training data.
+ --dev-metadata DEV_METADATA
+ dev data.
+ --output-dir OUTPUT_DIR
+ output dir.
+ --ngpu NGPU if ngpu == 0, use cpu.
+
+benchmark:
+ arguments related to benchmark.
+
+ --batch-size BATCH_SIZE
+ batch size.
+ --max-iter MAX_ITER train max steps.
+ --run-benchmark RUN_BENCHMARK
+ runing benchmark or not, if True, use the --batch-size
+ and --max-iter.
+ --profiler_options PROFILER_OPTIONS
+ The option of profiler, which should be in format
+ "key1=value1;key2=value2;key3=value3".
+```
+
+1. `--config` is a config file in yaml format to overwrite the default config, which can be found at `conf/default.yaml`.
+2. `--train-metadata` and `--dev-metadata` should be the metadata file in the normalized subfolder of `train` and `dev` in the `dump` folder.
+3. `--output-dir` is the directory to save the results of the experiment. Checkpoints are saved in `checkpoints/` inside this directory.
+4. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
+
+### Synthesizing
+`./local/synthesize.sh` calls `${BIN_DIR}/../synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
+```bash
+CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
+```
+```text
+usage: synthesize.py [-h] [--generator-type GENERATOR_TYPE] [--config CONFIG]
+ [--checkpoint CHECKPOINT] [--test-metadata TEST_METADATA]
+ [--output-dir OUTPUT_DIR] [--ngpu NGPU]
+
+Synthesize with GANVocoder.
+
+optional arguments:
+ -h, --help show this help message and exit
+ --generator-type GENERATOR_TYPE
+ type of GANVocoder, should in {pwgan, mb_melgan,
+ style_melgan, } now
+ --config CONFIG GANVocoder config file.
+ --checkpoint CHECKPOINT
+ snapshot to load.
+ --test-metadata TEST_METADATA
+ dev data.
+ --output-dir OUTPUT_DIR
+ output dir.
+ --ngpu NGPU if ngpu == 0, use cpu.
+```
+
+
+1. `--config` config file. You should use the same config with which the model is trained.
+2. `--checkpoint` is the checkpoint to load. Pick one of the checkpoints from `checkpoints` inside the training output directory.
+3. `--test-metadata` is the metadata of the test dataset. Use the `metadata.jsonl` in the `dev/norm` subfolder from the processed directory.
+4. `--output-dir` is the directory to save the synthesized audio files.
+5. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
+
+## Pretrained Model
+The pretrained model can be downloaded here [hifigan_vctk_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_vctk_ckpt_0.2.0.zip).
+
+
+Model | Step | eval/generator_loss | eval/mel_loss| eval/feature_matching_loss
+:-------------:| :------------:| :-----: | :-----: | :--------:
+default| 1(gpu) x 2500000|58.092|0.1234|24.384
+
+HiFiGAN checkpoint contains files listed below.
+
+```text
+hifigan_vctk_ckpt_0.2.0
+├── default.yaml # default config used to train hifigan
+├── feats_stats.npy # statistics used to normalize spectrogram when training hifigan
+└── snapshot_iter_2500000.pdz # generator parameters of hifigan
+```
+
+## Acknowledgement
+We adapted some code from https://github.com/kan-bayashi/ParallelWaveGAN.
diff --git a/examples/vctk/voc5/conf/default.yaml b/examples/vctk/voc5/conf/default.yaml
new file mode 100644
index 00000000000..6361e01b221
--- /dev/null
+++ b/examples/vctk/voc5/conf/default.yaml
@@ -0,0 +1,168 @@
+# This is the configuration file for VCTK dataset.
+# This configuration is based on HiFiGAN V1, which is
+# an official configuration. But I found that the optimizer
+# setting does not work well with my implementation.
+# So I changed optimizer settings as follows:
+# - AdamW -> Adam
+# - betas: [0.8, 0.99] -> betas: [0.5, 0.9]
+# - Scheduler: ExponentialLR -> MultiStepLR
+# To match the shift size difference, the upsample scales
+# is also modified from the original 256 shift setting.
+###########################################################
+# FEATURE EXTRACTION SETTING #
+###########################################################
+fs: 24000 # Sampling rate.
+n_fft: 2048 # FFT size (samples).
+n_shift: 300 # Hop size (samples). 12.5ms
+win_length: 1200 # Window length (samples). 50ms
+ # If set to null, it will be the same as fft_size.
+window: "hann" # Window function.
+n_mels: 80 # Number of mel basis.
+fmin: 80 # Minimum freq in mel basis calculation. (Hz)
+fmax: 7600 # Maximum frequency in mel basis calculation. (Hz)
+
+###########################################################
+# GENERATOR NETWORK ARCHITECTURE SETTING #
+###########################################################
+generator_params:
+ in_channels: 80 # Number of input channels.
+ out_channels: 1 # Number of output channels.
+ channels: 512 # Number of initial channels.
+ kernel_size: 7 # Kernel size of initial and final conv layers.
+ upsample_scales: [5, 5, 4, 3] # Upsampling scales.
+ upsample_kernel_sizes: [10, 10, 8, 6] # Kernel size for upsampling layers.
+ resblock_kernel_sizes: [3, 7, 11] # Kernel size for residual blocks.
+ resblock_dilations: # Dilations for residual blocks.
+ - [1, 3, 5]
+ - [1, 3, 5]
+ - [1, 3, 5]
+ use_additional_convs: True # Whether to use additional conv layer in residual blocks.
+ bias: True # Whether to use bias parameter in conv.
+ nonlinear_activation: "leakyrelu" # Nonlinear activation type.
+ nonlinear_activation_params: # Nonlinear activation paramters.
+ negative_slope: 0.1
+ use_weight_norm: True # Whether to apply weight normalization.
+
+
+###########################################################
+# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
+###########################################################
+discriminator_params:
+ scales: 3 # Number of multi-scale discriminator.
+ scale_downsample_pooling: "AvgPool1D" # Pooling operation for scale discriminator.
+ scale_downsample_pooling_params:
+ kernel_size: 4 # Pooling kernel size.
+ stride: 2 # Pooling stride.
+ padding: 2 # Padding size.
+ scale_discriminator_params:
+ in_channels: 1 # Number of input channels.
+ out_channels: 1 # Number of output channels.
+ kernel_sizes: [15, 41, 5, 3] # List of kernel sizes.
+ channels: 128 # Initial number of channels.
+ max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
+ max_groups: 16 # Maximum number of groups in downsampling conv layers.
+ bias: True
+ downsample_scales: [4, 4, 4, 4, 1] # Downsampling scales.
+ nonlinear_activation: "leakyrelu" # Nonlinear activation.
+ nonlinear_activation_params:
+ negative_slope: 0.1
+ follow_official_norm: True # Whether to follow the official norm setting.
+ periods: [2, 3, 5, 7, 11] # List of period for multi-period discriminator.
+ period_discriminator_params:
+ in_channels: 1 # Number of input channels.
+ out_channels: 1 # Number of output channels.
+ kernel_sizes: [5, 3] # List of kernel sizes.
+ channels: 32 # Initial number of channels.
+ downsample_scales: [3, 3, 3, 3, 1] # Downsampling scales.
+ max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
+ bias: True # Whether to use bias parameter in conv layer."
+ nonlinear_activation: "leakyrelu" # Nonlinear activation.
+ nonlinear_activation_params: # Nonlinear activation paramters.
+ negative_slope: 0.1
+ use_weight_norm: True # Whether to apply weight normalization.
+ use_spectral_norm: False # Whether to apply spectral normalization.
+
+
+###########################################################
+# STFT LOSS SETTING #
+###########################################################
+use_stft_loss: False # Whether to use multi-resolution STFT loss.
+use_mel_loss: True # Whether to use Mel-spectrogram loss.
+mel_loss_params:
+ fs: 24000
+ fft_size: 2048
+ hop_size: 300
+ win_length: 1200
+ window: "hann"
+ num_mels: 80
+ fmin: 0
+ fmax: 12000
+ log_base: null
+generator_adv_loss_params:
+ average_by_discriminators: False # Whether to average loss by #discriminators.
+discriminator_adv_loss_params:
+ average_by_discriminators: False # Whether to average loss by #discriminators.
+use_feat_match_loss: True
+feat_match_loss_params:
+ average_by_discriminators: False # Whether to average loss by #discriminators.
+ average_by_layers: False # Whether to average loss by #layers in each discriminator.
+ include_final_outputs: False # Whether to include final outputs in feat match loss calculation.
+
+###########################################################
+# ADVERSARIAL LOSS SETTING #
+###########################################################
+lambda_aux: 45.0 # Loss balancing coefficient for STFT loss.
+lambda_adv: 1.0 # Loss balancing coefficient for adversarial loss.
+lambda_feat_match: 2.0 # Loss balancing coefficient for feat match loss..
+
+###########################################################
+# DATA LOADER SETTING #
+###########################################################
+batch_size: 16 # Batch size.
+batch_max_steps: 8400 # Length of each audio in batch. Make sure dividable by hop_size.
+num_workers: 2 # Number of workers in DataLoader.
+
+###########################################################
+# OPTIMIZER & SCHEDULER SETTING #
+###########################################################
+generator_optimizer_params:
+ beta1: 0.5
+ beta2: 0.9
+ weight_decay: 0.0 # Generator's weight decay coefficient.
+generator_scheduler_params:
+ learning_rate: 2.0e-4 # Generator's learning rate.
+ gamma: 0.5 # Generator's scheduler gamma.
+ milestones: # At each milestone, lr will be multiplied by gamma.
+ - 200000
+ - 400000
+ - 600000
+ - 800000
+generator_grad_norm: -1 # Generator's gradient norm.
+discriminator_optimizer_params:
+ beta1: 0.5
+ beta2: 0.9
+ weight_decay: 0.0 # Discriminator's weight decay coefficient.
+discriminator_scheduler_params:
+ learning_rate: 2.0e-4 # Discriminator's learning rate.
+ gamma: 0.5 # Discriminator's scheduler gamma.
+ milestones: # At each milestone, lr will be multiplied by gamma.
+ - 200000
+ - 400000
+ - 600000
+ - 800000
+discriminator_grad_norm: -1 # Discriminator's gradient norm.
+
+###########################################################
+# INTERVAL SETTING #
+###########################################################
+generator_train_start_steps: 1 # Number of steps to start to train discriminator.
+discriminator_train_start_steps: 0 # Number of steps to start to train discriminator.
+train_max_steps: 2500000 # Number of training steps.
+save_interval_steps: 5000 # Interval steps to save checkpoint.
+eval_interval_steps: 1000 # Interval steps to evaluate the network.
+
+###########################################################
+# OTHER SETTING #
+###########################################################
+num_snapshots: 10 # max number of snapshots to keep while training
+seed: 42 # random seed for paddle, random, and np.random
diff --git a/examples/vctk/voc5/local/preprocess.sh b/examples/vctk/voc5/local/preprocess.sh
new file mode 100755
index 00000000000..88a478cd537
--- /dev/null
+++ b/examples/vctk/voc5/local/preprocess.sh
@@ -0,0 +1,55 @@
+#!/bin/bash
+
+stage=0
+stop_stage=100
+
+config_path=$1
+
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+ # get durations from MFA's result
+ echo "Generate durations.txt from MFA results ..."
+ python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
+ --inputdir=./vctk_alignment \
+ --output=durations.txt \
+ --config=${config_path}
+fi
+
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+ # extract features
+ echo "Extract features ..."
+ python3 ${BIN_DIR}/../preprocess.py \
+ --rootdir=~/datasets/VCTK-Corpus-0.92/ \
+ --dataset=vctk \
+ --dumpdir=dump \
+ --dur-file=durations.txt \
+ --config=${config_path} \
+ --cut-sil=True \
+ --num-cpu=20
+fi
+
+if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
+ # get features' stats(mean and std)
+ echo "Get features' stats ..."
+ python3 ${MAIN_ROOT}/utils/compute_statistics.py \
+ --metadata=dump/train/raw/metadata.jsonl \
+ --field-name="feats"
+fi
+
+if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
+ # normalize, dev and test should use train's stats
+ echo "Normalize ..."
+
+ python3 ${BIN_DIR}/../normalize.py \
+ --metadata=dump/train/raw/metadata.jsonl \
+ --dumpdir=dump/train/norm \
+ --stats=dump/train/feats_stats.npy
+ python3 ${BIN_DIR}/../normalize.py \
+ --metadata=dump/dev/raw/metadata.jsonl \
+ --dumpdir=dump/dev/norm \
+ --stats=dump/train/feats_stats.npy
+
+ python3 ${BIN_DIR}/../normalize.py \
+ --metadata=dump/test/raw/metadata.jsonl \
+ --dumpdir=dump/test/norm \
+ --stats=dump/train/feats_stats.npy
+fi
diff --git a/examples/vctk/voc5/local/synthesize.sh b/examples/vctk/voc5/local/synthesize.sh
new file mode 100755
index 00000000000..6478961756f
--- /dev/null
+++ b/examples/vctk/voc5/local/synthesize.sh
@@ -0,0 +1,14 @@
+#!/bin/bash
+
+config_path=$1
+train_output_path=$2
+ckpt_name=$3
+
+FLAGS_allocator_strategy=naive_best_fit \
+FLAGS_fraction_of_gpu_memory_to_use=0.01 \
+python3 ${BIN_DIR}/../synthesize.py \
+ --config=${config_path} \
+ --checkpoint=${train_output_path}/checkpoints/${ckpt_name} \
+ --test-metadata=dump/test/norm/metadata.jsonl \
+ --output-dir=${train_output_path}/test \
+ --generator-type=hifigan
diff --git a/examples/vctk/voc5/local/train.sh b/examples/vctk/voc5/local/train.sh
new file mode 100755
index 00000000000..9695631ef02
--- /dev/null
+++ b/examples/vctk/voc5/local/train.sh
@@ -0,0 +1,13 @@
+#!/bin/bash
+
+config_path=$1
+train_output_path=$2
+
+FLAGS_cudnn_exhaustive_search=true \
+FLAGS_conv_workspace_size_limit=4000 \
+python ${BIN_DIR}/train.py \
+ --train-metadata=dump/train/norm/metadata.jsonl \
+ --dev-metadata=dump/dev/norm/metadata.jsonl \
+ --config=${config_path} \
+ --output-dir=${train_output_path} \
+ --ngpu=1
diff --git a/examples/vctk/voc5/path.sh b/examples/vctk/voc5/path.sh
new file mode 100755
index 00000000000..7451b3218e2
--- /dev/null
+++ b/examples/vctk/voc5/path.sh
@@ -0,0 +1,13 @@
+#!/bin/bash
+export MAIN_ROOT=`realpath ${PWD}/../../../`
+
+export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
+export LC_ALL=C
+
+export PYTHONDONTWRITEBYTECODE=1
+# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
+export PYTHONIOENCODING=UTF-8
+export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
+
+MODEL=hifigan
+export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/gan_vocoder/${MODEL}
diff --git a/examples/vctk/voc5/run.sh b/examples/vctk/voc5/run.sh
new file mode 100755
index 00000000000..4f426ea02e1
--- /dev/null
+++ b/examples/vctk/voc5/run.sh
@@ -0,0 +1,32 @@
+#!/bin/bash
+
+set -e
+source path.sh
+
+gpus=0
+stage=0
+stop_stage=100
+
+conf_path=conf/default.yaml
+train_output_path=exp/default
+ckpt_name=snapshot_iter_5000.pdz
+
+# with the following command, you can choose the stage range you want to run
+# such as `./run.sh --stage 0 --stop-stage 0`
+# this can not be mixed use with `$1`, `$2` ...
+source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
+
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+ # prepare data
+ ./local/preprocess.sh ${conf_path} || exit -1
+fi
+
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+ # train model, all `ckpt` under `train_output_path/checkpoints/` dir
+ CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
+fi
+
+if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
+ # synthesize
+ CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
+fi
diff --git a/paddleaudio/CHANGELOG.md b/paddleaudio/CHANGELOG.md
index 91b0fef08e6..925d7769684 100644
--- a/paddleaudio/CHANGELOG.md
+++ b/paddleaudio/CHANGELOG.md
@@ -1,5 +1,9 @@
# Changelog
+Date: 2022-3-15, Author: Xiaojie Chen.
+ - kaldi and librosa mfcc, fbank, spectrogram.
+ - unit test and benchmark.
+
Date: 2022-2-25, Author: Hui Zhang.
- Refactor architecture.
- - dtw distance and mcd style dtw
+ - dtw distance and mcd style dtw.
diff --git a/paddleaudio/paddleaudio/backends/soundfile_backend.py b/paddleaudio/paddleaudio/backends/soundfile_backend.py
index 2b920284a6c..c1155654f2f 100644
--- a/paddleaudio/paddleaudio/backends/soundfile_backend.py
+++ b/paddleaudio/paddleaudio/backends/soundfile_backend.py
@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
+import os
import warnings
from typing import Optional
from typing import Tuple
@@ -19,7 +20,6 @@
import numpy as np
import resampy
import soundfile as sf
-from numpy import ndarray as array
from scipy.io import wavfile
from ..utils import ParameterError
@@ -38,13 +38,21 @@
EPS = 1e-8
-def resample(y: array, src_sr: int, target_sr: int,
- mode: str='kaiser_fast') -> array:
- """ Audio resampling
- This function is the same as using resampy.resample().
- Notes:
- The default mode is kaiser_fast. For better audio quality, use mode = 'kaiser_fast'
- """
+def resample(y: np.ndarray,
+ src_sr: int,
+ target_sr: int,
+ mode: str='kaiser_fast') -> np.ndarray:
+ """Audio resampling.
+
+ Args:
+ y (np.ndarray): Input waveform array in 1D or 2D.
+ src_sr (int): Source sample rate.
+ target_sr (int): Target sample rate.
+ mode (str, optional): The resampling filter to use. Defaults to 'kaiser_fast'.
+
+ Returns:
+ np.ndarray: `y` resampled to `target_sr`
+ """
if mode == 'kaiser_best':
warnings.warn(
@@ -53,7 +61,7 @@ def resample(y: array, src_sr: int, target_sr: int,
if not isinstance(y, np.ndarray):
raise ParameterError(
- 'Only support numpy array, but received y in {type(y)}')
+ 'Only support numpy np.ndarray, but received y in {type(y)}')
if mode not in RESAMPLE_MODES:
raise ParameterError(f'resample mode must in {RESAMPLE_MODES}')
@@ -61,9 +69,17 @@ def resample(y: array, src_sr: int, target_sr: int,
return resampy.resample(y, src_sr, target_sr, filter=mode)
-def to_mono(y: array, merge_type: str='average') -> array:
- """ convert sterior audio to mono
+def to_mono(y: np.ndarray, merge_type: str='average') -> np.ndarray:
+ """Convert sterior audio to mono.
+
+ Args:
+ y (np.ndarray): Input waveform array in 1D or 2D.
+ merge_type (str, optional): Merge type to generate mono waveform. Defaults to 'average'.
+
+ Returns:
+ np.ndarray: `y` with mono channel.
"""
+
if merge_type not in MERGE_TYPES:
raise ParameterError(
f'Unsupported merge type {merge_type}, available types are {MERGE_TYPES}'
@@ -101,18 +117,34 @@ def to_mono(y: array, merge_type: str='average') -> array:
return y_out
-def _safe_cast(y: array, dtype: Union[type, str]) -> array:
- """ data type casting in a safe way, i.e., prevent overflow or underflow
- This function is used internally.
+def _safe_cast(y: np.ndarray, dtype: Union[type, str]) -> np.ndarray:
+ """Data type casting in a safe way, i.e., prevent overflow or underflow.
+
+ Args:
+ y (np.ndarray): Input waveform array in 1D or 2D.
+ dtype (Union[type, str]): Data type of waveform.
+
+ Returns:
+ np.ndarray: `y` after safe casting.
"""
- return np.clip(y, np.iinfo(dtype).min, np.iinfo(dtype).max).astype(dtype)
+ if 'float' in str(y.dtype):
+ return np.clip(y, np.finfo(dtype).min,
+ np.finfo(dtype).max).astype(dtype)
+ else:
+ return np.clip(y, np.iinfo(dtype).min,
+ np.iinfo(dtype).max).astype(dtype)
-def depth_convert(y: array, dtype: Union[type, str],
- dithering: bool=True) -> array:
- """Convert audio array to target dtype safely
- This function convert audio waveform to a target dtype, with addition steps of
+def depth_convert(y: np.ndarray, dtype: Union[type, str]) -> np.ndarray:
+ """Convert audio array to target dtype safely. This function convert audio waveform to a target dtype, with addition steps of
preventing overflow/underflow and preserving audio range.
+
+ Args:
+ y (np.ndarray): Input waveform array in 1D or 2D.
+ dtype (Union[type, str]): Data type of waveform.
+
+ Returns:
+ np.ndarray: `y` after safe casting.
"""
SUPPORT_DTYPE = ['int16', 'int8', 'float32', 'float64']
@@ -157,14 +189,20 @@ def depth_convert(y: array, dtype: Union[type, str],
return y
-def sound_file_load(file: str,
+def sound_file_load(file: os.PathLike,
offset: Optional[float]=None,
dtype: str='int16',
- duration: Optional[int]=None) -> Tuple[array, int]:
- """Load audio using soundfile library
- This function load audio file using libsndfile.
- Reference:
- http://www.mega-nerd.com/libsndfile/#Features
+ duration: Optional[int]=None) -> Tuple[np.ndarray, int]:
+ """Load audio using soundfile library. This function load audio file using libsndfile.
+
+ Args:
+ file (os.PathLike): File of waveform.
+ offset (Optional[float], optional): Offset to the start of waveform. Defaults to None.
+ dtype (str, optional): Data type of waveform. Defaults to 'int16'.
+ duration (Optional[int], optional): Duration of waveform to read. Defaults to None.
+
+ Returns:
+ Tuple[np.ndarray, int]: Waveform in ndarray and its samplerate.
"""
with sf.SoundFile(file) as sf_desc:
sr_native = sf_desc.samplerate
@@ -179,9 +217,17 @@ def sound_file_load(file: str,
return y, sf_desc.samplerate
-def normalize(y: array, norm_type: str='linear',
- mul_factor: float=1.0) -> array:
- """ normalize an input audio with additional multiplier.
+def normalize(y: np.ndarray, norm_type: str='linear',
+ mul_factor: float=1.0) -> np.ndarray:
+ """Normalize an input audio with additional multiplier.
+
+ Args:
+ y (np.ndarray): Input waveform array in 1D or 2D.
+ norm_type (str, optional): Type of normalization. Defaults to 'linear'.
+ mul_factor (float, optional): Scaling factor. Defaults to 1.0.
+
+ Returns:
+ np.ndarray: `y` after normalization.
"""
if norm_type == 'linear':
@@ -199,12 +245,13 @@ def normalize(y: array, norm_type: str='linear',
return y
-def save(y: array, sr: int, file: str) -> None:
- """Save audio file to disk.
- This function saves audio to disk using scipy.io.wavfile, with additional step
- to convert input waveform to int16 unless it already is int16
- Notes:
- It only support raw wav format.
+def save(y: np.ndarray, sr: int, file: os.PathLike) -> None:
+ """Save audio file to disk. This function saves audio to disk using scipy.io.wavfile, with additional step to convert input waveform to int16.
+
+ Args:
+ y (np.ndarray): Input waveform array in 1D or 2D.
+ sr (int): Sample rate.
+ file (os.PathLike): Path of auido file to save.
"""
if not file.endswith('.wav'):
raise ParameterError(
@@ -226,7 +273,7 @@ def save(y: array, sr: int, file: str) -> None:
def load(
- file: str,
+ file: os.PathLike,
sr: Optional[int]=None,
mono: bool=True,
merge_type: str='average', # ch0,ch1,random,average
@@ -236,11 +283,24 @@ def load(
offset: float=0.0,
duration: Optional[int]=None,
dtype: str='float32',
- resample_mode: str='kaiser_fast') -> Tuple[array, int]:
- """Load audio file from disk.
- This function loads audio from disk using using audio beackend.
- Parameters:
- Notes:
+ resample_mode: str='kaiser_fast') -> Tuple[np.ndarray, int]:
+ """Load audio file from disk. This function loads audio from disk using using audio beackend.
+
+ Args:
+ file (os.PathLike): Path of auido file to load.
+ sr (Optional[int], optional): Sample rate of loaded waveform. Defaults to None.
+ mono (bool, optional): Return waveform with mono channel. Defaults to True.
+ merge_type (str, optional): Merge type of multi-channels waveform. Defaults to 'average'.
+ normal (bool, optional): Waveform normalization. Defaults to True.
+ norm_type (str, optional): Type of normalization. Defaults to 'linear'.
+ norm_mul_factor (float, optional): Scaling factor. Defaults to 1.0.
+ offset (float, optional): Offset to the start of waveform. Defaults to 0.0.
+ duration (Optional[int], optional): Duration of waveform to read. Defaults to None.
+ dtype (str, optional): Data type of waveform. Defaults to 'float32'.
+ resample_mode (str, optional): The resampling filter to use. Defaults to 'kaiser_fast'.
+
+ Returns:
+ Tuple[np.ndarray, int]: Waveform in ndarray and its samplerate.
"""
y, r = sound_file_load(file, offset=offset, dtype=dtype, duration=duration)
diff --git a/paddleaudio/paddleaudio/compliance/kaldi.py b/paddleaudio/paddleaudio/compliance/kaldi.py
index 8cb9b666053..538be019619 100644
--- a/paddleaudio/paddleaudio/compliance/kaldi.py
+++ b/paddleaudio/paddleaudio/compliance/kaldi.py
@@ -220,7 +220,7 @@ def spectrogram(waveform: Tensor,
"""Compute and return a spectrogram from a waveform. The output is identical to Kaldi's.
Args:
- waveform (Tensor): A waveform tensor with shape [C, T].
+ waveform (Tensor): A waveform tensor with shape `(C, T)`.
blackman_coeff (float, optional): Coefficient for Blackman window.. Defaults to 0.42.
channel (int, optional): Select the channel of waveform. Defaults to -1.
dither (float, optional): Dithering constant . Defaults to 0.0.
@@ -239,7 +239,7 @@ def spectrogram(waveform: Tensor,
window_type (str, optional): Choose type of window for FFT computation. Defaults to POVEY.
Returns:
- Tensor: A spectrogram tensor with shape (m, padded_window_size // 2 + 1) where m is the number of frames
+ Tensor: A spectrogram tensor with shape `(m, padded_window_size // 2 + 1)` where m is the number of frames
depends on frame_length and frame_shift.
"""
dtype = waveform.dtype
@@ -422,7 +422,7 @@ def fbank(waveform: Tensor,
"""Compute and return filter banks from a waveform. The output is identical to Kaldi's.
Args:
- waveform (Tensor): A waveform tensor with shape [C, T].
+ waveform (Tensor): A waveform tensor with shape `(C, T)`.
blackman_coeff (float, optional): Coefficient for Blackman window.. Defaults to 0.42.
channel (int, optional): Select the channel of waveform. Defaults to -1.
dither (float, optional): Dithering constant . Defaults to 0.0.
@@ -451,7 +451,7 @@ def fbank(waveform: Tensor,
window_type (str, optional): Choose type of window for FFT computation. Defaults to POVEY.
Returns:
- Tensor: A filter banks tensor with shape (m, n_mels).
+ Tensor: A filter banks tensor with shape `(m, n_mels)`.
"""
dtype = waveform.dtype
@@ -542,7 +542,7 @@ def mfcc(waveform: Tensor,
identical to Kaldi's.
Args:
- waveform (Tensor): A waveform tensor with shape [C, T].
+ waveform (Tensor): A waveform tensor with shape `(C, T)`.
blackman_coeff (float, optional): Coefficient for Blackman window.. Defaults to 0.42.
cepstral_lifter (float, optional): Scaling of output mfccs. Defaults to 22.0.
channel (int, optional): Select the channel of waveform. Defaults to -1.
@@ -571,7 +571,7 @@ def mfcc(waveform: Tensor,
window_type (str, optional): Choose type of window for FFT computation. Defaults to POVEY.
Returns:
- Tensor: A mel frequency cepstral coefficients tensor with shape (m, n_mfcc).
+ Tensor: A mel frequency cepstral coefficients tensor with shape `(m, n_mfcc)`.
"""
assert n_mfcc <= n_mels, 'n_mfcc cannot be larger than n_mels: %d vs %d' % (
n_mfcc, n_mels)
diff --git a/paddleaudio/paddleaudio/compliance/librosa.py b/paddleaudio/paddleaudio/compliance/librosa.py
index 167795c3701..740584ca5a2 100644
--- a/paddleaudio/paddleaudio/compliance/librosa.py
+++ b/paddleaudio/paddleaudio/compliance/librosa.py
@@ -19,7 +19,6 @@
import numpy as np
import scipy
-from numpy import ndarray as array
from numpy.lib.stride_tricks import as_strided
from scipy import signal
@@ -32,7 +31,6 @@
'mfcc',
'hz_to_mel',
'mel_to_hz',
- 'split_frames',
'mel_frequencies',
'power_to_db',
'compute_fbank_matrix',
@@ -49,7 +47,8 @@
]
-def pad_center(data: array, size: int, axis: int=-1, **kwargs) -> array:
+def _pad_center(data: np.ndarray, size: int, axis: int=-1,
+ **kwargs) -> np.ndarray:
"""Pad an array to a target length along a target axis.
This differs from `np.pad` by centering the data prior to padding,
@@ -69,8 +68,10 @@ def pad_center(data: array, size: int, axis: int=-1, **kwargs) -> array:
return np.pad(data, lengths, **kwargs)
-def split_frames(x: array, frame_length: int, hop_length: int,
- axis: int=-1) -> array:
+def _split_frames(x: np.ndarray,
+ frame_length: int,
+ hop_length: int,
+ axis: int=-1) -> np.ndarray:
"""Slice a data array into (overlapping) frames.
This function is aligned with librosa.frame
@@ -142,11 +143,16 @@ def _check_audio(y, mono=True) -> bool:
return True
-def hz_to_mel(frequencies: Union[float, List[float], array],
- htk: bool=False) -> array:
- """Convert Hz to Mels
+def hz_to_mel(frequencies: Union[float, List[float], np.ndarray],
+ htk: bool=False) -> np.ndarray:
+ """Convert Hz to Mels.
- This function is aligned with librosa.
+ Args:
+ frequencies (Union[float, List[float], np.ndarray]): Frequencies in Hz.
+ htk (bool, optional): Use htk scaling. Defaults to False.
+
+ Returns:
+ np.ndarray: Frequency in mels.
"""
freq = np.asanyarray(frequencies)
@@ -177,10 +183,16 @@ def hz_to_mel(frequencies: Union[float, List[float], array],
return mels
-def mel_to_hz(mels: Union[float, List[float], array], htk: int=False) -> array:
+def mel_to_hz(mels: Union[float, List[float], np.ndarray],
+ htk: int=False) -> np.ndarray:
"""Convert mel bin numbers to frequencies.
- This function is aligned with librosa.
+ Args:
+ mels (Union[float, List[float], np.ndarray]): Frequency in mels.
+ htk (bool, optional): Use htk scaling. Defaults to False.
+
+ Returns:
+ np.ndarray: Frequencies in Hz.
"""
mel_array = np.asanyarray(mels)
@@ -212,10 +224,17 @@ def mel_to_hz(mels: Union[float, List[float], array], htk: int=False) -> array:
def mel_frequencies(n_mels: int=128,
fmin: float=0.0,
fmax: float=11025.0,
- htk: bool=False) -> array:
- """Compute mel frequencies
+ htk: bool=False) -> np.ndarray:
+ """Compute mel frequencies.
+
+ Args:
+ n_mels (int, optional): Number of mel bins. Defaults to 128.
+ fmin (float, optional): Minimum frequency in Hz. Defaults to 0.0.
+ fmax (float, optional): Maximum frequency in Hz. Defaults to 11025.0.
+ htk (bool, optional): Use htk scaling. Defaults to False.
- This function is aligned with librosa.
+ Returns:
+ np.ndarray: Vector of n_mels frequencies in Hz with shape `(n_mels,)`.
"""
# 'Center freqs' of mel bands - uniformly spaced between limits
min_mel = hz_to_mel(fmin, htk=htk)
@@ -226,10 +245,15 @@ def mel_frequencies(n_mels: int=128,
return mel_to_hz(mels, htk=htk)
-def fft_frequencies(sr: int, n_fft: int) -> array:
+def fft_frequencies(sr: int, n_fft: int) -> np.ndarray:
"""Compute fourier frequencies.
- This function is aligned with librosa.
+ Args:
+ sr (int): Sample rate.
+ n_fft (int): FFT size.
+
+ Returns:
+ np.ndarray: FFT frequencies in Hz with shape `(n_fft//2 + 1,)`.
"""
return np.linspace(0, float(sr) / 2, int(1 + n_fft // 2), endpoint=True)
@@ -241,10 +265,22 @@ def compute_fbank_matrix(sr: int,
fmax: Optional[float]=None,
htk: bool=False,
norm: str="slaney",
- dtype: type=np.float32):
+ dtype: type=np.float32) -> np.ndarray:
"""Compute fbank matrix.
- This funciton is aligned with librosa.
+ Args:
+ sr (int): Sample rate.
+ n_fft (int): FFT size.
+ n_mels (int, optional): Number of mel bins. Defaults to 128.
+ fmin (float, optional): Minimum frequency in Hz. Defaults to 0.0.
+ fmax (Optional[float], optional): Maximum frequency in Hz. Defaults to None.
+ htk (bool, optional): Use htk scaling. Defaults to False.
+ norm (str, optional): Type of normalization. Defaults to "slaney".
+ dtype (type, optional): Data type. Defaults to np.float32.
+
+
+ Returns:
+ np.ndarray: Mel transform matrix with shape `(n_mels, n_fft//2 + 1)`.
"""
if norm != "slaney":
raise ParameterError('norm must set to slaney')
@@ -289,17 +325,28 @@ def compute_fbank_matrix(sr: int,
return weights
-def stft(x: array,
+def stft(x: np.ndarray,
n_fft: int=2048,
hop_length: Optional[int]=None,
win_length: Optional[int]=None,
window: str="hann",
center: bool=True,
dtype: type=np.complex64,
- pad_mode: str="reflect") -> array:
+ pad_mode: str="reflect") -> np.ndarray:
"""Short-time Fourier transform (STFT).
- This function is aligned with librosa.
+ Args:
+ x (np.ndarray): Input waveform in one dimension.
+ n_fft (int, optional): FFT size. Defaults to 2048.
+ hop_length (Optional[int], optional): Number of steps to advance between adjacent windows. Defaults to None.
+ win_length (Optional[int], optional): The size of window. Defaults to None.
+ window (str, optional): A string of window specification. Defaults to "hann".
+ center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\_length` at the center of `t`-th frame. Defaults to True.
+ dtype (type, optional): Data type of STFT results. Defaults to np.complex64.
+ pad_mode (str, optional): Choose padding pattern when `center` is `True`. Defaults to "reflect".
+
+ Returns:
+ np.ndarray: The complex STFT output with shape `(n_fft//2 + 1, num_frames)`.
"""
_check_audio(x)
@@ -314,7 +361,7 @@ def stft(x: array,
fft_window = signal.get_window(window, win_length, fftbins=True)
# Pad the window out to n_fft size
- fft_window = pad_center(fft_window, n_fft)
+ fft_window = _pad_center(fft_window, n_fft)
# Reshape so that the window can be broadcast
fft_window = fft_window.reshape((-1, 1))
@@ -333,7 +380,7 @@ def stft(x: array,
)
# Window the time series.
- x_frames = split_frames(x, frame_length=n_fft, hop_length=hop_length)
+ x_frames = _split_frames(x, frame_length=n_fft, hop_length=hop_length)
# Pre-allocate the STFT matrix
stft_matrix = np.empty(
(int(1 + n_fft // 2), x_frames.shape[1]), dtype=dtype, order="F")
@@ -352,16 +399,20 @@ def stft(x: array,
return stft_matrix
-def power_to_db(spect: array,
+def power_to_db(spect: np.ndarray,
ref: float=1.0,
amin: float=1e-10,
- top_db: Optional[float]=80.0) -> array:
- """Convert a power spectrogram (amplitude squared) to decibel (dB) units
+ top_db: Optional[float]=80.0) -> np.ndarray:
+ """Convert a power spectrogram (amplitude squared) to decibel (dB) units. The function computes the scaling `10 * log10(x / ref)` in a numerically stable way.
- This computes the scaling ``10 * log10(spect / ref)`` in a numerically
- stable way.
+ Args:
+ spect (np.ndarray): STFT power spectrogram of an input waveform.
+ ref (float, optional): The reference value. If smaller than 1.0, the db level of the signal will be pulled up accordingly. Otherwise, the db level is pushed down. Defaults to 1.0.
+ amin (float, optional): Minimum threshold. Defaults to 1e-10.
+ top_db (Optional[float], optional): Threshold the output at `top_db` below the peak. Defaults to 80.0.
- This function is aligned with librosa.
+ Returns:
+ np.ndarray: Power spectrogram in db scale.
"""
spect = np.asarray(spect)
@@ -394,49 +445,27 @@ def power_to_db(spect: array,
return log_spec
-def mfcc(x,
+def mfcc(x: np.ndarray,
sr: int=16000,
- spect: Optional[array]=None,
+ spect: Optional[np.ndarray]=None,
n_mfcc: int=20,
dct_type: int=2,
norm: str="ortho",
lifter: int=0,
- **kwargs) -> array:
+ **kwargs) -> np.ndarray:
"""Mel-frequency cepstral coefficients (MFCCs)
- This function is NOT strictly aligned with librosa. The following example shows how to get the
- same result with librosa:
-
- # mfcc:
- kwargs = {
- 'window_size':512,
- 'hop_length':320,
- 'mel_bins':64,
- 'fmin':50,
- 'to_db':False}
- a = mfcc(x,
- spect=None,
- n_mfcc=20,
- dct_type=2,
- norm='ortho',
- lifter=0,
- **kwargs)
-
- # librosa mfcc:
- spect = librosa.feature.melspectrogram(y=x,sr=16000,n_fft=512,
- win_length=512,
- hop_length=320,
- n_mels=64, fmin=50)
- b = librosa.feature.mfcc(y=x,
- sr=16000,
- S=spect,
- n_mfcc=20,
- dct_type=2,
- norm='ortho',
- lifter=0)
-
- assert np.mean( (a-b)**2) < 1e-8
+ Args:
+ x (np.ndarray): Input waveform in one dimension.
+ sr (int, optional): Sample rate. Defaults to 16000.
+ spect (Optional[np.ndarray], optional): Input log-power Mel spectrogram. Defaults to None.
+ n_mfcc (int, optional): Number of cepstra in MFCC. Defaults to 20.
+ dct_type (int, optional): Discrete cosine transform (DCT) type. Defaults to 2.
+ norm (str, optional): Type of normalization. Defaults to "ortho".
+ lifter (int, optional): Cepstral filtering. Defaults to 0.
+ Returns:
+ np.ndarray: Mel frequency cepstral coefficients array with shape `(n_mfcc, num_frames)`.
"""
if spect is None:
spect = melspectrogram(x, sr=sr, **kwargs)
@@ -454,12 +483,12 @@ def mfcc(x,
f"MFCC lifter={lifter} must be a non-negative number")
-def melspectrogram(x: array,
+def melspectrogram(x: np.ndarray,
sr: int=16000,
window_size: int=512,
hop_length: int=320,
n_mels: int=64,
- fmin: int=50,
+ fmin: float=50.0,
fmax: Optional[float]=None,
window: str='hann',
center: bool=True,
@@ -468,27 +497,28 @@ def melspectrogram(x: array,
to_db: bool=True,
ref: float=1.0,
amin: float=1e-10,
- top_db: Optional[float]=None) -> array:
+ top_db: Optional[float]=None) -> np.ndarray:
"""Compute mel-spectrogram.
- Parameters:
- x: numpy.ndarray
- The input wavform is a numpy array [shape=(n,)]
-
- window_size: int, typically 512, 1024, 2048, etc.
- The window size for framing, also used as n_fft for stft
-
+ Args:
+ x (np.ndarray): Input waveform in one dimension.
+ sr (int, optional): Sample rate. Defaults to 16000.
+ window_size (int, optional): Size of FFT and window length. Defaults to 512.
+ hop_length (int, optional): Number of steps to advance between adjacent windows. Defaults to 320.
+ n_mels (int, optional): Number of mel bins. Defaults to 64.
+ fmin (float, optional): Minimum frequency in Hz. Defaults to 50.0.
+ fmax (Optional[float], optional): Maximum frequency in Hz. Defaults to None.
+ window (str, optional): A string of window specification. Defaults to "hann".
+ center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\_length` at the center of `t`-th frame. Defaults to True.
+ pad_mode (str, optional): Choose padding pattern when `center` is `True`. Defaults to "reflect".
+ power (float, optional): Exponent for the magnitude melspectrogram. Defaults to 2.0.
+ to_db (bool, optional): Enable db scale. Defaults to True.
+ ref (float, optional): The reference value. If smaller than 1.0, the db level of the signal will be pulled up accordingly. Otherwise, the db level is pushed down. Defaults to 1.0.
+ amin (float, optional): Minimum threshold. Defaults to 1e-10.
+ top_db (Optional[float], optional): Threshold the output at `top_db` below the peak. Defaults to None.
Returns:
- The mel-spectrogram in power scale or db scale(default)
-
-
- Notes:
- 1. sr is default to 16000, which is commonly used in speech/speaker processing.
- 2. when fmax is None, it is set to sr//2.
- 3. this function will convert mel spectgrum to db scale by default. This is different
- that of librosa.
-
+ np.ndarray: The mel-spectrogram in power scale or db scale with shape `(n_mels, num_frames)`.
"""
_check_audio(x, mono=True)
if len(x) <= 0:
@@ -518,18 +548,28 @@ def melspectrogram(x: array,
return mel_spect
-def spectrogram(x: array,
+def spectrogram(x: np.ndarray,
sr: int=16000,
window_size: int=512,
hop_length: int=320,
window: str='hann',
center: bool=True,
pad_mode: str='reflect',
- power: float=2.0) -> array:
- """Compute spectrogram from an input waveform.
+ power: float=2.0) -> np.ndarray:
+ """Compute spectrogram.
+
+ Args:
+ x (np.ndarray): Input waveform in one dimension.
+ sr (int, optional): Sample rate. Defaults to 16000.
+ window_size (int, optional): Size of FFT and window length. Defaults to 512.
+ hop_length (int, optional): Number of steps to advance between adjacent windows. Defaults to 320.
+ window (str, optional): A string of window specification. Defaults to "hann".
+ center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\_length` at the center of `t`-th frame. Defaults to True.
+ pad_mode (str, optional): Choose padding pattern when `center` is `True`. Defaults to "reflect".
+ power (float, optional): Exponent for the magnitude melspectrogram. Defaults to 2.0.
- This function is a wrapper for librosa.feature.stft, with addition step to
- compute the magnitude of the complex spectrogram.
+ Returns:
+ np.ndarray: The STFT spectrogram in power scale `(n_fft//2 + 1, num_frames)`.
"""
s = stft(
@@ -544,18 +584,16 @@ def spectrogram(x: array,
return np.abs(s)**power
-def mu_encode(x: array, mu: int=255, quantized: bool=True) -> array:
- """Mu-law encoding.
-
- Compute the mu-law decoding given an input code.
- When quantized is True, the result will be converted to
- integer in range [0,mu-1]. Otherwise, the resulting signal
- is in range [-1,1]
-
+def mu_encode(x: np.ndarray, mu: int=255, quantized: bool=True) -> np.ndarray:
+ """Mu-law encoding. Encode waveform based on mu-law companding. When quantized is True, the result will be converted to integer in range `[0,mu-1]`. Otherwise, the resulting waveform is in range `[-1,1]`.
- Reference:
- https://en.wikipedia.org/wiki/%CE%9C-law_algorithm
+ Args:
+ x (np.ndarray): The input waveform to encode.
+ mu (int, optional): The endoceding parameter. Defaults to 255.
+ quantized (bool, optional): If `True`, quantize the encoded values into `1 + mu` distinct integer values. Defaults to True.
+ Returns:
+ np.ndarray: The mu-law encoded waveform.
"""
mu = 255
y = np.sign(x) * np.log1p(mu * np.abs(x)) / np.log1p(mu)
@@ -564,17 +602,16 @@ def mu_encode(x: array, mu: int=255, quantized: bool=True) -> array:
return y
-def mu_decode(y: array, mu: int=255, quantized: bool=True) -> array:
- """Mu-law decoding.
-
- Compute the mu-law decoding given an input code.
+def mu_decode(y: np.ndarray, mu: int=255, quantized: bool=True) -> np.ndarray:
+ """Mu-law decoding. Compute the mu-law decoding given an input code. It assumes that the input `y` is in range `[0,mu-1]` when quantize is True and `[-1,1]` otherwise.
- it assumes that the input y is in
- range [0,mu-1] when quantize is True and [-1,1] otherwise
-
- Reference:
- https://en.wikipedia.org/wiki/%CE%9C-law_algorithm
+ Args:
+ y (np.ndarray): The encoded waveform.
+ mu (int, optional): The endoceding parameter. Defaults to 255.
+ quantized (bool, optional): If `True`, the input is assumed to be quantized to `1 + mu` distinct integer values. Defaults to True.
+ Returns:
+ np.ndarray: The mu-law decoded waveform.
"""
if mu < 1:
raise ParameterError('mu is typically set as 2**k-1, k=1, 2, 3,...')
@@ -586,7 +623,7 @@ def mu_decode(y: array, mu: int=255, quantized: bool=True) -> array:
return x
-def randint(high: int) -> int:
+def _randint(high: int) -> int:
"""Generate one random integer in range [0 high)
This is a helper function for random data augmentaiton
@@ -594,20 +631,18 @@ def randint(high: int) -> int:
return int(np.random.randint(0, high=high))
-def rand() -> float:
- """Generate one floating-point number in range [0 1)
-
- This is a helper function for random data augmentaiton
- """
- return float(np.random.rand(1))
-
-
-def depth_augment(y: array,
+def depth_augment(y: np.ndarray,
choices: List=['int8', 'int16'],
- probs: List[float]=[0.5, 0.5]) -> array:
- """ Audio depth augmentation
+ probs: List[float]=[0.5, 0.5]) -> np.ndarray:
+ """ Audio depth augmentation. Do audio depth augmentation to simulate the distortion brought by quantization.
+
+ Args:
+ y (np.ndarray): Input waveform array in 1D or 2D.
+ choices (List, optional): A list of data type to depth conversion. Defaults to ['int8', 'int16'].
+ probs (List[float], optional): Probabilities to depth conversion. Defaults to [0.5, 0.5].
- Do audio depth augmentation to simulate the distortion brought by quantization.
+ Returns:
+ np.ndarray: The augmented waveform.
"""
assert len(probs) == len(
choices
@@ -621,13 +656,18 @@ def depth_augment(y: array,
return y2
-def adaptive_spect_augment(spect: array, tempo_axis: int=0,
- level: float=0.1) -> array:
- """Do adpative spectrogram augmentation
+def adaptive_spect_augment(spect: np.ndarray,
+ tempo_axis: int=0,
+ level: float=0.1) -> np.ndarray:
+ """Do adpative spectrogram augmentation. The level of the augmentation is gowern by the paramter level, ranging from 0 to 1, with 0 represents no augmentation.
- The level of the augmentation is gowern by the paramter level,
- ranging from 0 to 1, with 0 represents no augmentation。
+ Args:
+ spect (np.ndarray): Input spectrogram.
+ tempo_axis (int, optional): Indicate the tempo axis. Defaults to 0.
+ level (float, optional): The level factor of masking. Defaults to 0.1.
+ Returns:
+ np.ndarray: The augmented spectrogram.
"""
assert spect.ndim == 2., 'only supports 2d tensor or numpy array'
if tempo_axis == 0:
@@ -643,32 +683,40 @@ def adaptive_spect_augment(spect: array, tempo_axis: int=0,
if tempo_axis == 0:
for _ in range(num_time_mask):
- start = randint(nt - time_mask_width)
+ start = _randint(nt - time_mask_width)
spect[start:start + time_mask_width, :] = 0
for _ in range(num_freq_mask):
- start = randint(nf - freq_mask_width)
+ start = _randint(nf - freq_mask_width)
spect[:, start:start + freq_mask_width] = 0
else:
for _ in range(num_time_mask):
- start = randint(nt - time_mask_width)
+ start = _randint(nt - time_mask_width)
spect[:, start:start + time_mask_width] = 0
for _ in range(num_freq_mask):
- start = randint(nf - freq_mask_width)
+ start = _randint(nf - freq_mask_width)
spect[start:start + freq_mask_width, :] = 0
return spect
-def spect_augment(spect: array,
+def spect_augment(spect: np.ndarray,
tempo_axis: int=0,
max_time_mask: int=3,
max_freq_mask: int=3,
max_time_mask_width: int=30,
- max_freq_mask_width: int=20) -> array:
- """Do spectrogram augmentation in both time and freq axis
+ max_freq_mask_width: int=20) -> np.ndarray:
+ """Do spectrogram augmentation in both time and freq axis.
- Reference:
+ Args:
+ spect (np.ndarray): Input spectrogram.
+ tempo_axis (int, optional): Indicate the tempo axis. Defaults to 0.
+ max_time_mask (int, optional): Maximum number of time masking. Defaults to 3.
+ max_freq_mask (int, optional): Maximum number of frenquence masking. Defaults to 3.
+ max_time_mask_width (int, optional): Maximum width of time masking. Defaults to 30.
+ max_freq_mask_width (int, optional): Maximum width of frenquence masking. Defaults to 20.
+ Returns:
+ np.ndarray: The augmented spectrogram.
"""
assert spect.ndim == 2., 'only supports 2d tensor or numpy array'
if tempo_axis == 0:
@@ -676,52 +724,64 @@ def spect_augment(spect: array,
else:
nf, nt = spect.shape
- num_time_mask = randint(max_time_mask)
- num_freq_mask = randint(max_freq_mask)
+ num_time_mask = _randint(max_time_mask)
+ num_freq_mask = _randint(max_freq_mask)
- time_mask_width = randint(max_time_mask_width)
- freq_mask_width = randint(max_freq_mask_width)
+ time_mask_width = _randint(max_time_mask_width)
+ freq_mask_width = _randint(max_freq_mask_width)
if tempo_axis == 0:
for _ in range(num_time_mask):
- start = randint(nt - time_mask_width)
+ start = _randint(nt - time_mask_width)
spect[start:start + time_mask_width, :] = 0
for _ in range(num_freq_mask):
- start = randint(nf - freq_mask_width)
+ start = _randint(nf - freq_mask_width)
spect[:, start:start + freq_mask_width] = 0
else:
for _ in range(num_time_mask):
- start = randint(nt - time_mask_width)
+ start = _randint(nt - time_mask_width)
spect[:, start:start + time_mask_width] = 0
for _ in range(num_freq_mask):
- start = randint(nf - freq_mask_width)
+ start = _randint(nf - freq_mask_width)
spect[start:start + freq_mask_width, :] = 0
return spect
-def random_crop1d(y: array, crop_len: int) -> array:
- """ Do random cropping on 1d input signal
+def random_crop1d(y: np.ndarray, crop_len: int) -> np.ndarray:
+ """ Random cropping on a input waveform.
- The input is a 1d signal, typically a sound waveform
+ Args:
+ y (np.ndarray): Input waveform array in 1D.
+ crop_len (int): Length of waveform to crop.
+
+ Returns:
+ np.ndarray: The cropped waveform.
"""
if y.ndim != 1:
'only accept 1d tensor or numpy array'
n = len(y)
- idx = randint(n - crop_len)
+ idx = _randint(n - crop_len)
return y[idx:idx + crop_len]
-def random_crop2d(s: array, crop_len: int, tempo_axis: int=0) -> array:
- """ Do random cropping for 2D array, typically a spectrogram.
+def random_crop2d(s: np.ndarray, crop_len: int,
+ tempo_axis: int=0) -> np.ndarray:
+ """ Random cropping on a spectrogram.
- The cropping is done in temporal direction on the time-freq input signal.
+ Args:
+ s (np.ndarray): Input spectrogram in 2D.
+ crop_len (int): Length of spectrogram to crop.
+ tempo_axis (int, optional): Indicate the tempo axis. Defaults to 0.
+
+ Returns:
+ np.ndarray: The cropped spectrogram.
"""
if tempo_axis >= s.ndim:
raise ParameterError('axis out of range')
n = s.shape[tempo_axis]
- idx = randint(high=n - crop_len)
+ idx = _randint(high=n - crop_len)
sli = [slice(None) for i in range(s.ndim)]
sli[tempo_axis] = slice(idx, idx + crop_len)
out = s[tuple(sli)]
diff --git a/paddleaudio/paddleaudio/features/layers.py b/paddleaudio/paddleaudio/features/layers.py
index 4a2c1673a02..09037255ddf 100644
--- a/paddleaudio/paddleaudio/features/layers.py
+++ b/paddleaudio/paddleaudio/features/layers.py
@@ -17,6 +17,7 @@
import paddle
import paddle.nn as nn
+from paddle import Tensor
from ..functional import compute_fbank_matrix
from ..functional import create_dct
@@ -32,42 +33,34 @@
class Spectrogram(nn.Layer):
+ """Compute spectrogram of given signals, typically audio waveforms.
+ The spectorgram is defined as the complex norm of the short-time Fourier transformation.
+
+ Args:
+ n_fft (int, optional): The number of frequency components of the discrete Fourier transform. Defaults to 512.
+ hop_length (Optional[int], optional): The hop length of the short time FFT. If `None`, it is set to `win_length//4`. Defaults to None.
+ win_length (Optional[int], optional): The window length of the short time FFT. If `None`, it is set to same as `n_fft`. Defaults to None.
+ window (str, optional): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'. Defaults to 'hann'.
+ power (float, optional): Exponent for the magnitude spectrogram. Defaults to 2.0.
+ center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\_length` at the center of `t`-th frame. Defaults to True.
+ pad_mode (str, optional): Choose padding pattern when `center` is `True`. Defaults to 'reflect'.
+ dtype (str, optional): Data type of input and window. Defaults to 'float32'.
+ """
+
def __init__(self,
n_fft: int=512,
hop_length: Optional[int]=None,
win_length: Optional[int]=None,
window: str='hann',
+ power: float=2.0,
center: bool=True,
pad_mode: str='reflect',
- dtype: str=paddle.float32):
- """Compute spectrogram of a given signal, typically an audio waveform.
- The spectorgram is defined as the complex norm of the short-time
- Fourier transformation.
- Parameters:
- n_fft (int): the number of frequency components of the discrete Fourier transform.
- The default value is 2048,
- hop_length (int|None): the hop length of the short time FFT. If None, it is set to win_length//4.
- The default value is None.
- win_length: the window length of the short time FFt. If None, it is set to same as n_fft.
- The default value is None.
- window (str): the name of the window function applied to the single before the Fourier transform.
- The folllowing window names are supported: 'hamming','hann','kaiser','gaussian',
- 'exponential','triang','bohman','blackman','cosine','tukey','taylor'.
- The default value is 'hann'
- center (bool): if True, the signal is padded so that frame t is centered at x[t * hop_length].
- If False, frame t begins at x[t * hop_length]
- The default value is True
- pad_mode (str): the mode to pad the signal if necessary. The supported modes are 'reflect'
- and 'constant'. The default value is 'reflect'.
- dtype (str): the data type of input and window.
- Notes:
- The Spectrogram transform relies on STFT transform to compute the spectrogram.
- By default, the weights are not learnable. To fine-tune the Fourier coefficients,
- set stop_gradient=False before training.
- For more information, see STFT().
- """
+ dtype: str='float32') -> None:
super(Spectrogram, self).__init__()
+ assert power > 0, 'Power of spectrogram must be > 0.'
+ self.power = power
+
if win_length is None:
win_length = n_fft
@@ -83,19 +76,46 @@ def __init__(self,
pad_mode=pad_mode)
self.register_buffer('fft_window', self.fft_window)
- def forward(self, x):
+ def forward(self, x: Tensor) -> Tensor:
+ """
+ Args:
+ x (Tensor): Tensor of waveforms with shape `(N, T)`
+
+ Returns:
+ Tensor: Spectrograms with shape `(N, n_fft//2 + 1, num_frames)`.
+ """
stft = self._stft(x)
- spectrogram = paddle.square(paddle.abs(stft))
+ spectrogram = paddle.pow(paddle.abs(stft), self.power)
return spectrogram
class MelSpectrogram(nn.Layer):
+ """Compute the melspectrogram of given signals, typically audio waveforms. It is computed by multiplying spectrogram with Mel filter bank matrix.
+
+ Args:
+ sr (int, optional): Sample rate. Defaults to 22050.
+ n_fft (int, optional): The number of frequency components of the discrete Fourier transform. Defaults to 512.
+ hop_length (Optional[int], optional): The hop length of the short time FFT. If `None`, it is set to `win_length//4`. Defaults to None.
+ win_length (Optional[int], optional): The window length of the short time FFT. If `None`, it is set to same as `n_fft`. Defaults to None.
+ window (str, optional): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'. Defaults to 'hann'.
+ power (float, optional): Exponent for the magnitude spectrogram. Defaults to 2.0.
+ center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\_length` at the center of `t`-th frame. Defaults to True.
+ pad_mode (str, optional): Choose padding pattern when `center` is `True`. Defaults to 'reflect'.
+ n_mels (int, optional): Number of mel bins. Defaults to 64.
+ f_min (float, optional): Minimum frequency in Hz. Defaults to 50.0.
+ f_max (Optional[float], optional): Maximum frequency in Hz. Defaults to None.
+ htk (bool, optional): Use HTK formula in computing fbank matrix. Defaults to False.
+ norm (Union[str, float], optional): Type of normalization in computing fbank matrix. Slaney-style is used by default. You can specify norm=1.0/2.0 to use customized p-norm normalization. Defaults to 'slaney'.
+ dtype (str, optional): Data type of input and window. Defaults to 'float32'.
+ """
+
def __init__(self,
sr: int=22050,
n_fft: int=512,
hop_length: Optional[int]=None,
win_length: Optional[int]=None,
window: str='hann',
+ power: float=2.0,
center: bool=True,
pad_mode: str='reflect',
n_mels: int=64,
@@ -103,38 +123,7 @@ def __init__(self,
f_max: Optional[float]=None,
htk: bool=False,
norm: Union[str, float]='slaney',
- dtype: str=paddle.float32):
- """Compute the melspectrogram of a given signal, typically an audio waveform.
- The melspectrogram is also known as filterbank or fbank feature in audio community.
- It is computed by multiplying spectrogram with Mel filter bank matrix.
- Parameters:
- sr(int): the audio sample rate.
- The default value is 22050.
- n_fft(int): the number of frequency components of the discrete Fourier transform.
- The default value is 2048,
- hop_length(int|None): the hop length of the short time FFT. If None, it is set to win_length//4.
- The default value is None.
- win_length: the window length of the short time FFt. If None, it is set to same as n_fft.
- The default value is None.
- window(str): the name of the window function applied to the single before the Fourier transform.
- The folllowing window names are supported: 'hamming','hann','kaiser','gaussian',
- 'exponential','triang','bohman','blackman','cosine','tukey','taylor'.
- The default value is 'hann'
- center(bool): if True, the signal is padded so that frame t is centered at x[t * hop_length].
- If False, frame t begins at x[t * hop_length]
- The default value is True
- pad_mode(str): the mode to pad the signal if necessary. The supported modes are 'reflect'
- and 'constant'.
- The default value is 'reflect'.
- n_mels(int): the mel bins.
- f_min(float): the lower cut-off frequency, below which the filter response is zero.
- f_max(float): the upper cut-off frequency, above which the filter response is zeros.
- htk(bool): whether to use HTK formula in computing fbank matrix.
- norm(str|float): the normalization type in computing fbank matrix. Slaney-style is used by default.
- You can specify norm=1.0/2.0 to use customized p-norm normalization.
- dtype(str): the datatype of fbank matrix used in the transform. Use float64 to increase numerical
- accuracy. Note that the final transform will be conducted in float32 regardless of dtype of fbank matrix.
- """
+ dtype: str='float32') -> None:
super(MelSpectrogram, self).__init__()
self._spectrogram = Spectrogram(
@@ -142,6 +131,7 @@ def __init__(self,
hop_length=hop_length,
win_length=win_length,
window=window,
+ power=power,
center=center,
pad_mode=pad_mode,
dtype=dtype)
@@ -163,19 +153,49 @@ def __init__(self,
dtype=dtype) # float64 for better numerical results
self.register_buffer('fbank_matrix', self.fbank_matrix)
- def forward(self, x):
+ def forward(self, x: Tensor) -> Tensor:
+ """
+ Args:
+ x (Tensor): Tensor of waveforms with shape `(N, T)`
+
+ Returns:
+ Tensor: Mel spectrograms with shape `(N, n_mels, num_frames)`.
+ """
spect_feature = self._spectrogram(x)
mel_feature = paddle.matmul(self.fbank_matrix, spect_feature)
return mel_feature
class LogMelSpectrogram(nn.Layer):
+ """Compute log-mel-spectrogram feature of given signals, typically audio waveforms.
+
+ Args:
+ sr (int, optional): Sample rate. Defaults to 22050.
+ n_fft (int, optional): The number of frequency components of the discrete Fourier transform. Defaults to 512.
+ hop_length (Optional[int], optional): The hop length of the short time FFT. If `None`, it is set to `win_length//4`. Defaults to None.
+ win_length (Optional[int], optional): The window length of the short time FFT. If `None`, it is set to same as `n_fft`. Defaults to None.
+ window (str, optional): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'. Defaults to 'hann'.
+ power (float, optional): Exponent for the magnitude spectrogram. Defaults to 2.0.
+ center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\_length` at the center of `t`-th frame. Defaults to True.
+ pad_mode (str, optional): Choose padding pattern when `center` is `True`. Defaults to 'reflect'.
+ n_mels (int, optional): Number of mel bins. Defaults to 64.
+ f_min (float, optional): Minimum frequency in Hz. Defaults to 50.0.
+ f_max (Optional[float], optional): Maximum frequency in Hz. Defaults to None.
+ htk (bool, optional): Use HTK formula in computing fbank matrix. Defaults to False.
+ norm (Union[str, float], optional): Type of normalization in computing fbank matrix. Slaney-style is used by default. You can specify norm=1.0/2.0 to use customized p-norm normalization. Defaults to 'slaney'.
+ ref_value (float, optional): The reference value. If smaller than 1.0, the db level of the signal will be pulled up accordingly. Otherwise, the db level is pushed down. Defaults to 1.0.
+ amin (float, optional): The minimum value of input magnitude. Defaults to 1e-10.
+ top_db (Optional[float], optional): The maximum db value of spectrogram. Defaults to None.
+ dtype (str, optional): Data type of input and window. Defaults to 'float32'.
+ """
+
def __init__(self,
sr: int=22050,
n_fft: int=512,
hop_length: Optional[int]=None,
win_length: Optional[int]=None,
window: str='hann',
+ power: float=2.0,
center: bool=True,
pad_mode: str='reflect',
n_mels: int=64,
@@ -186,44 +206,7 @@ def __init__(self,
ref_value: float=1.0,
amin: float=1e-10,
top_db: Optional[float]=None,
- dtype: str=paddle.float32):
- """Compute log-mel-spectrogram(also known as LogFBank) feature of a given signal,
- typically an audio waveform.
- Parameters:
- sr (int): the audio sample rate.
- The default value is 22050.
- n_fft (int): the number of frequency components of the discrete Fourier transform.
- The default value is 2048,
- hop_length (int|None): the hop length of the short time FFT. If None, it is set to win_length//4.
- The default value is None.
- win_length: the window length of the short time FFt. If None, it is set to same as n_fft.
- The default value is None.
- window (str): the name of the window function applied to the single before the Fourier transform.
- The folllowing window names are supported: 'hamming','hann','kaiser','gaussian',
- 'exponential','triang','bohman','blackman','cosine','tukey','taylor'.
- The default value is 'hann'
- center (bool): if True, the signal is padded so that frame t is centered at x[t * hop_length].
- If False, frame t begins at x[t * hop_length]
- The default value is True
- pad_mode (str): the mode to pad the signal if necessary. The supported modes are 'reflect'
- and 'constant'.
- The default value is 'reflect'.
- n_mels (int): the mel bins.
- f_min (float): the lower cut-off frequency, below which the filter response is zero.
- f_max (float): the upper cut-off frequency, above which the filter response is zeros.
- htk (bool): whether to use HTK formula in computing fbank matrix.
- norm (str|float): the normalization type in computing fbank matrix. Slaney-style is used by default.
- You can specify norm=1.0/2.0 to use customized p-norm normalization.
- ref_value (float): the reference value. If smaller than 1.0, the db level
- amin (float): the minimum value of input magnitude, below which the input of the signal will be pulled up accordingly.
- Otherwise, the db level is pushed down.
- magnitude is clipped(to amin). For numerical stability, set amin to a larger value,
- e.g., 1e-3.
- top_db (float): the maximum db value of resulting spectrum, above which the
- spectrum is clipped(to top_db).
- dtype (str): the datatype of fbank matrix used in the transform. Use float64 to increase numerical
- accuracy. Note that the final transform will be conducted in float32 regardless of dtype of fbank matrix.
- """
+ dtype: str='float32') -> None:
super(LogMelSpectrogram, self).__init__()
self._melspectrogram = MelSpectrogram(
@@ -232,6 +215,7 @@ def __init__(self,
hop_length=hop_length,
win_length=win_length,
window=window,
+ power=power,
center=center,
pad_mode=pad_mode,
n_mels=n_mels,
@@ -245,8 +229,14 @@ def __init__(self,
self.amin = amin
self.top_db = top_db
- def forward(self, x):
- # import ipdb; ipdb.set_trace()
+ def forward(self, x: Tensor) -> Tensor:
+ """
+ Args:
+ x (Tensor): Tensor of waveforms with shape `(N, T)`
+
+ Returns:
+ Tensor: Log mel spectrograms with shape `(N, n_mels, num_frames)`.
+ """
mel_feature = self._melspectrogram(x)
log_mel_feature = power_to_db(
mel_feature,
@@ -257,6 +247,29 @@ def forward(self, x):
class MFCC(nn.Layer):
+ """Compute mel frequency cepstral coefficients(MFCCs) feature of given waveforms.
+
+ Args:
+ sr (int, optional): Sample rate. Defaults to 22050.
+ n_mfcc (int, optional): [description]. Defaults to 40.
+ n_fft (int, optional): The number of frequency components of the discrete Fourier transform. Defaults to 512.
+ hop_length (Optional[int], optional): The hop length of the short time FFT. If `None`, it is set to `win_length//4`. Defaults to None.
+ win_length (Optional[int], optional): The window length of the short time FFT. If `None`, it is set to same as `n_fft`. Defaults to None.
+ window (str, optional): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'. Defaults to 'hann'.
+ power (float, optional): Exponent for the magnitude spectrogram. Defaults to 2.0.
+ center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\_length` at the center of `t`-th frame. Defaults to True.
+ pad_mode (str, optional): Choose padding pattern when `center` is `True`. Defaults to 'reflect'.
+ n_mels (int, optional): Number of mel bins. Defaults to 64.
+ f_min (float, optional): Minimum frequency in Hz. Defaults to 50.0.
+ f_max (Optional[float], optional): Maximum frequency in Hz. Defaults to None.
+ htk (bool, optional): Use HTK formula in computing fbank matrix. Defaults to False.
+ norm (Union[str, float], optional): Type of normalization in computing fbank matrix. Slaney-style is used by default. You can specify norm=1.0/2.0 to use customized p-norm normalization. Defaults to 'slaney'.
+ ref_value (float, optional): The reference value. If smaller than 1.0, the db level of the signal will be pulled up accordingly. Otherwise, the db level is pushed down. Defaults to 1.0.
+ amin (float, optional): The minimum value of input magnitude. Defaults to 1e-10.
+ top_db (Optional[float], optional): The maximum db value of spectrogram. Defaults to None.
+ dtype (str, optional): Data type of input and window. Defaults to 'float32'.
+ """
+
def __init__(self,
sr: int=22050,
n_mfcc: int=40,
@@ -264,6 +277,7 @@ def __init__(self,
hop_length: Optional[int]=None,
win_length: Optional[int]=None,
window: str='hann',
+ power: float=2.0,
center: bool=True,
pad_mode: str='reflect',
n_mels: int=64,
@@ -274,45 +288,7 @@ def __init__(self,
ref_value: float=1.0,
amin: float=1e-10,
top_db: Optional[float]=None,
- dtype: str=paddle.float32):
- """Compute mel frequency cepstral coefficients(MFCCs) feature of given waveforms.
-
- Parameters:
- sr(int): the audio sample rate.
- The default value is 22050.
- n_mfcc (int, optional): Number of cepstra in MFCC. Defaults to 40.
- n_fft (int): the number of frequency components of the discrete Fourier transform.
- The default value is 2048,
- hop_length (int|None): the hop length of the short time FFT. If None, it is set to win_length//4.
- The default value is None.
- win_length: the window length of the short time FFt. If None, it is set to same as n_fft.
- The default value is None.
- window (str): the name of the window function applied to the single before the Fourier transform.
- The folllowing window names are supported: 'hamming','hann','kaiser','gaussian',
- 'exponential','triang','bohman','blackman','cosine','tukey','taylor'.
- The default value is 'hann'
- center (bool): if True, the signal is padded so that frame t is centered at x[t * hop_length].
- If False, frame t begins at x[t * hop_length]
- The default value is True
- pad_mode (str): the mode to pad the signal if necessary. The supported modes are 'reflect'
- and 'constant'.
- The default value is 'reflect'.
- n_mels (int): the mel bins.
- f_min (float): the lower cut-off frequency, below which the filter response is zero.
- f_max (float): the upper cut-off frequency, above which the filter response is zeros.
- htk (bool): whether to use HTK formula in computing fbank matrix.
- norm (str|float): the normalization type in computing fbank matrix. Slaney-style is used by default.
- You can specify norm=1.0/2.0 to use customized p-norm normalization.
- ref_value (float): the reference value. If smaller than 1.0, the db level
- amin (float): the minimum value of input magnitude, below which the input of the signal will be pulled up accordingly.
- Otherwise, the db level is pushed down.
- magnitude is clipped(to amin). For numerical stability, set amin to a larger value,
- e.g., 1e-3.
- top_db (float): the maximum db value of resulting spectrum, above which the
- spectrum is clipped(to top_db).
- dtype (str): the datatype of fbank matrix used in the transform. Use float64 to increase numerical
- accuracy. Note that the final transform will be conducted in float32 regardless of dtype of fbank matrix.
- """
+ dtype: str=paddle.float32) -> None:
super(MFCC, self).__init__()
assert n_mfcc <= n_mels, 'n_mfcc cannot be larger than n_mels: %d vs %d' % (
n_mfcc, n_mels)
@@ -322,6 +298,7 @@ def __init__(self,
hop_length=hop_length,
win_length=win_length,
window=window,
+ power=power,
center=center,
pad_mode=pad_mode,
n_mels=n_mels,
@@ -336,7 +313,14 @@ def __init__(self,
self.dct_matrix = create_dct(n_mfcc=n_mfcc, n_mels=n_mels, dtype=dtype)
self.register_buffer('dct_matrix', self.dct_matrix)
- def forward(self, x):
+ def forward(self, x: Tensor) -> Tensor:
+ """
+ Args:
+ x (Tensor): Tensor of waveforms with shape `(N, T)`
+
+ Returns:
+ Tensor: Mel frequency cepstral coefficients with shape `(N, n_mfcc, num_frames)`.
+ """
log_mel_feature = self._log_melspectrogram(x)
mfcc = paddle.matmul(
log_mel_feature.transpose((0, 2, 1)), self.dct_matrix).transpose(
diff --git a/paddleaudio/paddleaudio/functional/functional.py b/paddleaudio/paddleaudio/functional/functional.py
index c5ab30453e6..19c63a9aef2 100644
--- a/paddleaudio/paddleaudio/functional/functional.py
+++ b/paddleaudio/paddleaudio/functional/functional.py
@@ -17,6 +17,7 @@
from typing import Union
import paddle
+from paddle import Tensor
__all__ = [
'hz_to_mel',
@@ -29,19 +30,20 @@
]
-def hz_to_mel(freq: Union[paddle.Tensor, float],
- htk: bool=False) -> Union[paddle.Tensor, float]:
+def hz_to_mel(freq: Union[Tensor, float],
+ htk: bool=False) -> Union[Tensor, float]:
"""Convert Hz to Mels.
- Parameters:
- freq: the input tensor of arbitrary shape, or a single floating point number.
- htk: use HTK formula to do the conversion.
- The default value is False.
+
+ Args:
+ freq (Union[Tensor, float]): The input tensor with arbitrary shape.
+ htk (bool, optional): Use htk scaling. Defaults to False.
+
Returns:
- The frequencies represented in Mel-scale.
+ Union[Tensor, float]: Frequency in mels.
"""
if htk:
- if isinstance(freq, paddle.Tensor):
+ if isinstance(freq, Tensor):
return 2595.0 * paddle.log10(1.0 + freq / 700.0)
else:
return 2595.0 * math.log10(1.0 + freq / 700.0)
@@ -58,7 +60,7 @@ def hz_to_mel(freq: Union[paddle.Tensor, float],
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = math.log(6.4) / 27.0 # step size for log region
- if isinstance(freq, paddle.Tensor):
+ if isinstance(freq, Tensor):
target = min_log_mel + paddle.log(
freq / min_log_hz + 1e-10) / logstep # prevent nan with 1e-10
mask = (freq > min_log_hz).astype(freq.dtype)
@@ -71,14 +73,16 @@ def hz_to_mel(freq: Union[paddle.Tensor, float],
return mels
-def mel_to_hz(mel: Union[float, paddle.Tensor],
- htk: bool=False) -> Union[float, paddle.Tensor]:
+def mel_to_hz(mel: Union[float, Tensor],
+ htk: bool=False) -> Union[float, Tensor]:
"""Convert mel bin numbers to frequencies.
- Parameters:
- mel: the mel frequency represented as a tensor of arbitrary shape, or a floating point number.
- htk: use HTK formula to do the conversion.
+
+ Args:
+ mel (Union[float, Tensor]): The mel frequency represented as a tensor with arbitrary shape.
+ htk (bool, optional): Use htk scaling. Defaults to False.
+
Returns:
- The frequencies represented in hz.
+ Union[float, Tensor]: Frequencies in Hz.
"""
if htk:
return 700.0 * (10.0**(mel / 2595.0) - 1.0)
@@ -90,7 +94,7 @@ def mel_to_hz(mel: Union[float, paddle.Tensor],
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = math.log(6.4) / 27.0 # step size for log region
- if isinstance(mel, paddle.Tensor):
+ if isinstance(mel, Tensor):
target = min_log_hz * paddle.exp(logstep * (mel - min_log_mel))
mask = (mel > min_log_mel).astype(mel.dtype)
freqs = target * mask + freqs * (
@@ -106,16 +110,18 @@ def mel_frequencies(n_mels: int=64,
f_min: float=0.0,
f_max: float=11025.0,
htk: bool=False,
- dtype: str=paddle.float32):
+ dtype: str='float32') -> Tensor:
"""Compute mel frequencies.
- Parameters:
- n_mels(int): number of Mel bins.
- f_min(float): the lower cut-off frequency, below which the filter response is zero.
- f_max(float): the upper cut-off frequency, above which the filter response is zero.
- htk(bool): whether to use htk formula.
- dtype(str): the datatype of the return frequencies.
+
+ Args:
+ n_mels (int, optional): Number of mel bins. Defaults to 64.
+ f_min (float, optional): Minimum frequency in Hz. Defaults to 0.0.
+ fmax (float, optional): Maximum frequency in Hz. Defaults to 11025.0.
+ htk (bool, optional): Use htk scaling. Defaults to False.
+ dtype (str, optional): The data type of the return frequencies. Defaults to 'float32'.
+
Returns:
- The frequencies represented in Mel-scale
+ Tensor: Tensor of n_mels frequencies in Hz with shape `(n_mels,)`.
"""
# 'Center freqs' of mel bands - uniformly spaced between limits
min_mel = hz_to_mel(f_min, htk=htk)
@@ -125,14 +131,16 @@ def mel_frequencies(n_mels: int=64,
return freqs
-def fft_frequencies(sr: int, n_fft: int, dtype: str=paddle.float32):
+def fft_frequencies(sr: int, n_fft: int, dtype: str='float32') -> Tensor:
"""Compute fourier frequencies.
- Parameters:
- sr(int): the audio sample rate.
- n_fft(float): the number of fft bins.
- dtype(str): the datatype of the return frequencies.
+
+ Args:
+ sr (int): Sample rate.
+ n_fft (int): Number of fft bins.
+ dtype (str, optional): The data type of the return frequencies. Defaults to 'float32'.
+
Returns:
- The frequencies represented in hz.
+ Tensor: FFT frequencies in Hz with shape `(n_fft//2 + 1,)`.
"""
return paddle.linspace(0, float(sr) / 2, int(1 + n_fft // 2), dtype=dtype)
@@ -144,23 +152,21 @@ def compute_fbank_matrix(sr: int,
f_max: Optional[float]=None,
htk: bool=False,
norm: Union[str, float]='slaney',
- dtype: str=paddle.float32):
+ dtype: str='float32') -> Tensor:
"""Compute fbank matrix.
- Parameters:
- sr(int): the audio sample rate.
- n_fft(int): the number of fft bins.
- n_mels(int): the number of Mel bins.
- f_min(float): the lower cut-off frequency, below which the filter response is zero.
- f_max(float): the upper cut-off frequency, above which the filter response is zero.
- htk: whether to use htk formula.
- return_complex(bool): whether to return complex matrix. If True, the matrix will
- be complex type. Otherwise, the real and image part will be stored in the last
- axis of returned tensor.
- dtype(str): the datatype of the returned fbank matrix.
+
+ Args:
+ sr (int): Sample rate.
+ n_fft (int): Number of fft bins.
+ n_mels (int, optional): Number of mel bins. Defaults to 64.
+ f_min (float, optional): Minimum frequency in Hz. Defaults to 0.0.
+ f_max (Optional[float], optional): Maximum frequency in Hz. Defaults to None.
+ htk (bool, optional): Use htk scaling. Defaults to False.
+ norm (Union[str, float], optional): Type of normalization. Defaults to 'slaney'.
+ dtype (str, optional): The data type of the return matrix. Defaults to 'float32'.
+
Returns:
- The fbank matrix of shape (n_mels, int(1+n_fft//2)).
- Shape:
- output: (n_mels, int(1+n_fft//2))
+ Tensor: Mel transform matrix with shape `(n_mels, n_fft//2 + 1)`.
"""
if f_max is None:
@@ -199,27 +205,20 @@ def compute_fbank_matrix(sr: int,
return weights
-def power_to_db(magnitude: paddle.Tensor,
+def power_to_db(spect: Tensor,
ref_value: float=1.0,
amin: float=1e-10,
- top_db: Optional[float]=None) -> paddle.Tensor:
- """Convert a power spectrogram (amplitude squared) to decibel (dB) units.
- The function computes the scaling ``10 * log10(x / ref)`` in a numerically
- stable way.
- Parameters:
- magnitude(Tensor): the input magnitude tensor of any shape.
- ref_value(float): the reference value. If smaller than 1.0, the db level
- of the signal will be pulled up accordingly. Otherwise, the db level
- is pushed down.
- amin(float): the minimum value of input magnitude, below which the input
- magnitude is clipped(to amin).
- top_db(float): the maximum db value of resulting spectrum, above which the
- spectrum is clipped(to top_db).
+ top_db: Optional[float]=None) -> Tensor:
+ """Convert a power spectrogram (amplitude squared) to decibel (dB) units. The function computes the scaling `10 * log10(x / ref)` in a numerically stable way.
+
+ Args:
+ spect (Tensor): STFT power spectrogram.
+ ref_value (float, optional): The reference value. If smaller than 1.0, the db level of the signal will be pulled up accordingly. Otherwise, the db level is pushed down. Defaults to 1.0.
+ amin (float, optional): Minimum threshold. Defaults to 1e-10.
+ top_db (Optional[float], optional): Threshold the output at `top_db` below the peak. Defaults to None.
+
Returns:
- The spectrogram in log-scale.
- shape:
- input: any shape
- output: same as input
+ Tensor: Power spectrogram in db scale.
"""
if amin <= 0:
raise Exception("amin must be strictly positive")
@@ -227,8 +226,8 @@ def power_to_db(magnitude: paddle.Tensor,
if ref_value <= 0:
raise Exception("ref_value must be strictly positive")
- ones = paddle.ones_like(magnitude)
- log_spec = 10.0 * paddle.log10(paddle.maximum(ones * amin, magnitude))
+ ones = paddle.ones_like(spect)
+ log_spec = 10.0 * paddle.log10(paddle.maximum(ones * amin, spect))
log_spec -= 10.0 * math.log10(max(ref_value, amin))
if top_db is not None:
@@ -242,15 +241,17 @@ def power_to_db(magnitude: paddle.Tensor,
def create_dct(n_mfcc: int,
n_mels: int,
norm: Optional[str]='ortho',
- dtype: Optional[str]=paddle.float32) -> paddle.Tensor:
+ dtype: str='float32') -> Tensor:
"""Create a discrete cosine transform(DCT) matrix.
- Parameters:
+ Args:
n_mfcc (int): Number of mel frequency cepstral coefficients.
n_mels (int): Number of mel filterbanks.
- norm (str, optional): Normalizaiton type. Defaults to 'ortho'.
+ norm (Optional[str], optional): Normalizaiton type. Defaults to 'ortho'.
+ dtype (str, optional): The data type of the return matrix. Defaults to 'float32'.
+
Returns:
- Tensor: The DCT matrix with shape (n_mels, n_mfcc).
+ Tensor: The DCT matrix with shape `(n_mels, n_mfcc)`.
"""
n = paddle.arange(n_mels, dtype=dtype)
k = paddle.arange(n_mfcc, dtype=dtype).unsqueeze(1)
diff --git a/paddleaudio/paddleaudio/functional/window.py b/paddleaudio/paddleaudio/functional/window.py
index f321b38efa3..c99d50462e3 100644
--- a/paddleaudio/paddleaudio/functional/window.py
+++ b/paddleaudio/paddleaudio/functional/window.py
@@ -20,24 +20,11 @@
__all__ = [
'get_window',
-
- # windows
- 'taylor',
- 'hamming',
- 'hann',
- 'tukey',
- 'kaiser',
- 'gaussian',
- 'exponential',
- 'triang',
- 'bohman',
- 'blackman',
- 'cosine',
]
-def _cat(a: List[Tensor], data_type: str) -> Tensor:
- l = [paddle.to_tensor(_a, data_type) for _a in a]
+def _cat(x: List[Tensor], data_type: str) -> Tensor:
+ l = [paddle.to_tensor(_, data_type) for _ in x]
return paddle.concat(l)
@@ -48,7 +35,7 @@ def _acosh(x: Union[Tensor, float]) -> Tensor:
def _extend(M: int, sym: bool) -> bool:
- """Extend window by 1 sample if needed for DFT-even symmetry"""
+ """Extend window by 1 sample if needed for DFT-even symmetry. """
if not sym:
return M + 1, True
else:
@@ -56,7 +43,7 @@ def _extend(M: int, sym: bool) -> bool:
def _len_guards(M: int) -> bool:
- """Handle small or incorrect window lengths"""
+ """Handle small or incorrect window lengths. """
if int(M) != M or M < 0:
raise ValueError('Window length M must be a non-negative integer')
@@ -64,15 +51,15 @@ def _len_guards(M: int) -> bool:
def _truncate(w: Tensor, needed: bool) -> Tensor:
- """Truncate window by 1 sample if needed for DFT-even symmetry"""
+ """Truncate window by 1 sample if needed for DFT-even symmetry. """
if needed:
return w[:-1]
else:
return w
-def general_gaussian(M: int, p, sig, sym: bool=True,
- dtype: str='float64') -> Tensor:
+def _general_gaussian(M: int, p, sig, sym: bool=True,
+ dtype: str='float64') -> Tensor:
"""Compute a window with a generalized Gaussian shape.
This function is consistent with scipy.signal.windows.general_gaussian().
"""
@@ -86,8 +73,8 @@ def general_gaussian(M: int, p, sig, sym: bool=True,
return _truncate(w, needs_trunc)
-def general_cosine(M: int, a: float, sym: bool=True,
- dtype: str='float64') -> Tensor:
+def _general_cosine(M: int, a: float, sym: bool=True,
+ dtype: str='float64') -> Tensor:
"""Compute a generic weighted sum of cosine terms window.
This function is consistent with scipy.signal.windows.general_cosine().
"""
@@ -101,31 +88,23 @@ def general_cosine(M: int, a: float, sym: bool=True,
return _truncate(w, needs_trunc)
-def general_hamming(M: int, alpha: float, sym: bool=True,
- dtype: str='float64') -> Tensor:
+def _general_hamming(M: int, alpha: float, sym: bool=True,
+ dtype: str='float64') -> Tensor:
"""Compute a generalized Hamming window.
This function is consistent with scipy.signal.windows.general_hamming()
"""
- return general_cosine(M, [alpha, 1. - alpha], sym, dtype=dtype)
+ return _general_cosine(M, [alpha, 1. - alpha], sym, dtype=dtype)
-def taylor(M: int,
- nbar=4,
- sll=30,
- norm=True,
- sym: bool=True,
- dtype: str='float64') -> Tensor:
+def _taylor(M: int,
+ nbar=4,
+ sll=30,
+ norm=True,
+ sym: bool=True,
+ dtype: str='float64') -> Tensor:
"""Compute a Taylor window.
The Taylor window taper function approximates the Dolph-Chebyshev window's
constant sidelobe level for a parameterized number of near-in sidelobes.
- Parameters:
- M(int): window size
- nbar, sil, norm: the window-specific parameter.
- sym(bool):whether to return symmetric window.
- The default value is True
- dtype(str): the datatype of returned tensor.
- Returns:
- Tensor: the window tensor
"""
if _len_guards(M):
return paddle.ones((M, ), dtype=dtype)
@@ -171,46 +150,25 @@ def W(n):
return _truncate(w, needs_trunc)
-def hamming(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
+def _hamming(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
"""Compute a Hamming window.
The Hamming window is a taper formed by using a raised cosine with
non-zero endpoints, optimized to minimize the nearest side lobe.
- Parameters:
- M(int): window size
- sym(bool):whether to return symmetric window.
- The default value is True
- dtype(str): the datatype of returned tensor.
- Returns:
- Tensor: the window tensor
"""
- return general_hamming(M, 0.54, sym, dtype=dtype)
+ return _general_hamming(M, 0.54, sym, dtype=dtype)
-def hann(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
+def _hann(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
"""Compute a Hann window.
The Hann window is a taper formed by using a raised cosine or sine-squared
with ends that touch zero.
- Parameters:
- M(int): window size
- sym(bool):whether to return symmetric window.
- The default value is True
- dtype(str): the datatype of returned tensor.
- Returns:
- Tensor: the window tensor
"""
- return general_hamming(M, 0.5, sym, dtype=dtype)
+ return _general_hamming(M, 0.5, sym, dtype=dtype)
-def tukey(M: int, alpha=0.5, sym: bool=True, dtype: str='float64') -> Tensor:
+def _tukey(M: int, alpha=0.5, sym: bool=True, dtype: str='float64') -> Tensor:
"""Compute a Tukey window.
The Tukey window is also known as a tapered cosine window.
- Parameters:
- M(int): window size
- sym(bool):whether to return symmetric window.
- The default value is True
- dtype(str): the datatype of returned tensor.
- Returns:
- Tensor: the window tensor
"""
if _len_guards(M):
return paddle.ones((M, ), dtype=dtype)
@@ -237,32 +195,18 @@ def tukey(M: int, alpha=0.5, sym: bool=True, dtype: str='float64') -> Tensor:
return _truncate(w, needs_trunc)
-def kaiser(M: int, beta: float, sym: bool=True, dtype: str='float64') -> Tensor:
+def _kaiser(M: int, beta: float, sym: bool=True,
+ dtype: str='float64') -> Tensor:
"""Compute a Kaiser window.
The Kaiser window is a taper formed by using a Bessel function.
- Parameters:
- M(int): window size.
- beta(float): the window-specific parameter.
- sym(bool):whether to return symmetric window.
- The default value is True
- Returns:
- Tensor: the window tensor
"""
raise NotImplementedError()
-def gaussian(M: int, std: float, sym: bool=True,
- dtype: str='float64') -> Tensor:
+def _gaussian(M: int, std: float, sym: bool=True,
+ dtype: str='float64') -> Tensor:
"""Compute a Gaussian window.
The Gaussian widows has a Gaussian shape defined by the standard deviation(std).
- Parameters:
- M(int): window size.
- std(float): the window-specific parameter.
- sym(bool):whether to return symmetric window.
- The default value is True
- dtype(str): the datatype of returned tensor.
- Returns:
- Tensor: the window tensor
"""
if _len_guards(M):
return paddle.ones((M, ), dtype=dtype)
@@ -275,21 +219,12 @@ def gaussian(M: int, std: float, sym: bool=True,
return _truncate(w, needs_trunc)
-def exponential(M: int,
- center=None,
- tau=1.,
- sym: bool=True,
- dtype: str='float64') -> Tensor:
- """Compute an exponential (or Poisson) window.
- Parameters:
- M(int): window size.
- tau(float): the window-specific parameter.
- sym(bool):whether to return symmetric window.
- The default value is True
- dtype(str): the datatype of returned tensor.
- Returns:
- Tensor: the window tensor
- """
+def _exponential(M: int,
+ center=None,
+ tau=1.,
+ sym: bool=True,
+ dtype: str='float64') -> Tensor:
+ """Compute an exponential (or Poisson) window. """
if sym and center is not None:
raise ValueError("If sym==True, center must be None.")
if _len_guards(M):
@@ -305,15 +240,8 @@ def exponential(M: int,
return _truncate(w, needs_trunc)
-def triang(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
+def _triang(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
"""Compute a triangular window.
- Parameters:
- M(int): window size.
- sym(bool):whether to return symmetric window.
- The default value is True
- dtype(str): the datatype of returned tensor.
- Returns:
- Tensor: the window tensor
"""
if _len_guards(M):
return paddle.ones((M, ), dtype=dtype)
@@ -330,16 +258,9 @@ def triang(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
return _truncate(w, needs_trunc)
-def bohman(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
+def _bohman(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
"""Compute a Bohman window.
The Bohman window is the autocorrelation of a cosine window.
- Parameters:
- M(int): window size.
- sym(bool):whether to return symmetric window.
- The default value is True
- dtype(str): the datatype of returned tensor.
- Returns:
- Tensor: the window tensor
"""
if _len_guards(M):
return paddle.ones((M, ), dtype=dtype)
@@ -353,32 +274,18 @@ def bohman(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
return _truncate(w, needs_trunc)
-def blackman(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
+def _blackman(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
"""Compute a Blackman window.
The Blackman window is a taper formed by using the first three terms of
a summation of cosines. It was designed to have close to the minimal
leakage possible. It is close to optimal, only slightly worse than a
Kaiser window.
- Parameters:
- M(int): window size.
- sym(bool):whether to return symmetric window.
- The default value is True
- dtype(str): the datatype of returned tensor.
- Returns:
- Tensor: the window tensor
"""
- return general_cosine(M, [0.42, 0.50, 0.08], sym, dtype=dtype)
+ return _general_cosine(M, [0.42, 0.50, 0.08], sym, dtype=dtype)
-def cosine(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
+def _cosine(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
"""Compute a window with a simple cosine shape.
- Parameters:
- M(int): window size.
- sym(bool):whether to return symmetric window.
- The default value is True
- dtype(str): the datatype of returned tensor.
- Returns:
- Tensor: the window tensor
"""
if _len_guards(M):
return paddle.ones((M, ), dtype=dtype)
@@ -388,19 +295,20 @@ def cosine(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
return _truncate(w, needs_trunc)
-## factory function
def get_window(window: Union[str, Tuple[str, float]],
win_length: int,
fftbins: bool=True,
dtype: str='float64') -> Tensor:
"""Return a window of a given length and type.
- Parameters:
- window(str|(str,float)): the type of window to create.
- win_length(int): the number of samples in the window.
- fftbins(bool): If True, create a "periodic" window. Otherwise,
- create a "symmetric" window, for use in filter design.
+
+ Args:
+ window (Union[str, Tuple[str, float]]): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'.
+ win_length (int): Number of samples.
+ fftbins (bool, optional): If True, create a "periodic" window. Otherwise, create a "symmetric" window, for use in filter design. Defaults to True.
+ dtype (str, optional): The data type of the return window. Defaults to 'float64'.
+
Returns:
- The window represented as a tensor.
+ Tensor: The window represented as a tensor.
"""
sym = not fftbins
@@ -420,7 +328,7 @@ def get_window(window: Union[str, Tuple[str, float]],
str(type(window)))
try:
- winfunc = eval(winstr)
+ winfunc = eval('_' + winstr)
except KeyError as e:
raise ValueError("Unknown window type.") from e
diff --git a/paddleaudio/paddleaudio/metric/dtw.py b/paddleaudio/paddleaudio/metric/dtw.py
index d27f56e2832..c4dc7a283d9 100644
--- a/paddleaudio/paddleaudio/metric/dtw.py
+++ b/paddleaudio/paddleaudio/metric/dtw.py
@@ -20,9 +20,7 @@
def dtw_distance(xs: np.ndarray, ys: np.ndarray) -> float:
- """dtw distance
-
- Dynamic Time Warping.
+ """Dynamic Time Warping.
This function keeps a compact matrix, not the full warping paths matrix.
Uses dynamic programming to compute:
diff --git a/paddleaudio/setup.py b/paddleaudio/setup.py
index 7623443a68b..930f86e41e5 100644
--- a/paddleaudio/setup.py
+++ b/paddleaudio/setup.py
@@ -11,19 +11,46 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
+import glob
+import os
+
import setuptools
+from setuptools.command.install import install
+from setuptools.command.test import test
# set the version here
VERSION = '0.2.0'
+# Inspired by the example at https://pytest.org/latest/goodpractises.html
+class TestCommand(test):
+ def finalize_options(self):
+ test.finalize_options(self)
+ self.test_args = []
+ self.test_suite = True
+
+ def run(self):
+ self.run_benchmark()
+ super(TestCommand, self).run()
+
+ def run_tests(self):
+ # Run nose ensuring that argv simulates running nosetests directly
+ import nose
+ nose.run_exit(argv=['nosetests', '-w', 'tests'])
+
+ def run_benchmark(self):
+ for benchmark_item in glob.glob('tests/benchmark/*py'):
+ os.system(f'pytest {benchmark_item}')
+
+
+class InstallCommand(install):
+ def run(self):
+ install.run(self)
+
+
def write_version_py(filename='paddleaudio/__init__.py'):
- import paddleaudio
- if hasattr(paddleaudio,
- "__version__") and paddleaudio.__version__ == VERSION:
- return
with open(filename, "a") as f:
- f.write(f"\n__version__ = '{VERSION}'\n")
+ f.write(f"__version__ = '{VERSION}'")
def remove_version_py(filename='paddleaudio/__init__.py'):
@@ -35,6 +62,7 @@ def remove_version_py(filename='paddleaudio/__init__.py'):
f.write(line)
+remove_version_py()
write_version_py()
setuptools.setup(
@@ -61,6 +89,16 @@ def remove_version_py(filename='paddleaudio/__init__.py'):
'colorlog',
'dtaidistance >= 2.3.6',
'mcd >= 0.4',
- ], )
+ ],
+ extras_require={
+ 'test': [
+ 'nose', 'librosa==0.8.1', 'soundfile==0.10.3.post1',
+ 'torchaudio==0.10.2', 'pytest-benchmark'
+ ],
+ },
+ cmdclass={
+ 'install': InstallCommand,
+ 'test': TestCommand,
+ }, )
remove_version_py()
diff --git a/paddleaudio/tests/backends/__init__.py b/paddleaudio/tests/backends/__init__.py
new file mode 100644
index 00000000000..97043fd7ba6
--- /dev/null
+++ b/paddleaudio/tests/backends/__init__.py
@@ -0,0 +1,13 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
diff --git a/paddleaudio/tests/backends/base.py b/paddleaudio/tests/backends/base.py
new file mode 100644
index 00000000000..a67191887ff
--- /dev/null
+++ b/paddleaudio/tests/backends/base.py
@@ -0,0 +1,34 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+import unittest
+import urllib.request
+
+mono_channel_wav = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
+multi_channels_wav = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/cat.wav'
+
+
+class BackendTest(unittest.TestCase):
+ def setUp(self):
+ self.initWavInput()
+
+ def initWavInput(self):
+ self.files = []
+ for url in [mono_channel_wav, multi_channels_wav]:
+ if not os.path.isfile(os.path.basename(url)):
+ urllib.request.urlretrieve(url, os.path.basename(url))
+ self.files.append(os.path.basename(url))
+
+ def initParmas(self):
+ raise NotImplementedError
diff --git a/paddleaudio/tests/backends/soundfile/__init__.py b/paddleaudio/tests/backends/soundfile/__init__.py
new file mode 100644
index 00000000000..97043fd7ba6
--- /dev/null
+++ b/paddleaudio/tests/backends/soundfile/__init__.py
@@ -0,0 +1,13 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
diff --git a/paddleaudio/tests/backends/soundfile/test_io.py b/paddleaudio/tests/backends/soundfile/test_io.py
new file mode 100644
index 00000000000..0f7580a40d3
--- /dev/null
+++ b/paddleaudio/tests/backends/soundfile/test_io.py
@@ -0,0 +1,73 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import filecmp
+import os
+import unittest
+
+import numpy as np
+import soundfile as sf
+
+import paddleaudio
+from ..base import BackendTest
+
+
+class TestIO(BackendTest):
+ def test_load_mono_channel(self):
+ sf_data, sf_sr = sf.read(self.files[0])
+ pa_data, pa_sr = paddleaudio.load(
+ self.files[0], normal=False, dtype='float64')
+
+ self.assertEqual(sf_data.dtype, pa_data.dtype)
+ self.assertEqual(sf_sr, pa_sr)
+ np.testing.assert_array_almost_equal(sf_data, pa_data)
+
+ def test_load_multi_channels(self):
+ sf_data, sf_sr = sf.read(self.files[1])
+ sf_data = sf_data.T # Channel dim first
+ pa_data, pa_sr = paddleaudio.load(
+ self.files[1], mono=False, normal=False, dtype='float64')
+
+ self.assertEqual(sf_data.dtype, pa_data.dtype)
+ self.assertEqual(sf_sr, pa_sr)
+ np.testing.assert_array_almost_equal(sf_data, pa_data)
+
+ def test_save_mono_channel(self):
+ waveform, sr = np.random.randint(
+ low=-32768, high=32768, size=(48000), dtype=np.int16), 16000
+ sf_tmp_file = 'sf_tmp.wav'
+ pa_tmp_file = 'pa_tmp.wav'
+
+ sf.write(sf_tmp_file, waveform, sr)
+ paddleaudio.save(waveform, sr, pa_tmp_file)
+
+ self.assertTrue(filecmp.cmp(sf_tmp_file, pa_tmp_file))
+ for file in [sf_tmp_file, pa_tmp_file]:
+ os.remove(file)
+
+ def test_save_multi_channels(self):
+ waveform, sr = np.random.randint(
+ low=-32768, high=32768, size=(2, 48000), dtype=np.int16), 16000
+ sf_tmp_file = 'sf_tmp.wav'
+ pa_tmp_file = 'pa_tmp.wav'
+
+ sf.write(sf_tmp_file, waveform.T, sr)
+ paddleaudio.save(waveform.T, sr, pa_tmp_file)
+
+ self.assertTrue(filecmp.cmp(sf_tmp_file, pa_tmp_file))
+ for file in [sf_tmp_file, pa_tmp_file]:
+ os.remove(file)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/paddleaudio/tests/benchmark/README.md b/paddleaudio/tests/benchmark/README.md
new file mode 100644
index 00000000000..b9034100d4b
--- /dev/null
+++ b/paddleaudio/tests/benchmark/README.md
@@ -0,0 +1,39 @@
+# 1. Prepare
+First, install `pytest-benchmark` via pip.
+```sh
+pip install pytest-benchmark
+```
+
+# 2. Run
+Run the specific script for profiling.
+```sh
+pytest melspectrogram.py
+```
+
+Result:
+```sh
+========================================================================== test session starts ==========================================================================
+platform linux -- Python 3.7.7, pytest-7.0.1, pluggy-1.0.0
+benchmark: 3.4.1 (defaults: timer=time.perf_counter disable_gc=False min_rounds=5 min_time=0.000005 max_time=1.0 calibration_precision=10 warmup=False warmup_iterations=100000)
+rootdir: /ssd3/chenxiaojie06/PaddleSpeech/DeepSpeech/paddleaudio
+plugins: typeguard-2.12.1, benchmark-3.4.1, anyio-3.5.0
+collected 4 items
+
+melspectrogram.py .... [100%]
+
+
+-------------------------------------------------------------------------------------------------- benchmark: 4 tests -------------------------------------------------------------------------------------------------
+Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
+test_melspect_gpu_torchaudio 202.0765 (1.0) 360.6230 (1.0) 218.1168 (1.0) 16.3022 (1.0) 214.2871 (1.0) 21.8451 (1.0) 40;3 4,584.7001 (1.0) 286 1
+test_melspect_gpu 657.8509 (3.26) 908.0470 (2.52) 724.2545 (3.32) 106.5771 (6.54) 669.9096 (3.13) 113.4719 (5.19) 1;0 1,380.7300 (0.30) 5 1
+test_melspect_cpu_torchaudio 1,247.6053 (6.17) 2,892.5799 (8.02) 1,443.2853 (6.62) 345.3732 (21.19) 1,262.7263 (5.89) 221.6385 (10.15) 56;53 692.8637 (0.15) 399 1
+test_melspect_cpu 20,326.2549 (100.59) 20,607.8682 (57.15) 20,473.4125 (93.86) 63.8654 (3.92) 20,467.0429 (95.51) 68.4294 (3.13) 8;1 48.8438 (0.01) 29 1
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
+
+Legend:
+ Outliers: 1 Standard Deviation from Mean; 1.5 IQR (InterQuartile Range) from 1st Quartile and 3rd Quartile.
+ OPS: Operations Per Second, computed as 1 / Mean
+========================================================================== 4 passed in 21.12s ===========================================================================
+
+```
diff --git a/paddleaudio/tests/benchmark/log_melspectrogram.py b/paddleaudio/tests/benchmark/log_melspectrogram.py
new file mode 100644
index 00000000000..5230acd424e
--- /dev/null
+++ b/paddleaudio/tests/benchmark/log_melspectrogram.py
@@ -0,0 +1,124 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+import urllib.request
+
+import librosa
+import numpy as np
+import paddle
+import torch
+import torchaudio
+
+import paddleaudio
+
+wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
+if not os.path.isfile(os.path.basename(wav_url)):
+ urllib.request.urlretrieve(wav_url, os.path.basename(wav_url))
+
+waveform, sr = paddleaudio.load(os.path.abspath(os.path.basename(wav_url)))
+waveform_tensor = paddle.to_tensor(waveform).unsqueeze(0)
+waveform_tensor_torch = torch.from_numpy(waveform).unsqueeze(0)
+
+# Feature conf
+mel_conf = {
+ 'sr': sr,
+ 'n_fft': 512,
+ 'hop_length': 128,
+ 'n_mels': 40,
+}
+
+mel_conf_torchaudio = {
+ 'sample_rate': sr,
+ 'n_fft': 512,
+ 'hop_length': 128,
+ 'n_mels': 40,
+ 'norm': 'slaney',
+ 'mel_scale': 'slaney',
+}
+
+
+def enable_cpu_device():
+ paddle.set_device('cpu')
+
+
+def enable_gpu_device():
+ paddle.set_device('gpu')
+
+
+log_mel_extractor = paddleaudio.features.LogMelSpectrogram(
+ **mel_conf, f_min=0.0, top_db=80.0, dtype=waveform_tensor.dtype)
+
+
+def log_melspectrogram():
+ return log_mel_extractor(waveform_tensor).squeeze(0)
+
+
+def test_log_melspect_cpu(benchmark):
+ enable_cpu_device()
+ feature_paddleaudio = benchmark(log_melspectrogram)
+ feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
+ feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_paddleaudio, decimal=3)
+
+
+def test_log_melspect_gpu(benchmark):
+ enable_gpu_device()
+ feature_paddleaudio = benchmark(log_melspectrogram)
+ feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
+ feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_paddleaudio, decimal=2)
+
+
+mel_extractor_torchaudio = torchaudio.transforms.MelSpectrogram(
+ **mel_conf_torchaudio, f_min=0.0)
+amplitude_to_DB = torchaudio.transforms.AmplitudeToDB('power', top_db=80.0)
+
+
+def melspectrogram_torchaudio():
+ return mel_extractor_torchaudio(waveform_tensor_torch).squeeze(0)
+
+
+def log_melspectrogram_torchaudio():
+ mel_specgram = mel_extractor_torchaudio(waveform_tensor_torch)
+ return amplitude_to_DB(mel_specgram).squeeze(0)
+
+
+def test_log_melspect_cpu_torchaudio(benchmark):
+ global waveform_tensor_torch, mel_extractor_torchaudio, amplitude_to_DB
+
+ mel_extractor_torchaudio = mel_extractor_torchaudio.to('cpu')
+ waveform_tensor_torch = waveform_tensor_torch.to('cpu')
+ amplitude_to_DB = amplitude_to_DB.to('cpu')
+
+ feature_paddleaudio = benchmark(log_melspectrogram_torchaudio)
+ feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
+ feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_paddleaudio, decimal=3)
+
+
+def test_log_melspect_gpu_torchaudio(benchmark):
+ global waveform_tensor_torch, mel_extractor_torchaudio, amplitude_to_DB
+
+ mel_extractor_torchaudio = mel_extractor_torchaudio.to('cuda')
+ waveform_tensor_torch = waveform_tensor_torch.to('cuda')
+ amplitude_to_DB = amplitude_to_DB.to('cuda')
+
+ feature_torchaudio = benchmark(log_melspectrogram_torchaudio)
+ feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
+ feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_torchaudio.cpu(), decimal=2)
diff --git a/paddleaudio/tests/benchmark/melspectrogram.py b/paddleaudio/tests/benchmark/melspectrogram.py
new file mode 100644
index 00000000000..e0b79b45a71
--- /dev/null
+++ b/paddleaudio/tests/benchmark/melspectrogram.py
@@ -0,0 +1,108 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+import urllib.request
+
+import librosa
+import numpy as np
+import paddle
+import torch
+import torchaudio
+
+import paddleaudio
+
+wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
+if not os.path.isfile(os.path.basename(wav_url)):
+ urllib.request.urlretrieve(wav_url, os.path.basename(wav_url))
+
+waveform, sr = paddleaudio.load(os.path.abspath(os.path.basename(wav_url)))
+waveform_tensor = paddle.to_tensor(waveform).unsqueeze(0)
+waveform_tensor_torch = torch.from_numpy(waveform).unsqueeze(0)
+
+# Feature conf
+mel_conf = {
+ 'sr': sr,
+ 'n_fft': 512,
+ 'hop_length': 128,
+ 'n_mels': 40,
+}
+
+mel_conf_torchaudio = {
+ 'sample_rate': sr,
+ 'n_fft': 512,
+ 'hop_length': 128,
+ 'n_mels': 40,
+ 'norm': 'slaney',
+ 'mel_scale': 'slaney',
+}
+
+
+def enable_cpu_device():
+ paddle.set_device('cpu')
+
+
+def enable_gpu_device():
+ paddle.set_device('gpu')
+
+
+mel_extractor = paddleaudio.features.MelSpectrogram(
+ **mel_conf, f_min=0.0, dtype=waveform_tensor.dtype)
+
+
+def melspectrogram():
+ return mel_extractor(waveform_tensor).squeeze(0)
+
+
+def test_melspect_cpu(benchmark):
+ enable_cpu_device()
+ feature_paddleaudio = benchmark(melspectrogram)
+ feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_paddleaudio, decimal=3)
+
+
+def test_melspect_gpu(benchmark):
+ enable_gpu_device()
+ feature_paddleaudio = benchmark(melspectrogram)
+ feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_paddleaudio, decimal=3)
+
+
+mel_extractor_torchaudio = torchaudio.transforms.MelSpectrogram(
+ **mel_conf_torchaudio, f_min=0.0)
+
+
+def melspectrogram_torchaudio():
+ return mel_extractor_torchaudio(waveform_tensor_torch).squeeze(0)
+
+
+def test_melspect_cpu_torchaudio(benchmark):
+ global waveform_tensor_torch, mel_extractor_torchaudio
+ mel_extractor_torchaudio = mel_extractor_torchaudio.to('cpu')
+ waveform_tensor_torch = waveform_tensor_torch.to('cpu')
+ feature_paddleaudio = benchmark(melspectrogram_torchaudio)
+ feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_paddleaudio, decimal=3)
+
+
+def test_melspect_gpu_torchaudio(benchmark):
+ global waveform_tensor_torch, mel_extractor_torchaudio
+ mel_extractor_torchaudio = mel_extractor_torchaudio.to('cuda')
+ waveform_tensor_torch = waveform_tensor_torch.to('cuda')
+ feature_torchaudio = benchmark(melspectrogram_torchaudio)
+ feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_torchaudio.cpu(), decimal=3)
diff --git a/paddleaudio/tests/benchmark/mfcc.py b/paddleaudio/tests/benchmark/mfcc.py
new file mode 100644
index 00000000000..2572ff33dd1
--- /dev/null
+++ b/paddleaudio/tests/benchmark/mfcc.py
@@ -0,0 +1,122 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+import urllib.request
+
+import librosa
+import numpy as np
+import paddle
+import torch
+import torchaudio
+
+import paddleaudio
+
+wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
+if not os.path.isfile(os.path.basename(wav_url)):
+ urllib.request.urlretrieve(wav_url, os.path.basename(wav_url))
+
+waveform, sr = paddleaudio.load(os.path.abspath(os.path.basename(wav_url)))
+waveform_tensor = paddle.to_tensor(waveform).unsqueeze(0)
+waveform_tensor_torch = torch.from_numpy(waveform).unsqueeze(0)
+
+# Feature conf
+mel_conf = {
+ 'sr': sr,
+ 'n_fft': 512,
+ 'hop_length': 128,
+ 'n_mels': 40,
+}
+mfcc_conf = {
+ 'n_mfcc': 20,
+ 'top_db': 80.0,
+}
+mfcc_conf.update(mel_conf)
+
+mel_conf_torchaudio = {
+ 'sample_rate': sr,
+ 'n_fft': 512,
+ 'hop_length': 128,
+ 'n_mels': 40,
+ 'norm': 'slaney',
+ 'mel_scale': 'slaney',
+}
+mfcc_conf_torchaudio = {
+ 'sample_rate': sr,
+ 'n_mfcc': 20,
+}
+
+
+def enable_cpu_device():
+ paddle.set_device('cpu')
+
+
+def enable_gpu_device():
+ paddle.set_device('gpu')
+
+
+mfcc_extractor = paddleaudio.features.MFCC(
+ **mfcc_conf, f_min=0.0, dtype=waveform_tensor.dtype)
+
+
+def mfcc():
+ return mfcc_extractor(waveform_tensor).squeeze(0)
+
+
+def test_mfcc_cpu(benchmark):
+ enable_cpu_device()
+ feature_paddleaudio = benchmark(mfcc)
+ feature_librosa = librosa.feature.mfcc(waveform, **mel_conf)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_paddleaudio, decimal=3)
+
+
+def test_mfcc_gpu(benchmark):
+ enable_gpu_device()
+ feature_paddleaudio = benchmark(mfcc)
+ feature_librosa = librosa.feature.mfcc(waveform, **mel_conf)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_paddleaudio, decimal=3)
+
+
+del mel_conf_torchaudio['sample_rate']
+mfcc_extractor_torchaudio = torchaudio.transforms.MFCC(
+ **mfcc_conf_torchaudio, melkwargs=mel_conf_torchaudio)
+
+
+def mfcc_torchaudio():
+ return mfcc_extractor_torchaudio(waveform_tensor_torch).squeeze(0)
+
+
+def test_mfcc_cpu_torchaudio(benchmark):
+ global waveform_tensor_torch, mfcc_extractor_torchaudio
+
+ mel_extractor_torchaudio = mfcc_extractor_torchaudio.to('cpu')
+ waveform_tensor_torch = waveform_tensor_torch.to('cpu')
+
+ feature_paddleaudio = benchmark(mfcc_torchaudio)
+ feature_librosa = librosa.feature.mfcc(waveform, **mel_conf)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_paddleaudio, decimal=3)
+
+
+def test_mfcc_gpu_torchaudio(benchmark):
+ global waveform_tensor_torch, mfcc_extractor_torchaudio
+
+ mel_extractor_torchaudio = mfcc_extractor_torchaudio.to('cuda')
+ waveform_tensor_torch = waveform_tensor_torch.to('cuda')
+
+ feature_torchaudio = benchmark(mfcc_torchaudio)
+ feature_librosa = librosa.feature.mfcc(waveform, **mel_conf)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_torchaudio.cpu(), decimal=3)
diff --git a/paddleaudio/tests/features/__init__.py b/paddleaudio/tests/features/__init__.py
new file mode 100644
index 00000000000..97043fd7ba6
--- /dev/null
+++ b/paddleaudio/tests/features/__init__.py
@@ -0,0 +1,13 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
diff --git a/paddleaudio/tests/features/base.py b/paddleaudio/tests/features/base.py
new file mode 100644
index 00000000000..725e1e2e70b
--- /dev/null
+++ b/paddleaudio/tests/features/base.py
@@ -0,0 +1,49 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+import unittest
+import urllib.request
+
+import numpy as np
+import paddle
+
+from paddleaudio import load
+
+wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
+
+
+class FeatTest(unittest.TestCase):
+ def setUp(self):
+ self.initParmas()
+ self.initWavInput()
+ self.setUpDevice()
+
+ def setUpDevice(self, device='cpu'):
+ paddle.set_device(device)
+
+ def initWavInput(self, url=wav_url):
+ if not os.path.isfile(os.path.basename(url)):
+ urllib.request.urlretrieve(url, os.path.basename(url))
+ self.waveform, self.sr = load(os.path.abspath(os.path.basename(url)))
+ self.waveform = self.waveform.astype(
+ np.float32
+ ) # paddlespeech.s2t.transform.spectrogram only supports float32
+ dim = len(self.waveform.shape)
+
+ assert dim in [1, 2]
+ if dim == 1:
+ self.waveform = np.expand_dims(self.waveform, 0)
+
+ def initParmas(self):
+ raise NotImplementedError
diff --git a/paddleaudio/tests/features/test_istft.py b/paddleaudio/tests/features/test_istft.py
new file mode 100644
index 00000000000..23371200b62
--- /dev/null
+++ b/paddleaudio/tests/features/test_istft.py
@@ -0,0 +1,49 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import unittest
+
+import numpy as np
+import paddle
+
+from .base import FeatTest
+from paddleaudio.functional.window import get_window
+from paddlespeech.s2t.transform.spectrogram import IStft
+from paddlespeech.s2t.transform.spectrogram import Stft
+
+
+class TestIstft(FeatTest):
+ def initParmas(self):
+ self.n_fft = 512
+ self.hop_length = 128
+ self.window_str = 'hann'
+
+ def test_istft(self):
+ ps_stft = Stft(self.n_fft, self.hop_length)
+ ps_res = ps_stft(
+ self.waveform.T).squeeze(1).T # (n_fft//2 + 1, n_frmaes)
+ x = paddle.to_tensor(ps_res)
+
+ ps_istft = IStft(self.hop_length)
+ ps_res = ps_istft(ps_res.T)
+
+ window = get_window(
+ self.window_str, self.n_fft, dtype=self.waveform.dtype)
+ pd_res = paddle.signal.istft(
+ x, self.n_fft, self.hop_length, window=window)
+
+ np.testing.assert_array_almost_equal(ps_res, pd_res, decimal=5)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/paddleaudio/tests/features/test_kaldi.py b/paddleaudio/tests/features/test_kaldi.py
new file mode 100644
index 00000000000..6e826aaa75b
--- /dev/null
+++ b/paddleaudio/tests/features/test_kaldi.py
@@ -0,0 +1,81 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import unittest
+
+import numpy as np
+import paddle
+import torch
+import torchaudio
+
+import paddleaudio
+from .base import FeatTest
+
+
+class TestKaldi(FeatTest):
+ def initParmas(self):
+ self.window_size = 1024
+ self.dtype = 'float32'
+
+ def test_window(self):
+ t_hann_window = torch.hann_window(
+ self.window_size, periodic=False, dtype=eval(f'torch.{self.dtype}'))
+ t_hamm_window = torch.hamming_window(
+ self.window_size,
+ periodic=False,
+ alpha=0.54,
+ beta=0.46,
+ dtype=eval(f'torch.{self.dtype}'))
+ t_povey_window = torch.hann_window(
+ self.window_size, periodic=False,
+ dtype=eval(f'torch.{self.dtype}')).pow(0.85)
+
+ p_hann_window = paddleaudio.functional.window.get_window(
+ 'hann',
+ self.window_size,
+ fftbins=False,
+ dtype=eval(f'paddle.{self.dtype}'))
+ p_hamm_window = paddleaudio.functional.window.get_window(
+ 'hamming',
+ self.window_size,
+ fftbins=False,
+ dtype=eval(f'paddle.{self.dtype}'))
+ p_povey_window = paddleaudio.functional.window.get_window(
+ 'hann',
+ self.window_size,
+ fftbins=False,
+ dtype=eval(f'paddle.{self.dtype}')).pow(0.85)
+
+ np.testing.assert_array_almost_equal(t_hann_window, p_hann_window)
+ np.testing.assert_array_almost_equal(t_hamm_window, p_hamm_window)
+ np.testing.assert_array_almost_equal(t_povey_window, p_povey_window)
+
+ def test_fbank(self):
+ ta_features = torchaudio.compliance.kaldi.fbank(
+ torch.from_numpy(self.waveform.astype(self.dtype)))
+ pa_features = paddleaudio.compliance.kaldi.fbank(
+ paddle.to_tensor(self.waveform.astype(self.dtype)))
+ np.testing.assert_array_almost_equal(
+ ta_features, pa_features, decimal=4)
+
+ def test_mfcc(self):
+ ta_features = torchaudio.compliance.kaldi.mfcc(
+ torch.from_numpy(self.waveform.astype(self.dtype)))
+ pa_features = paddleaudio.compliance.kaldi.mfcc(
+ paddle.to_tensor(self.waveform.astype(self.dtype)))
+ np.testing.assert_array_almost_equal(
+ ta_features, pa_features, decimal=4)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/paddleaudio/tests/features/test_librosa.py b/paddleaudio/tests/features/test_librosa.py
new file mode 100644
index 00000000000..cf0c98c7295
--- /dev/null
+++ b/paddleaudio/tests/features/test_librosa.py
@@ -0,0 +1,281 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import unittest
+
+import librosa
+import numpy as np
+import paddle
+
+import paddleaudio
+from .base import FeatTest
+from paddleaudio.functional.window import get_window
+
+
+class TestLibrosa(FeatTest):
+ def initParmas(self):
+ self.n_fft = 512
+ self.hop_length = 128
+ self.n_mels = 40
+ self.n_mfcc = 20
+ self.fmin = 0.0
+ self.window_str = 'hann'
+ self.pad_mode = 'reflect'
+ self.top_db = 80.0
+
+ def test_stft(self):
+ if len(self.waveform.shape) == 2: # (C, T)
+ self.waveform = self.waveform.squeeze(
+ 0) # 1D input for librosa.feature.melspectrogram
+
+ feature_librosa = librosa.core.stft(
+ y=self.waveform,
+ n_fft=self.n_fft,
+ hop_length=self.hop_length,
+ win_length=None,
+ window=self.window_str,
+ center=True,
+ dtype=None,
+ pad_mode=self.pad_mode, )
+ x = paddle.to_tensor(self.waveform).unsqueeze(0)
+ window = get_window(self.window_str, self.n_fft, dtype=x.dtype)
+ feature_paddle = paddle.signal.stft(
+ x=x,
+ n_fft=self.n_fft,
+ hop_length=self.hop_length,
+ win_length=None,
+ window=window,
+ center=True,
+ pad_mode=self.pad_mode,
+ normalized=False,
+ onesided=True, ).squeeze(0)
+
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_paddle, decimal=5)
+
+ def test_istft(self):
+ if len(self.waveform.shape) == 2: # (C, T)
+ self.waveform = self.waveform.squeeze(
+ 0) # 1D input for librosa.feature.melspectrogram
+
+ # Get stft result from librosa.
+ stft_matrix = librosa.core.stft(
+ y=self.waveform,
+ n_fft=self.n_fft,
+ hop_length=self.hop_length,
+ win_length=None,
+ window=self.window_str,
+ center=True,
+ pad_mode=self.pad_mode, )
+
+ feature_librosa = librosa.core.istft(
+ stft_matrix=stft_matrix,
+ hop_length=self.hop_length,
+ win_length=None,
+ window=self.window_str,
+ center=True,
+ dtype=None,
+ length=None, )
+
+ x = paddle.to_tensor(stft_matrix).unsqueeze(0)
+ window = get_window(
+ self.window_str,
+ self.n_fft,
+ dtype=paddle.to_tensor(self.waveform).dtype)
+ feature_paddle = paddle.signal.istft(
+ x=x,
+ n_fft=self.n_fft,
+ hop_length=self.hop_length,
+ win_length=None,
+ window=window,
+ center=True,
+ normalized=False,
+ onesided=True,
+ length=None,
+ return_complex=False, ).squeeze(0)
+
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_paddle, decimal=5)
+
+ def test_mel(self):
+ feature_librosa = librosa.filters.mel(
+ sr=self.sr,
+ n_fft=self.n_fft,
+ n_mels=self.n_mels,
+ fmin=self.fmin,
+ fmax=None,
+ htk=False,
+ norm='slaney',
+ dtype=self.waveform.dtype, )
+ feature_compliance = paddleaudio.compliance.librosa.compute_fbank_matrix(
+ sr=self.sr,
+ n_fft=self.n_fft,
+ n_mels=self.n_mels,
+ fmin=self.fmin,
+ fmax=None,
+ htk=False,
+ norm='slaney',
+ dtype=self.waveform.dtype, )
+ x = paddle.to_tensor(self.waveform)
+ feature_functional = paddleaudio.functional.compute_fbank_matrix(
+ sr=self.sr,
+ n_fft=self.n_fft,
+ n_mels=self.n_mels,
+ f_min=self.fmin,
+ f_max=None,
+ htk=False,
+ norm='slaney',
+ dtype=x.dtype, )
+
+ np.testing.assert_array_almost_equal(feature_librosa,
+ feature_compliance)
+ np.testing.assert_array_almost_equal(feature_librosa,
+ feature_functional)
+
+ def test_melspect(self):
+ if len(self.waveform.shape) == 2: # (C, T)
+ self.waveform = self.waveform.squeeze(
+ 0) # 1D input for librosa.feature.melspectrogram
+
+ # librosa:
+ feature_librosa = librosa.feature.melspectrogram(
+ y=self.waveform,
+ sr=self.sr,
+ n_fft=self.n_fft,
+ hop_length=self.hop_length,
+ n_mels=self.n_mels,
+ fmin=self.fmin)
+
+ # paddleaudio.compliance.librosa:
+ feature_compliance = paddleaudio.compliance.librosa.melspectrogram(
+ x=self.waveform,
+ sr=self.sr,
+ window_size=self.n_fft,
+ hop_length=self.hop_length,
+ n_mels=self.n_mels,
+ fmin=self.fmin,
+ to_db=False)
+
+ # paddleaudio.features.layer
+ x = paddle.to_tensor(
+ self.waveform, dtype=paddle.float64).unsqueeze(0) # Add batch dim.
+ feature_extractor = paddleaudio.features.MelSpectrogram(
+ sr=self.sr,
+ n_fft=self.n_fft,
+ hop_length=self.hop_length,
+ n_mels=self.n_mels,
+ f_min=self.fmin,
+ dtype=x.dtype)
+ feature_layer = feature_extractor(x).squeeze(0).numpy()
+
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_compliance, decimal=5)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_layer, decimal=5)
+
+ def test_log_melspect(self):
+ if len(self.waveform.shape) == 2: # (C, T)
+ self.waveform = self.waveform.squeeze(
+ 0) # 1D input for librosa.feature.melspectrogram
+
+ # librosa:
+ feature_librosa = librosa.feature.melspectrogram(
+ y=self.waveform,
+ sr=self.sr,
+ n_fft=self.n_fft,
+ hop_length=self.hop_length,
+ n_mels=self.n_mels,
+ fmin=self.fmin)
+ feature_librosa = librosa.power_to_db(feature_librosa, top_db=None)
+
+ # paddleaudio.compliance.librosa:
+ feature_compliance = paddleaudio.compliance.librosa.melspectrogram(
+ x=self.waveform,
+ sr=self.sr,
+ window_size=self.n_fft,
+ hop_length=self.hop_length,
+ n_mels=self.n_mels,
+ fmin=self.fmin)
+
+ # paddleaudio.features.layer
+ x = paddle.to_tensor(
+ self.waveform, dtype=paddle.float64).unsqueeze(0) # Add batch dim.
+ feature_extractor = paddleaudio.features.LogMelSpectrogram(
+ sr=self.sr,
+ n_fft=self.n_fft,
+ hop_length=self.hop_length,
+ n_mels=self.n_mels,
+ f_min=self.fmin,
+ dtype=x.dtype)
+ feature_layer = feature_extractor(x).squeeze(0).numpy()
+
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_compliance, decimal=5)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_layer, decimal=4)
+
+ def test_mfcc(self):
+ if len(self.waveform.shape) == 2: # (C, T)
+ self.waveform = self.waveform.squeeze(
+ 0) # 1D input for librosa.feature.melspectrogram
+
+ # librosa:
+ feature_librosa = librosa.feature.mfcc(
+ y=self.waveform,
+ sr=self.sr,
+ S=None,
+ n_mfcc=self.n_mfcc,
+ dct_type=2,
+ norm='ortho',
+ lifter=0,
+ n_fft=self.n_fft,
+ hop_length=self.hop_length,
+ n_mels=self.n_mels,
+ fmin=self.fmin)
+
+ # paddleaudio.compliance.librosa:
+ feature_compliance = paddleaudio.compliance.librosa.mfcc(
+ x=self.waveform,
+ sr=self.sr,
+ n_mfcc=self.n_mfcc,
+ dct_type=2,
+ norm='ortho',
+ lifter=0,
+ window_size=self.n_fft,
+ hop_length=self.hop_length,
+ n_mels=self.n_mels,
+ fmin=self.fmin,
+ top_db=self.top_db)
+
+ # paddleaudio.features.layer
+ x = paddle.to_tensor(
+ self.waveform, dtype=paddle.float64).unsqueeze(0) # Add batch dim.
+ feature_extractor = paddleaudio.features.MFCC(
+ sr=self.sr,
+ n_mfcc=self.n_mfcc,
+ n_fft=self.n_fft,
+ hop_length=self.hop_length,
+ n_mels=self.n_mels,
+ f_min=self.fmin,
+ top_db=self.top_db,
+ dtype=x.dtype)
+ feature_layer = feature_extractor(x).squeeze(0).numpy()
+
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_compliance, decimal=4)
+ np.testing.assert_array_almost_equal(
+ feature_librosa, feature_layer, decimal=4)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/paddleaudio/tests/features/test_log_melspectrogram.py b/paddleaudio/tests/features/test_log_melspectrogram.py
new file mode 100644
index 00000000000..6bae2df3f56
--- /dev/null
+++ b/paddleaudio/tests/features/test_log_melspectrogram.py
@@ -0,0 +1,50 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import unittest
+
+import numpy as np
+import paddle
+
+import paddleaudio
+from .base import FeatTest
+from paddlespeech.s2t.transform.spectrogram import LogMelSpectrogram
+
+
+class TestLogMelSpectrogram(FeatTest):
+ def initParmas(self):
+ self.n_fft = 512
+ self.hop_length = 128
+ self.n_mels = 40
+
+ def test_log_melspect(self):
+ ps_melspect = LogMelSpectrogram(self.sr, self.n_mels, self.n_fft,
+ self.hop_length)
+ ps_res = ps_melspect(self.waveform.T).squeeze(1).T
+
+ x = paddle.to_tensor(self.waveform)
+ # paddlespeech.s2t的特征存在幅度谱和功率谱滥用的情况
+ ps_melspect = paddleaudio.features.LogMelSpectrogram(
+ self.sr,
+ self.n_fft,
+ self.hop_length,
+ power=1.0,
+ n_mels=self.n_mels,
+ f_min=0.0)
+ pa_res = (ps_melspect(x) / 10.0).squeeze(0).numpy()
+
+ np.testing.assert_array_almost_equal(ps_res, pa_res, decimal=5)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/paddleaudio/tests/features/test_spectrogram.py b/paddleaudio/tests/features/test_spectrogram.py
new file mode 100644
index 00000000000..50b21403b4f
--- /dev/null
+++ b/paddleaudio/tests/features/test_spectrogram.py
@@ -0,0 +1,42 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import unittest
+
+import numpy as np
+import paddle
+
+import paddleaudio
+from .base import FeatTest
+from paddlespeech.s2t.transform.spectrogram import Spectrogram
+
+
+class TestSpectrogram(FeatTest):
+ def initParmas(self):
+ self.n_fft = 512
+ self.hop_length = 128
+
+ def test_spectrogram(self):
+ ps_spect = Spectrogram(self.n_fft, self.hop_length)
+ ps_res = ps_spect(self.waveform.T).squeeze(1).T # Magnitude
+
+ x = paddle.to_tensor(self.waveform)
+ pa_spect = paddleaudio.features.Spectrogram(
+ self.n_fft, self.hop_length, power=1.0)
+ pa_res = pa_spect(x).squeeze(0).numpy()
+
+ np.testing.assert_array_almost_equal(ps_res, pa_res, decimal=5)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/paddleaudio/tests/features/test_stft.py b/paddleaudio/tests/features/test_stft.py
new file mode 100644
index 00000000000..c64b5ebe6b4
--- /dev/null
+++ b/paddleaudio/tests/features/test_stft.py
@@ -0,0 +1,44 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import unittest
+
+import numpy as np
+import paddle
+
+from .base import FeatTest
+from paddleaudio.functional.window import get_window
+from paddlespeech.s2t.transform.spectrogram import Stft
+
+
+class TestStft(FeatTest):
+ def initParmas(self):
+ self.n_fft = 512
+ self.hop_length = 128
+ self.window_str = 'hann'
+
+ def test_stft(self):
+ ps_stft = Stft(self.n_fft, self.hop_length)
+ ps_res = ps_stft(
+ self.waveform.T).squeeze(1).T # (n_fft//2 + 1, n_frmaes)
+
+ x = paddle.to_tensor(self.waveform)
+ window = get_window(self.window_str, self.n_fft, dtype=x.dtype)
+ pd_res = paddle.signal.stft(
+ x, self.n_fft, self.hop_length, window=window).squeeze(0).numpy()
+
+ np.testing.assert_array_almost_equal(ps_res, pd_res, decimal=5)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/paddlespeech/cli/cls/infer.py b/paddlespeech/cli/cls/infer.py
index ab5eee6e288..f56d8a579c5 100644
--- a/paddlespeech/cli/cls/infer.py
+++ b/paddlespeech/cli/cls/infer.py
@@ -193,7 +193,8 @@ def preprocess(self, audio_file: Union[str, os.PathLike]):
sr=feat_conf['sample_rate'],
mono=True,
dtype='float32')
- logger.info("Preprocessing audio_file:" + audio_file)
+ if isinstance(audio_file, (str, os.PathLike)):
+ logger.info("Preprocessing audio_file:" + audio_file)
# Feature extraction
feature_extractor = LogMelSpectrogram(
diff --git a/paddlespeech/cli/executor.py b/paddlespeech/cli/executor.py
index d77d27b03c1..064939a85da 100644
--- a/paddlespeech/cli/executor.py
+++ b/paddlespeech/cli/executor.py
@@ -178,7 +178,8 @@ def _is_job_input(self, input_: Union[str, os.PathLike]) -> bool:
Returns:
bool: return `True` for job input, `False` otherwise.
"""
- return input_ and os.path.isfile(input_) and input_.endswith('.job')
+ return input_ and os.path.isfile(input_) and (input_.endswith('.job') or
+ input_.endswith('.txt'))
def _get_job_contents(
self, job_input: os.PathLike) -> Dict[str, Union[str, os.PathLike]]:
diff --git a/paddlespeech/cli/tts/infer.py b/paddlespeech/cli/tts/infer.py
index 8423dfa8d1c..78eae769bee 100644
--- a/paddlespeech/cli/tts/infer.py
+++ b/paddlespeech/cli/tts/infer.py
@@ -237,6 +237,30 @@
'speech_stats':
'feats_stats.npy',
},
+ "hifigan_aishell3-zh": {
+ 'url':
+ 'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_aishell3_ckpt_0.2.0.zip',
+ 'md5':
+ '3bb49bc75032ed12f79c00c8cc79a09a',
+ 'config':
+ 'default.yaml',
+ 'ckpt':
+ 'snapshot_iter_2500000.pdz',
+ 'speech_stats':
+ 'feats_stats.npy',
+ },
+ "hifigan_vctk-en": {
+ 'url':
+ 'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_vctk_ckpt_0.2.0.zip',
+ 'md5':
+ '7da8f88359bca2457e705d924cf27bd4',
+ 'config':
+ 'default.yaml',
+ 'ckpt':
+ 'snapshot_iter_2500000.pdz',
+ 'speech_stats':
+ 'feats_stats.npy',
+ },
# wavernn
"wavernn_csmsc-zh": {
@@ -365,6 +389,8 @@ def __init__(self):
'mb_melgan_csmsc',
'style_melgan_csmsc',
'hifigan_csmsc',
+ 'hifigan_aishell3',
+ 'hifigan_vctk',
'wavernn_csmsc',
],
help='Choose vocoder type of tts task.')
diff --git a/paddlespeech/cli/utils.py b/paddlespeech/cli/utils.py
index d7dcc90c7ab..f7d64b9a95e 100644
--- a/paddlespeech/cli/utils.py
+++ b/paddlespeech/cli/utils.py
@@ -192,7 +192,7 @@ def __init__(self):
try:
cfg = yaml.load(file, Loader=yaml.FullLoader)
self._data.update(cfg)
- except:
+ except Exception as e:
self.flush()
@property
diff --git a/paddlespeech/server/__init__.py b/paddlespeech/server/__init__.py
index 384061ddae2..97722c0a0cb 100644
--- a/paddlespeech/server/__init__.py
+++ b/paddlespeech/server/__init__.py
@@ -18,6 +18,7 @@
from .base_commands import ServerBaseCommand
from .base_commands import ServerHelpCommand
from .bin.paddlespeech_client import ASRClientExecutor
+from .bin.paddlespeech_client import CLSClientExecutor
from .bin.paddlespeech_client import TTSClientExecutor
from .bin.paddlespeech_server import ServerExecutor
diff --git a/paddlespeech/server/bin/paddlespeech_client.py b/paddlespeech/server/bin/paddlespeech_client.py
index ee6ab7ad764..40f17c63c8e 100644
--- a/paddlespeech/server/bin/paddlespeech_client.py
+++ b/paddlespeech/server/bin/paddlespeech_client.py
@@ -31,7 +31,7 @@
from paddlespeech.server.utils.audio_process import wav2pcm
from paddlespeech.server.utils.util import wav2base64
-__all__ = ['TTSClientExecutor', 'ASRClientExecutor']
+__all__ = ['TTSClientExecutor', 'ASRClientExecutor', 'CLSClientExecutor']
@cli_client_register(
@@ -70,13 +70,9 @@ def __init__(self):
choices=[0, 8000, 16000],
help='Sampling rate, the default is the same as the model')
self.parser.add_argument(
- '--output',
- type=str,
- default="./output.wav",
- help='Synthesized audio file')
+ '--output', type=str, default=None, help='Synthesized audio file')
- def postprocess(self, response_dict: dict, outfile: str) -> float:
- wav_base64 = response_dict["result"]["audio"]
+ def postprocess(self, wav_base64: str, outfile: str) -> float:
audio_data_byte = base64.b64decode(wav_base64)
# from byte
samples, sample_rate = soundfile.read(
@@ -93,37 +89,38 @@ def postprocess(self, response_dict: dict, outfile: str) -> float:
else:
logger.error("The format for saving audio only supports wav or pcm")
- duration = len(samples) / sample_rate
- return duration
-
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
- try:
- url = 'http://' + args.server_ip + ":" + str(
- args.port) + '/paddlespeech/tts'
- request = {
- "text": args.input,
- "spk_id": args.spk_id,
- "speed": args.speed,
- "volume": args.volume,
- "sample_rate": args.sample_rate,
- "save_path": args.output
- }
- st = time.time()
- response = requests.post(url, json.dumps(request))
- time_consume = time.time() - st
-
- response_dict = response.json()
- duration = self.postprocess(response_dict, args.output)
+ input_ = args.input
+ server_ip = args.server_ip
+ port = args.port
+ spk_id = args.spk_id
+ speed = args.speed
+ volume = args.volume
+ sample_rate = args.sample_rate
+ output = args.output
+ try:
+ time_start = time.time()
+ res = self(
+ input=input_,
+ server_ip=server_ip,
+ port=port,
+ spk_id=spk_id,
+ speed=speed,
+ volume=volume,
+ sample_rate=sample_rate,
+ output=output)
+ time_end = time.time()
+ time_consume = time_end - time_start
+ response_dict = res.json()
logger.info(response_dict["message"])
- logger.info("Save synthesized audio successfully on %s." %
- (args.output))
- logger.info("Audio duration: %f s." % (duration))
+ logger.info("Save synthesized audio successfully on %s." % (output))
+ logger.info("Audio duration: %f s." %
+ (response_dict['result']['duration']))
logger.info("Response time: %f s." % (time_consume))
-
return True
- except BaseException:
+ except Exception as e:
logger.error("Failed to synthesized audio.")
return False
@@ -136,7 +133,7 @@ def __call__(self,
speed: float=1.0,
volume: float=1.0,
sample_rate: int=0,
- output: str="./output.wav"):
+ output: str=None):
"""
Python API to call an executor.
"""
@@ -151,20 +148,11 @@ def __call__(self,
"save_path": output
}
- try:
- st = time.time()
- response = requests.post(url, json.dumps(request))
- time_consume = time.time() - st
- response_dict = response.json()
- duration = self.postprocess(response_dict, output)
-
- print(response_dict["message"])
- print("Save synthesized audio successfully on %s." % (output))
- print("Audio duration: %f s." % (duration))
- print("Response time: %f s." % (time_consume))
- print("RTF: %f " % (time_consume / duration))
- except BaseException:
- print("Failed to synthesized audio.")
+ res = requests.post(url, json.dumps(request))
+ response_dict = res.json()
+ if not output:
+ self.postprocess(response_dict["result"]["audio"], output)
+ return res
@cli_client_register(
@@ -193,24 +181,27 @@ def __init__(self):
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
- url = 'http://' + args.server_ip + ":" + str(
- args.port) + '/paddlespeech/asr'
- audio = wav2base64(args.input)
- data = {
- "audio": audio,
- "audio_format": args.audio_format,
- "sample_rate": args.sample_rate,
- "lang": args.lang,
- }
- time_start = time.time()
+ input_ = args.input
+ server_ip = args.server_ip
+ port = args.port
+ sample_rate = args.sample_rate
+ lang = args.lang
+ audio_format = args.audio_format
+
try:
- r = requests.post(url=url, data=json.dumps(data))
- # ending Timestamp
+ time_start = time.time()
+ res = self(
+ input=input_,
+ server_ip=server_ip,
+ port=port,
+ sample_rate=sample_rate,
+ lang=lang,
+ audio_format=audio_format)
time_end = time.time()
- logger.info(r.json())
- logger.info("time cost %f s." % (time_end - time_start))
+ logger.info(res.json())
+ logger.info("Response time %f s." % (time_end - time_start))
return True
- except BaseException:
+ except Exception as e:
logger.error("Failed to speech recognition.")
return False
@@ -234,12 +225,65 @@ def __call__(self,
"sample_rate": sample_rate,
"lang": lang,
}
- time_start = time.time()
+
+ res = requests.post(url=url, data=json.dumps(data))
+ return res
+
+
+@cli_client_register(
+ name='paddlespeech_client.cls', description='visit cls service')
+class CLSClientExecutor(BaseExecutor):
+ def __init__(self):
+ super(CLSClientExecutor, self).__init__()
+ self.parser = argparse.ArgumentParser(
+ prog='paddlespeech_client.cls', add_help=True)
+ self.parser.add_argument(
+ '--server_ip', type=str, default='127.0.0.1', help='server ip')
+ self.parser.add_argument(
+ '--port', type=int, default=8090, help='server port')
+ self.parser.add_argument(
+ '--input',
+ type=str,
+ default=None,
+ help='Audio file to classify.',
+ required=True)
+ self.parser.add_argument(
+ '--topk',
+ type=int,
+ default=1,
+ help='Return topk scores of classification result.')
+
+ def execute(self, argv: List[str]) -> bool:
+ args = self.parser.parse_args(argv)
+ input_ = args.input
+ server_ip = args.server_ip
+ port = args.port
+ topk = args.topk
+
try:
- r = requests.post(url=url, data=json.dumps(data))
- # ending Timestamp
+ time_start = time.time()
+ res = self(input=input_, server_ip=server_ip, port=port, topk=topk)
time_end = time.time()
- print(r.json())
- print("time cost %f s." % (time_end - time_start))
- except BaseException:
- print("Failed to speech recognition.")
+ logger.info(res.json())
+ logger.info("Response time %f s." % (time_end - time_start))
+ return True
+ except Exception as e:
+ logger.error("Failed to speech classification.")
+ return False
+
+ @stats_wrapper
+ def __call__(self,
+ input: str,
+ server_ip: str="127.0.0.1",
+ port: int=8090,
+ topk: int=1):
+ """
+ Python API to call an executor.
+ """
+
+ url = 'http://' + server_ip + ":" + str(port) + '/paddlespeech/cls'
+ audio = wav2base64(input)
+ data = {"audio": audio, "topk": topk}
+
+ res = requests.post(url=url, data=json.dumps(data))
+ return res
diff --git a/paddlespeech/server/bin/paddlespeech_server.py b/paddlespeech/server/bin/paddlespeech_server.py
index 3d71f091b3d..f6a7f429557 100644
--- a/paddlespeech/server/bin/paddlespeech_server.py
+++ b/paddlespeech/server/bin/paddlespeech_server.py
@@ -103,13 +103,14 @@ def __init__(self):
'--task',
type=str,
default=None,
- choices=['asr', 'tts'],
+ choices=['asr', 'tts', 'cls'],
help='Choose speech task.',
required=True)
- self.task_choices = ['asr', 'tts']
+ self.task_choices = ['asr', 'tts', 'cls']
self.model_name_format = {
'asr': 'Model-Language-Sample Rate',
- 'tts': 'Model-Language'
+ 'tts': 'Model-Language',
+ 'cls': 'Model-Sample Rate'
}
def show_support_models(self, pretrained_models: dict):
@@ -174,53 +175,24 @@ def execute(self, argv: List[str]) -> bool:
)
return False
- @stats_wrapper
- def __call__(
- self,
- task: str=None, ):
- """
- Python API to call an executor.
- """
- self.task = task
- if self.task not in self.task_choices:
- print("Please input correct speech task, choices = ['asr', 'tts']")
-
- elif self.task == 'asr':
- try:
- from paddlespeech.cli.asr.infer import pretrained_models
- print(
- "Here is the table of ASR pretrained models supported in the service."
- )
- self.show_support_models(pretrained_models)
-
- # show ASR static pretrained model
- from paddlespeech.server.engine.asr.paddleinference.asr_engine import pretrained_models
- print(
- "Here is the table of ASR static pretrained models supported in the service."
- )
- self.show_support_models(pretrained_models)
-
- except BaseException:
- print(
- "Failed to get the table of ASR pretrained models supported in the service."
- )
-
- elif self.task == 'tts':
+ elif self.task == 'cls':
try:
- from paddlespeech.cli.tts.infer import pretrained_models
- print(
- "Here is the table of TTS pretrained models supported in the service."
+ from paddlespeech.cli.cls.infer import pretrained_models
+ logger.info(
+ "Here is the table of CLS pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
- # show TTS static pretrained model
- from paddlespeech.server.engine.tts.paddleinference.tts_engine import pretrained_models
- print(
- "Here is the table of TTS static pretrained models supported in the service."
+ # show CLS static pretrained model
+ from paddlespeech.server.engine.cls.paddleinference.cls_engine import pretrained_models
+ logger.info(
+ "Here is the table of CLS static pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
+ return True
except BaseException:
- print(
- "Failed to get the table of TTS pretrained models supported in the service."
+ logger.error(
+ "Failed to get the table of CLS pretrained models supported in the service."
)
+ return False
diff --git a/paddlespeech/server/conf/application.yaml b/paddlespeech/server/conf/application.yaml
index 6048450b7ba..2b1a0599808 100644
--- a/paddlespeech/server/conf/application.yaml
+++ b/paddlespeech/server/conf/application.yaml
@@ -9,12 +9,14 @@ port: 8090
# The task format in the engin_list is: _
# task choices = ['asr_python', 'asr_inference', 'tts_python', 'tts_inference']
-engine_list: ['asr_python', 'tts_python']
+engine_list: ['asr_python', 'tts_python', 'cls_python']
#################################################################################
# ENGINE CONFIG #
#################################################################################
+
+################################### ASR #########################################
################### speech task: asr; engine_type: python #######################
asr_python:
model: 'conformer_wenetspeech'
@@ -46,6 +48,7 @@ asr_inference:
summary: True # False -> do not show predictor config
+################################### TTS #########################################
################### speech task: tts; engine_type: python #######################
tts_python:
# am (acoustic model) choices=['speedyspeech_csmsc', 'fastspeech2_csmsc',
@@ -105,3 +108,30 @@ tts_inference:
# others
lang: 'zh'
+
+################################### CLS #########################################
+################### speech task: cls; engine_type: python #######################
+cls_python:
+ # model choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
+ model: 'panns_cnn14'
+ cfg_path: # [optional] Config of cls task.
+ ckpt_path: # [optional] Checkpoint file of model.
+ label_file: # [optional] Label file of cls task.
+ device: # set 'gpu:id' or 'cpu'
+
+
+################### speech task: cls; engine_type: inference #######################
+cls_inference:
+ # model_type choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
+ model_type: 'panns_cnn14'
+ cfg_path:
+ model_path: # the pdmodel file of am static model [optional]
+ params_path: # the pdiparams file of am static model [optional]
+ label_file: # [optional] Label file of cls task.
+
+ predictor_conf:
+ device: # set 'gpu:id' or 'cpu'
+ switch_ir_optim: True
+ glog_info: False # True -> print glog
+ summary: True # False -> do not show predictor config
+
diff --git a/paddlespeech/server/engine/cls/__init__.py b/paddlespeech/server/engine/cls/__init__.py
new file mode 100644
index 00000000000..97043fd7ba6
--- /dev/null
+++ b/paddlespeech/server/engine/cls/__init__.py
@@ -0,0 +1,13 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
diff --git a/paddlespeech/server/engine/cls/paddleinference/__init__.py b/paddlespeech/server/engine/cls/paddleinference/__init__.py
new file mode 100644
index 00000000000..97043fd7ba6
--- /dev/null
+++ b/paddlespeech/server/engine/cls/paddleinference/__init__.py
@@ -0,0 +1,13 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
diff --git a/paddlespeech/server/engine/cls/paddleinference/cls_engine.py b/paddlespeech/server/engine/cls/paddleinference/cls_engine.py
new file mode 100644
index 00000000000..3982effd902
--- /dev/null
+++ b/paddlespeech/server/engine/cls/paddleinference/cls_engine.py
@@ -0,0 +1,224 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import io
+import os
+import time
+from typing import Optional
+
+import numpy as np
+import paddle
+import yaml
+
+from paddlespeech.cli.cls.infer import CLSExecutor
+from paddlespeech.cli.log import logger
+from paddlespeech.cli.utils import download_and_decompress
+from paddlespeech.cli.utils import MODEL_HOME
+from paddlespeech.server.engine.base_engine import BaseEngine
+from paddlespeech.server.utils.paddle_predictor import init_predictor
+from paddlespeech.server.utils.paddle_predictor import run_model
+
+__all__ = ['CLSEngine']
+
+pretrained_models = {
+ "panns_cnn6-32k": {
+ 'url':
+ 'https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn6_static.tar.gz',
+ 'md5':
+ 'da087c31046d23281d8ec5188c1967da',
+ 'cfg_path':
+ 'panns.yaml',
+ 'model_path':
+ 'inference.pdmodel',
+ 'params_path':
+ 'inference.pdiparams',
+ 'label_file':
+ 'audioset_labels.txt',
+ },
+ "panns_cnn10-32k": {
+ 'url':
+ 'https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn10_static.tar.gz',
+ 'md5':
+ '5460cc6eafbfaf0f261cc75b90284ae1',
+ 'cfg_path':
+ 'panns.yaml',
+ 'model_path':
+ 'inference.pdmodel',
+ 'params_path':
+ 'inference.pdiparams',
+ 'label_file':
+ 'audioset_labels.txt',
+ },
+ "panns_cnn14-32k": {
+ 'url':
+ 'https://paddlespeech.bj.bcebos.com/cls/inference_model/panns_cnn14_static.tar.gz',
+ 'md5':
+ 'ccc80b194821274da79466862b2ab00f',
+ 'cfg_path':
+ 'panns.yaml',
+ 'model_path':
+ 'inference.pdmodel',
+ 'params_path':
+ 'inference.pdiparams',
+ 'label_file':
+ 'audioset_labels.txt',
+ },
+}
+
+
+class CLSServerExecutor(CLSExecutor):
+ def __init__(self):
+ super().__init__()
+ pass
+
+ def _get_pretrained_path(self, tag: str) -> os.PathLike:
+ """
+ Download and returns pretrained resources path of current task.
+ """
+ support_models = list(pretrained_models.keys())
+ assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
+ tag, '\n\t\t'.join(support_models))
+
+ res_path = os.path.join(MODEL_HOME, tag)
+ decompressed_path = download_and_decompress(pretrained_models[tag],
+ res_path)
+ decompressed_path = os.path.abspath(decompressed_path)
+ logger.info(
+ 'Use pretrained model stored in: {}'.format(decompressed_path))
+
+ return decompressed_path
+
+ def _init_from_path(
+ self,
+ model_type: str='panns_cnn14',
+ cfg_path: Optional[os.PathLike]=None,
+ model_path: Optional[os.PathLike]=None,
+ params_path: Optional[os.PathLike]=None,
+ label_file: Optional[os.PathLike]=None,
+ predictor_conf: dict=None, ):
+ """
+ Init model and other resources from a specific path.
+ """
+
+ if cfg_path is None or model_path is None or params_path is None or label_file is None:
+ tag = model_type + '-' + '32k'
+ self.res_path = self._get_pretrained_path(tag)
+ self.cfg_path = os.path.join(self.res_path,
+ pretrained_models[tag]['cfg_path'])
+ self.model_path = os.path.join(self.res_path,
+ pretrained_models[tag]['model_path'])
+ self.params_path = os.path.join(
+ self.res_path, pretrained_models[tag]['params_path'])
+ self.label_file = os.path.join(self.res_path,
+ pretrained_models[tag]['label_file'])
+ else:
+ self.cfg_path = os.path.abspath(cfg_path)
+ self.model_path = os.path.abspath(model_path)
+ self.params_path = os.path.abspath(params_path)
+ self.label_file = os.path.abspath(label_file)
+
+ logger.info(self.cfg_path)
+ logger.info(self.model_path)
+ logger.info(self.params_path)
+ logger.info(self.label_file)
+
+ # config
+ with open(self.cfg_path, 'r') as f:
+ self._conf = yaml.safe_load(f)
+ logger.info("Read cfg file successfully.")
+
+ # labels
+ self._label_list = []
+ with open(self.label_file, 'r') as f:
+ for line in f:
+ self._label_list.append(line.strip())
+ logger.info("Read label file successfully.")
+
+ # Create predictor
+ self.predictor_conf = predictor_conf
+ self.predictor = init_predictor(
+ model_file=self.model_path,
+ params_file=self.params_path,
+ predictor_conf=self.predictor_conf)
+ logger.info("Create predictor successfully.")
+
+ @paddle.no_grad()
+ def infer(self):
+ """
+ Model inference and result stored in self.output.
+ """
+ output = run_model(self.predictor, [self._inputs['feats'].numpy()])
+ self._outputs['logits'] = output[0]
+
+
+class CLSEngine(BaseEngine):
+ """CLS server engine
+
+ Args:
+ metaclass: Defaults to Singleton.
+ """
+
+ def __init__(self):
+ super(CLSEngine, self).__init__()
+
+ def init(self, config: dict) -> bool:
+ """init engine resource
+
+ Args:
+ config_file (str): config file
+
+ Returns:
+ bool: init failed or success
+ """
+ self.executor = CLSServerExecutor()
+ self.config = config
+ self.executor._init_from_path(
+ self.config.model_type, self.config.cfg_path,
+ self.config.model_path, self.config.params_path,
+ self.config.label_file, self.config.predictor_conf)
+
+ logger.info("Initialize CLS server engine successfully.")
+ return True
+
+ def run(self, audio_data):
+ """engine run
+
+ Args:
+ audio_data (bytes): base64.b64decode
+ """
+
+ self.executor.preprocess(io.BytesIO(audio_data))
+ st = time.time()
+ self.executor.infer()
+ infer_time = time.time() - st
+
+ logger.info("inference time: {}".format(infer_time))
+ logger.info("cls engine type: inference")
+
+ def postprocess(self, topk: int):
+ """postprocess
+ """
+ assert topk <= len(self.executor._label_list
+ ), 'Value of topk is larger than number of labels.'
+
+ result = np.squeeze(self.executor._outputs['logits'], axis=0)
+ topk_idx = (-result).argsort()[:topk]
+ topk_results = []
+ for idx in topk_idx:
+ res = {}
+ label, score = self.executor._label_list[idx], result[idx]
+ res['class_name'] = label
+ res['prob'] = score
+ topk_results.append(res)
+
+ return topk_results
diff --git a/paddlespeech/server/engine/cls/python/__init__.py b/paddlespeech/server/engine/cls/python/__init__.py
new file mode 100644
index 00000000000..97043fd7ba6
--- /dev/null
+++ b/paddlespeech/server/engine/cls/python/__init__.py
@@ -0,0 +1,13 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
diff --git a/paddlespeech/server/engine/cls/python/cls_engine.py b/paddlespeech/server/engine/cls/python/cls_engine.py
new file mode 100644
index 00000000000..1a975b0a05b
--- /dev/null
+++ b/paddlespeech/server/engine/cls/python/cls_engine.py
@@ -0,0 +1,124 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import io
+import time
+from typing import List
+
+import paddle
+
+from paddlespeech.cli.cls.infer import CLSExecutor
+from paddlespeech.cli.log import logger
+from paddlespeech.server.engine.base_engine import BaseEngine
+
+__all__ = ['CLSEngine']
+
+
+class CLSServerExecutor(CLSExecutor):
+ def __init__(self):
+ super().__init__()
+ pass
+
+ def get_topk_results(self, topk: int) -> List:
+ assert topk <= len(
+ self._label_list), 'Value of topk is larger than number of labels.'
+
+ result = self._outputs['logits'].squeeze(0).numpy()
+ topk_idx = (-result).argsort()[:topk]
+ res = {}
+ topk_results = []
+ for idx in topk_idx:
+ label, score = self._label_list[idx], result[idx]
+ res['class'] = label
+ res['prob'] = score
+ topk_results.append(res)
+ return topk_results
+
+
+class CLSEngine(BaseEngine):
+ """CLS server engine
+
+ Args:
+ metaclass: Defaults to Singleton.
+ """
+
+ def __init__(self):
+ super(CLSEngine, self).__init__()
+
+ def init(self, config: dict) -> bool:
+ """init engine resource
+
+ Args:
+ config_file (str): config file
+
+ Returns:
+ bool: init failed or success
+ """
+ self.input = None
+ self.output = None
+ self.executor = CLSServerExecutor()
+ self.config = config
+ try:
+ if self.config.device:
+ self.device = self.config.device
+ else:
+ self.device = paddle.get_device()
+ paddle.set_device(self.device)
+ except BaseException:
+ logger.error(
+ "Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
+ )
+
+ try:
+ self.executor._init_from_path(
+ self.config.model, self.config.cfg_path, self.config.ckpt_path,
+ self.config.label_file)
+ except BaseException:
+ logger.error("Initialize CLS server engine Failed.")
+ return False
+
+ logger.info("Initialize CLS server engine successfully on device: %s." %
+ (self.device))
+ return True
+
+ def run(self, audio_data):
+ """engine run
+
+ Args:
+ audio_data (bytes): base64.b64decode
+ """
+ self.executor.preprocess(io.BytesIO(audio_data))
+ st = time.time()
+ self.executor.infer()
+ infer_time = time.time() - st
+
+ logger.info("inference time: {}".format(infer_time))
+ logger.info("cls engine type: python")
+
+ def postprocess(self, topk: int):
+ """postprocess
+ """
+ assert topk <= len(self.executor._label_list
+ ), 'Value of topk is larger than number of labels.'
+
+ result = self.executor._outputs['logits'].squeeze(0).numpy()
+ topk_idx = (-result).argsort()[:topk]
+ topk_results = []
+ for idx in topk_idx:
+ res = {}
+ label, score = self.executor._label_list[idx], result[idx]
+ res['class_name'] = label
+ res['prob'] = score
+ topk_results.append(res)
+
+ return topk_results
diff --git a/paddlespeech/server/engine/engine_factory.py b/paddlespeech/server/engine/engine_factory.py
index 546541edfcf..c39c44cae5f 100644
--- a/paddlespeech/server/engine/engine_factory.py
+++ b/paddlespeech/server/engine/engine_factory.py
@@ -31,5 +31,11 @@ def get_engine(engine_name: Text, engine_type: Text):
elif engine_name == 'tts' and engine_type == 'python':
from paddlespeech.server.engine.tts.python.tts_engine import TTSEngine
return TTSEngine()
+ elif engine_name == 'cls' and engine_type == 'inference':
+ from paddlespeech.server.engine.cls.paddleinference.cls_engine import CLSEngine
+ return CLSEngine()
+ elif engine_name == 'cls' and engine_type == 'python':
+ from paddlespeech.server.engine.cls.python.cls_engine import CLSEngine
+ return CLSEngine()
else:
return None
diff --git a/paddlespeech/server/engine/tts/paddleinference/tts_engine.py b/paddlespeech/server/engine/tts/paddleinference/tts_engine.py
index 1bbbe0ea3e1..db8813ba901 100644
--- a/paddlespeech/server/engine/tts/paddleinference/tts_engine.py
+++ b/paddlespeech/server/engine/tts/paddleinference/tts_engine.py
@@ -250,27 +250,21 @@ def _init_from_path(
self.frontend = English(phone_vocab_path=self.phones_dict)
logger.info("frontend done!")
- try:
- # am predictor
- self.am_predictor_conf = am_predictor_conf
- self.am_predictor = init_predictor(
- model_file=self.am_model,
- params_file=self.am_params,
- predictor_conf=self.am_predictor_conf)
- logger.info("Create AM predictor successfully.")
- except BaseException:
- logger.error("Failed to create AM predictor.")
-
- try:
- # voc predictor
- self.voc_predictor_conf = voc_predictor_conf
- self.voc_predictor = init_predictor(
- model_file=self.voc_model,
- params_file=self.voc_params,
- predictor_conf=self.voc_predictor_conf)
- logger.info("Create Vocoder predictor successfully.")
- except BaseException:
- logger.error("Failed to create Vocoder predictor.")
+ # Create am predictor
+ self.am_predictor_conf = am_predictor_conf
+ self.am_predictor = init_predictor(
+ model_file=self.am_model,
+ params_file=self.am_params,
+ predictor_conf=self.am_predictor_conf)
+ logger.info("Create AM predictor successfully.")
+
+ # Create voc predictor
+ self.voc_predictor_conf = voc_predictor_conf
+ self.voc_predictor = init_predictor(
+ model_file=self.voc_model,
+ params_file=self.voc_params,
+ predictor_conf=self.voc_predictor_conf)
+ logger.info("Create Vocoder predictor successfully.")
@paddle.no_grad()
def infer(self,
@@ -359,27 +353,22 @@ def __init__(self):
def init(self, config: dict) -> bool:
self.executor = TTSServerExecutor()
- try:
- self.config = config
- self.executor._init_from_path(
- am=self.config.am,
- am_model=self.config.am_model,
- am_params=self.config.am_params,
- am_sample_rate=self.config.am_sample_rate,
- phones_dict=self.config.phones_dict,
- tones_dict=self.config.tones_dict,
- speaker_dict=self.config.speaker_dict,
- voc=self.config.voc,
- voc_model=self.config.voc_model,
- voc_params=self.config.voc_params,
- voc_sample_rate=self.config.voc_sample_rate,
- lang=self.config.lang,
- am_predictor_conf=self.config.am_predictor_conf,
- voc_predictor_conf=self.config.voc_predictor_conf, )
-
- except BaseException:
- logger.error("Initialize TTS server engine Failed.")
- return False
+ self.config = config
+ self.executor._init_from_path(
+ am=self.config.am,
+ am_model=self.config.am_model,
+ am_params=self.config.am_params,
+ am_sample_rate=self.config.am_sample_rate,
+ phones_dict=self.config.phones_dict,
+ tones_dict=self.config.tones_dict,
+ speaker_dict=self.config.speaker_dict,
+ voc=self.config.voc,
+ voc_model=self.config.voc_model,
+ voc_params=self.config.voc_params,
+ voc_sample_rate=self.config.voc_sample_rate,
+ lang=self.config.lang,
+ am_predictor_conf=self.config.am_predictor_conf,
+ voc_predictor_conf=self.config.voc_predictor_conf, )
logger.info("Initialize TTS server engine successfully.")
return True
@@ -542,4 +531,4 @@ def run(self,
postprocess_time))
logger.info("RTF: {}".format(rtf))
- return lang, target_sample_rate, wav_base64
+ return lang, target_sample_rate, duration, wav_base64
diff --git a/paddlespeech/server/engine/tts/python/tts_engine.py b/paddlespeech/server/engine/tts/python/tts_engine.py
index 8d6c7fd17e5..f153f60b966 100644
--- a/paddlespeech/server/engine/tts/python/tts_engine.py
+++ b/paddlespeech/server/engine/tts/python/tts_engine.py
@@ -250,4 +250,4 @@ def run(self,
logger.info("RTF: {}".format(rtf))
logger.info("device: {}".format(self.device))
- return lang, target_sample_rate, wav_base64
+ return lang, target_sample_rate, duration, wav_base64
diff --git a/paddlespeech/server/restful/api.py b/paddlespeech/server/restful/api.py
index 2d69dee8739..3f91a03b647 100644
--- a/paddlespeech/server/restful/api.py
+++ b/paddlespeech/server/restful/api.py
@@ -16,6 +16,7 @@
from fastapi import APIRouter
from paddlespeech.server.restful.asr_api import router as asr_router
+from paddlespeech.server.restful.cls_api import router as cls_router
from paddlespeech.server.restful.tts_api import router as tts_router
_router = APIRouter()
@@ -25,7 +26,7 @@ def setup_router(api_list: List):
"""setup router for fastapi
Args:
- api_list (List): [asr, tts]
+ api_list (List): [asr, tts, cls]
Returns:
APIRouter
@@ -35,6 +36,8 @@ def setup_router(api_list: List):
_router.include_router(asr_router)
elif api_name == 'tts':
_router.include_router(tts_router)
+ elif api_name == 'cls':
+ _router.include_router(cls_router)
else:
pass
diff --git a/paddlespeech/server/restful/cls_api.py b/paddlespeech/server/restful/cls_api.py
new file mode 100644
index 00000000000..306d9ca9c11
--- /dev/null
+++ b/paddlespeech/server/restful/cls_api.py
@@ -0,0 +1,92 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import base64
+import traceback
+from typing import Union
+
+from fastapi import APIRouter
+
+from paddlespeech.server.engine.engine_pool import get_engine_pool
+from paddlespeech.server.restful.request import CLSRequest
+from paddlespeech.server.restful.response import CLSResponse
+from paddlespeech.server.restful.response import ErrorResponse
+from paddlespeech.server.utils.errors import ErrorCode
+from paddlespeech.server.utils.errors import failed_response
+from paddlespeech.server.utils.exception import ServerBaseException
+
+router = APIRouter()
+
+
+@router.get('/paddlespeech/cls/help')
+def help():
+ """help
+
+ Returns:
+ json: [description]
+ """
+ response = {
+ "success": "True",
+ "code": 200,
+ "message": {
+ "global": "success"
+ },
+ "result": {
+ "description": "cls server",
+ "input": "base64 string of wavfile",
+ "output": "classification result"
+ }
+ }
+ return response
+
+
+@router.post(
+ "/paddlespeech/cls", response_model=Union[CLSResponse, ErrorResponse])
+def cls(request_body: CLSRequest):
+ """cls api
+
+ Args:
+ request_body (CLSRequest): [description]
+
+ Returns:
+ json: [description]
+ """
+ try:
+ audio_data = base64.b64decode(request_body.audio)
+
+ # get single engine from engine pool
+ engine_pool = get_engine_pool()
+ cls_engine = engine_pool['cls']
+
+ cls_engine.run(audio_data)
+ cls_results = cls_engine.postprocess(request_body.topk)
+
+ response = {
+ "success": True,
+ "code": 200,
+ "message": {
+ "description": "success"
+ },
+ "result": {
+ "topk": request_body.topk,
+ "results": cls_results
+ }
+ }
+
+ except ServerBaseException as e:
+ response = failed_response(e.error_code, e.msg)
+ except BaseException:
+ response = failed_response(ErrorCode.SERVER_UNKOWN_ERR)
+ traceback.print_exc()
+
+ return response
diff --git a/paddlespeech/server/restful/request.py b/paddlespeech/server/restful/request.py
index 28908801977..dbac9dac881 100644
--- a/paddlespeech/server/restful/request.py
+++ b/paddlespeech/server/restful/request.py
@@ -15,7 +15,7 @@
from pydantic import BaseModel
-__all__ = ['ASRRequest', 'TTSRequest']
+__all__ = ['ASRRequest', 'TTSRequest', 'CLSRequest']
#****************************************************************************************/
@@ -63,3 +63,18 @@ class TTSRequest(BaseModel):
volume: float = 1.0
sample_rate: int = 0
save_path: str = None
+
+
+#****************************************************************************************/
+#************************************ CLS request ***************************************/
+#****************************************************************************************/
+class CLSRequest(BaseModel):
+ """
+ request body example
+ {
+ "audio": "exSI6ICJlbiIsCgkgICAgInBvc2l0aW9uIjogImZhbHNlIgoJf...",
+ "topk": 1
+ }
+ """
+ audio: str
+ topk: int = 1
diff --git a/paddlespeech/server/restful/response.py b/paddlespeech/server/restful/response.py
index 4e18ee0d790..a2a207e4f68 100644
--- a/paddlespeech/server/restful/response.py
+++ b/paddlespeech/server/restful/response.py
@@ -11,9 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
+from typing import List
+
from pydantic import BaseModel
-__all__ = ['ASRResponse', 'TTSResponse']
+__all__ = ['ASRResponse', 'TTSResponse', 'CLSResponse']
class Message(BaseModel):
@@ -52,10 +54,11 @@ class ASRResponse(BaseModel):
#****************************************************************************************/
class TTSResult(BaseModel):
lang: str = "zh"
- sample_rate: int
spk_id: int = 0
speed: float = 1.0
volume: float = 1.0
+ sample_rate: int
+ duration: float
save_path: str = None
audio: str
@@ -71,9 +74,11 @@ class TTSResponse(BaseModel):
},
"result": {
"lang": "zh",
- "sample_rate": 24000,
+ "spk_id": 0,
"speed": 1.0,
"volume": 1.0,
+ "sample_rate": 24000,
+ "duration": 3.6125,
"audio": "LTI1OTIuNjI1OTUwMzQsOTk2OS41NDk4...",
"save_path": "./tts.wav"
}
@@ -85,6 +90,45 @@ class TTSResponse(BaseModel):
result: TTSResult
+#****************************************************************************************/
+#************************************ CLS response **************************************/
+#****************************************************************************************/
+class CLSResults(BaseModel):
+ class_name: str
+ prob: float
+
+
+class CLSResult(BaseModel):
+ topk: int
+ results: List[CLSResults]
+
+
+class CLSResponse(BaseModel):
+ """
+ response example
+ {
+ "success": true,
+ "code": 0,
+ "message": {
+ "description": "success"
+ },
+ "result": {
+ topk: 1
+ results: [
+ {
+ "class":"Speech",
+ "prob": 0.9027184844017029
+ }
+ ]
+ }
+ }
+ """
+ success: bool
+ code: int
+ message: Message
+ result: CLSResult
+
+
#****************************************************************************************/
#********************************** Error response **************************************/
#****************************************************************************************/
diff --git a/paddlespeech/server/restful/tts_api.py b/paddlespeech/server/restful/tts_api.py
index 0af0f6d0790..4e9bbe23ed3 100644
--- a/paddlespeech/server/restful/tts_api.py
+++ b/paddlespeech/server/restful/tts_api.py
@@ -98,7 +98,7 @@ def tts(request_body: TTSRequest):
tts_engine = engine_pool['tts']
logger.info("Get tts engine successfully.")
- lang, target_sample_rate, wav_base64 = tts_engine.run(
+ lang, target_sample_rate, duration, wav_base64 = tts_engine.run(
text, spk_id, speed, volume, sample_rate, save_path)
response = {
@@ -113,6 +113,7 @@ def tts(request_body: TTSRequest):
"speed": speed,
"volume": volume,
"sample_rate": target_sample_rate,
+ "duration": duration,
"save_path": save_path,
"audio": wav_base64
}
diff --git a/paddlespeech/server/utils/paddle_predictor.py b/paddlespeech/server/utils/paddle_predictor.py
index 4035d48d8c9..16653cf372e 100644
--- a/paddlespeech/server/utils/paddle_predictor.py
+++ b/paddlespeech/server/utils/paddle_predictor.py
@@ -35,10 +35,12 @@ def init_predictor(model_dir: Optional[os.PathLike]=None,
Returns:
predictor (PaddleInferPredictor): created predictor
"""
-
if model_dir is not None:
+ assert os.path.isdir(model_dir), 'Please check model dir.'
config = Config(args.model_dir)
else:
+ assert os.path.isfile(model_file) and os.path.isfile(
+ params_file), 'Please check model and parameter files.'
config = Config(model_file, params_file)
# set device
@@ -66,7 +68,6 @@ def init_predictor(model_dir: Optional[os.PathLike]=None,
config.enable_memory_optim()
predictor = create_predictor(config)
-
return predictor
@@ -84,10 +85,8 @@ def run_model(predictor, input: List) -> List:
for i, name in enumerate(input_names):
input_handle = predictor.get_input_handle(name)
input_handle.copy_from_cpu(input[i])
-
# do the inference
predictor.run()
-
results = []
# get out data from output tensor
output_names = predictor.get_output_names()
diff --git a/paddlespeech/t2s/exps/csmsc_test.txt b/paddlespeech/t2s/exps/csmsc_test.txt
new file mode 100644
index 00000000000..d8cf367cd0c
--- /dev/null
+++ b/paddlespeech/t2s/exps/csmsc_test.txt
@@ -0,0 +1,100 @@
+009901 昨日,这名伤者与医生全部被警方依法刑事拘留。
+009902 钱伟长想到上海来办学校是经过深思熟虑的。
+009903 她见我一进门就骂,吃饭时也骂,骂得我抬不起头。
+009904 李述德在离开之前,只说了一句柱驼杀父亲了。
+009905 这种车票和保险单捆绑出售属于重复性购买。
+009906 戴佩妮的男友西米露接唱情歌,让她非常开心。
+009907 观大势,谋大局,出大策始终是该院的办院方针。
+009908 他们骑着摩托回家,正好为农忙时的父母帮忙。
+009909 但是因为还没到退休年龄,只能掰着指头捱日子。
+009910 这几天雨水不断,人们恨不得待在家里不出门。
+009911 没想到徐赟,张海翔两人就此玩起了人间蒸发。
+009912 藤村此番发言可能是为了凸显野田的领导能力。
+009913 程长庚,生在清王朝嘉庆年间,安徽的潜山小县。
+009914 南海海域综合补给基地码头项目正在论证中。
+009915 也就是说今晚成都市民极有可能再次看到飘雪。
+009916 随着天气转热,各地的游泳场所开始人头攒动。
+009917 更让徐先生纳闷的是,房客的手机也打不通了。
+009918 遇到颠簸时,应听从乘务员的安全指令,回座位坐好。
+009919 他在后面呆惯了,怕自己一插身后的人会不满,不敢排进去。
+009920 傍晚七个小人回来了,白雪公主说,你们就是我命中的七个小矮人吧。
+009921 他本想说,教育局管这个,他们是一路的,这样一管岂不是妓女起嫖客?
+009922 一种表示商品所有权的财物证券,也称商品证券,如提货单,交货单。
+009923 会有很丰富的东西留下来,说都说不完。
+009924 这句话像从天而降,吓得四周一片寂静。
+009925 记者所在的是受害人家属所在的右区。
+009926 不管哈大爷去哪,它都一步不离地跟着。
+009927 大家抬头望去,一只老鼠正趴在吊顶上。
+009928 我决定过年就辞职,接手我爸的废品站!
+009929 最终,中国男子乒乓球队获得此奖项。
+009930 防汛抗旱两手抓,抗旱相对抓的不够。
+009931 图们江下游地区开发开放的进展如何?
+009932 这要求中国必须有一个坚强的政党领导。
+009933 再说,关于利益上的事俺俩都不好开口。
+009934 明代瓦剌,鞑靼入侵明境也是通过此地。
+009935 咪咪舔着孩子,把它身上的毛舔干净。
+009936 是否这次的国标修订被大企业绑架了?
+009937 判决后,姚某妻子胡某不服,提起上诉。
+009938 由此可以看出邯钢的经济效益来自何处。
+009939 琳达说,是瑜伽改变了她和马儿的生活。
+009940 楼下的保安告诉记者,这里不租也不卖。
+009941 习近平说,中斯两国人民传统友谊深厚。
+009942 传闻越来越多,后来连老汉儿自己都怕了。
+009943 我怒吼一声冲上去,举起砖头砸了过去。
+009944 我现在还不会,这就回去问问发明我的人。
+009945 显然,洛阳性奴案不具备上述两个前提。
+009946 另外,杰克逊有文唇线,眼线,眉毛的动作。
+009947 昨晚,华西都市报记者电话采访了尹琪。
+009948 涅拉季科未透露这些航空公司的名称。
+009949 从运行轨迹上来说,它也不可能是星星。
+009950 目前看,如果继续加息也存在两难问题。
+009951 曾宝仪在节目录制现场大爆观众糗事。
+009952 但任凭周某怎么叫,男子仍酣睡不醒。
+009953 老大爷说,小子,你挡我财路了,知道不?
+009954 没料到,闯下大头佛的阿伟还不知悔改。
+009955 卡扎菲部落式统治已遭遇部落内讧。
+009956 这个孩子的生命一半来源于另一位女士捐赠的冷冻卵子。
+009957 出现这种泥鳅内阁的局面既是野田有意为之,也实属无奈。
+009958 济青高速济南,华山,章丘,邹平,周村,淄博,临淄站。
+009959 赵凌飞的话,反映了沈阳赛区所有奥运志愿者的共同心声。
+009960 因为,我们所发出的力量必会因难度加大而减弱。
+009961 发生事故的楼梯拐角处仍可看到血迹。
+009962 想过进公安,可能身高不够,老汉儿也不让我进去。
+009963 路上关卡很多,为了方便撤离,只好轻装前进。
+009964 原来比尔盖茨就是美国微软公司联合创始人呀。
+009965 之后他们一家三口将与双方父母往峇里岛旅游。
+009966 谢谢总理,也感谢广大网友的参与,我们明年再见。
+009967 事实上是,从来没有一个欺善怕恶的人能作出过稍大一点的成就。
+009968 我会打开邮件,你可以从那里继续。
+009969 美方对近期东海局势表示关切。
+009970 据悉,奥巴马一家人对这座冬季白宫极为满意。
+009971 打扫完你会很有成就感的,试一试,你就信了。
+009972 诺曼站在滑板车上,各就各位,准备出发啦!
+009973 塔河的寒夜,气温降到了零下三十多摄氏度。
+009974 其间,连破六点六,六点五,六点四,六点三五等多个重要关口。
+009975 算命其实只是人们的一种自我安慰和自我暗示而已,我们还是要相信科学才好。
+009976 这一切都令人欢欣鼓舞,阿讷西没理由不坚持到最后。
+009977 直至公元前一万一千年,它又再次出现。
+009978 尽量少玩电脑,少看电视,少打游戏。
+009979 从五到七,前后也就是六个月的时间。
+009980 一进咖啡店,他就遇见一张熟悉的脸。
+009981 好在众弟兄看到了把她追了回来。
+009982 有一个人说,哥们儿我们跑过它才能活。
+009983 捅了她以后,模糊记得她没咋动了。
+009984 从小到大,葛启义没有收到过压岁钱。
+009985 舞台下的你会对舞台上的你说什么?
+009986 但考生普遍认为,试题的怪多过难。
+009987 我希望每个人都能够尊重我们的隐私。
+009988 漫天的红霞使劲给两人增添气氛。
+009989 晚上加完班开车回家,太累了,迷迷糊糊开着车,走一半的时候,铛一声!
+009990 该车将三人撞倒后,在大雾中逃窜。
+009991 这人一哆嗦,方向盘也把不稳了,差点撞上了高速边道护栏。
+009992 那女孩儿委屈的说,我一回头见你已经进去了我不敢进去啊!
+009993 小明摇摇头说,不是,我只是美女看多了,想换个口味而已。
+009994 接下来,红娘要求记者交费,记者表示不知表姐身份证号码。
+009995 李东蓊表示,自己当时在法庭上发表了一次独特的公诉意见。
+009996 另一男子扑了上来,手里拿着明晃晃的长刀,向他胸口直刺。
+009997 今天,快递员拿着一个快递在办公室喊,秦王是哪个,有他快递?
+009998 这场抗议活动究竟是如何发展演变的,又究竟是谁伤害了谁?
+009999 因华国锋肖鸡,墓地设计根据其属相设计。
+010000 在狱中,张明宝悔恨交加,写了一份忏悔书。
diff --git a/paddlespeech/t2s/exps/gan_vocoder/synthesize.py b/paddlespeech/t2s/exps/gan_vocoder/synthesize.py
index c60b9add2eb..9d9a8c49b68 100644
--- a/paddlespeech/t2s/exps/gan_vocoder/synthesize.py
+++ b/paddlespeech/t2s/exps/gan_vocoder/synthesize.py
@@ -34,7 +34,7 @@ def main():
"--generator-type",
type=str,
default="pwgan",
- help="type of GANVocoder, should in {pwgan, mb_melgan, style_melgan, } now"
+ help="type of GANVocoder, should in {pwgan, mb_melgan, style_melgan, hifigan, } now"
)
parser.add_argument("--config", type=str, help="GANVocoder config file.")
parser.add_argument("--checkpoint", type=str, help="snapshot to load.")
diff --git a/paddlespeech/t2s/exps/inference.py b/paddlespeech/t2s/exps/inference.py
index 26d7e2c089c..1188ddfb132 100644
--- a/paddlespeech/t2s/exps/inference.py
+++ b/paddlespeech/t2s/exps/inference.py
@@ -17,13 +17,92 @@
import numpy
import soundfile as sf
from paddle import inference
-
-from paddlespeech.t2s.frontend import English
-from paddlespeech.t2s.frontend.zh_frontend import Frontend
+from timer import timer
+
+from paddlespeech.t2s.exps.syn_utils import get_frontend
+from paddlespeech.t2s.exps.syn_utils import get_sentences
+from paddlespeech.t2s.utils import str2bool
+
+
+def get_predictor(args, filed='am'):
+ full_name = ''
+ if filed == 'am':
+ full_name = args.am
+ elif filed == 'voc':
+ full_name = args.voc
+ model_name = full_name[:full_name.rindex('_')]
+ config = inference.Config(
+ str(Path(args.inference_dir) / (full_name + ".pdmodel")),
+ str(Path(args.inference_dir) / (full_name + ".pdiparams")))
+ if args.device == "gpu":
+ config.enable_use_gpu(100, 0)
+ elif args.device == "cpu":
+ config.disable_gpu()
+ # This line must be commented for fastspeech2, if not, it will OOM
+ if model_name != 'fastspeech2':
+ config.enable_memory_optim()
+ predictor = inference.create_predictor(config)
+ return predictor
-# only inference for models trained with csmsc now
-def main():
+def get_am_output(args, am_predictor, frontend, merge_sentences, input):
+ am_name = args.am[:args.am.rindex('_')]
+ am_dataset = args.am[args.am.rindex('_') + 1:]
+ am_input_names = am_predictor.get_input_names()
+ get_tone_ids = False
+ get_spk_id = False
+ if am_name == 'speedyspeech':
+ get_tone_ids = True
+ if am_dataset in {"aishell3", "vctk"} and args.speaker_dict:
+ get_spk_id = True
+ spk_id = numpy.array([args.spk_id])
+ if args.lang == 'zh':
+ input_ids = frontend.get_input_ids(
+ input, merge_sentences=merge_sentences, get_tone_ids=get_tone_ids)
+ phone_ids = input_ids["phone_ids"]
+ elif args.lang == 'en':
+ input_ids = frontend.get_input_ids(
+ input, merge_sentences=merge_sentences)
+ phone_ids = input_ids["phone_ids"]
+ else:
+ print("lang should in {'zh', 'en'}!")
+
+ if get_tone_ids:
+ tone_ids = input_ids["tone_ids"]
+ tones = tone_ids[0].numpy()
+ tones_handle = am_predictor.get_input_handle(am_input_names[1])
+ tones_handle.reshape(tones.shape)
+ tones_handle.copy_from_cpu(tones)
+ if get_spk_id:
+ spk_id_handle = am_predictor.get_input_handle(am_input_names[1])
+ spk_id_handle.reshape(spk_id.shape)
+ spk_id_handle.copy_from_cpu(spk_id)
+ phones = phone_ids[0].numpy()
+ phones_handle = am_predictor.get_input_handle(am_input_names[0])
+ phones_handle.reshape(phones.shape)
+ phones_handle.copy_from_cpu(phones)
+
+ am_predictor.run()
+ am_output_names = am_predictor.get_output_names()
+ am_output_handle = am_predictor.get_output_handle(am_output_names[0])
+ am_output_data = am_output_handle.copy_to_cpu()
+ return am_output_data
+
+
+def get_voc_output(args, voc_predictor, input):
+ voc_input_names = voc_predictor.get_input_names()
+ mel_handle = voc_predictor.get_input_handle(voc_input_names[0])
+ mel_handle.reshape(input.shape)
+ mel_handle.copy_from_cpu(input)
+
+ voc_predictor.run()
+ voc_output_names = voc_predictor.get_output_names()
+ voc_output_handle = voc_predictor.get_output_handle(voc_output_names[0])
+ wav = voc_output_handle.copy_to_cpu()
+ return wav
+
+
+def parse_args():
parser = argparse.ArgumentParser(
description="Paddle Infernce with speedyspeech & parallel wavegan.")
# acoustic model
@@ -70,113 +149,97 @@ def main():
parser.add_argument(
"--inference_dir", type=str, help="dir to save inference models")
parser.add_argument("--output_dir", type=str, help="output dir")
+ # inference
+ parser.add_argument(
+ "--use_trt",
+ type=str2bool,
+ default=False,
+ help="Whether to use inference engin TensorRT.", )
+ parser.add_argument(
+ "--int8",
+ type=str2bool,
+ default=False,
+ help="Whether to use int8 inference.", )
+ parser.add_argument(
+ "--fp16",
+ type=str2bool,
+ default=False,
+ help="Whether to use float16 inference.", )
+ parser.add_argument(
+ "--device",
+ default="gpu",
+ choices=["gpu", "cpu"],
+ help="Device selected for inference.", )
args, _ = parser.parse_known_args()
+ return args
+
+# only inference for models trained with csmsc now
+def main():
+ args = parse_args()
# frontend
- if args.lang == 'zh':
- frontend = Frontend(
- phone_vocab_path=args.phones_dict, tone_vocab_path=args.tones_dict)
- elif args.lang == 'en':
- frontend = English(phone_vocab_path=args.phones_dict)
- print("frontend done!")
+ frontend = get_frontend(args)
+ # am_predictor
+ am_predictor = get_predictor(args, filed='am')
# model: {model_name}_{dataset}
- am_name = args.am[:args.am.rindex('_')]
am_dataset = args.am[args.am.rindex('_') + 1:]
- am_config = inference.Config(
- str(Path(args.inference_dir) / (args.am + ".pdmodel")),
- str(Path(args.inference_dir) / (args.am + ".pdiparams")))
- am_config.enable_use_gpu(100, 0)
- # This line must be commented for fastspeech2, if not, it will OOM
- if am_name != 'fastspeech2':
- am_config.enable_memory_optim()
- am_predictor = inference.create_predictor(am_config)
-
- voc_config = inference.Config(
- str(Path(args.inference_dir) / (args.voc + ".pdmodel")),
- str(Path(args.inference_dir) / (args.voc + ".pdiparams")))
- voc_config.enable_use_gpu(100, 0)
- voc_config.enable_memory_optim()
- voc_predictor = inference.create_predictor(voc_config)
+ # voc_predictor
+ voc_predictor = get_predictor(args, filed='voc')
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
- sentences = []
-
- print("in new inference")
-
- # construct dataset for evaluation
- sentences = []
- with open(args.text, 'rt') as f:
- for line in f:
- items = line.strip().split()
- utt_id = items[0]
- if args.lang == 'zh':
- sentence = "".join(items[1:])
- elif args.lang == 'en':
- sentence = " ".join(items[1:])
- sentences.append((utt_id, sentence))
- get_tone_ids = False
- get_spk_id = False
- if am_name == 'speedyspeech':
- get_tone_ids = True
- if am_dataset in {"aishell3", "vctk"} and args.speaker_dict:
- get_spk_id = True
- spk_id = numpy.array([args.spk_id])
+ sentences = get_sentences(args)
- am_input_names = am_predictor.get_input_names()
- print("am_input_names:", am_input_names)
merge_sentences = True
+ fs = 24000 if am_dataset != 'ljspeech' else 22050
+ # warmup
+ for utt_id, sentence in sentences[:3]:
+ with timer() as t:
+ am_output_data = get_am_output(
+ args,
+ am_predictor=am_predictor,
+ frontend=frontend,
+ merge_sentences=merge_sentences,
+ input=sentence)
+ wav = get_voc_output(
+ args, voc_predictor=voc_predictor, input=am_output_data)
+ speed = wav.size / t.elapse
+ rtf = fs / speed
+ print(
+ f"{utt_id}, mel: {am_output_data.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
+ )
+
+ print("warm up done!")
+
+ N = 0
+ T = 0
for utt_id, sentence in sentences:
- if args.lang == 'zh':
- input_ids = frontend.get_input_ids(
- sentence,
+ with timer() as t:
+ am_output_data = get_am_output(
+ args,
+ am_predictor=am_predictor,
+ frontend=frontend,
merge_sentences=merge_sentences,
- get_tone_ids=get_tone_ids)
- phone_ids = input_ids["phone_ids"]
- elif args.lang == 'en':
- input_ids = frontend.get_input_ids(
- sentence, merge_sentences=merge_sentences)
- phone_ids = input_ids["phone_ids"]
- else:
- print("lang should in {'zh', 'en'}!")
-
- if get_tone_ids:
- tone_ids = input_ids["tone_ids"]
- tones = tone_ids[0].numpy()
- tones_handle = am_predictor.get_input_handle(am_input_names[1])
- tones_handle.reshape(tones.shape)
- tones_handle.copy_from_cpu(tones)
- if get_spk_id:
- spk_id_handle = am_predictor.get_input_handle(am_input_names[1])
- spk_id_handle.reshape(spk_id.shape)
- spk_id_handle.copy_from_cpu(spk_id)
- phones = phone_ids[0].numpy()
- phones_handle = am_predictor.get_input_handle(am_input_names[0])
- phones_handle.reshape(phones.shape)
- phones_handle.copy_from_cpu(phones)
-
- am_predictor.run()
- am_output_names = am_predictor.get_output_names()
- am_output_handle = am_predictor.get_output_handle(am_output_names[0])
- am_output_data = am_output_handle.copy_to_cpu()
-
- voc_input_names = voc_predictor.get_input_names()
- mel_handle = voc_predictor.get_input_handle(voc_input_names[0])
- mel_handle.reshape(am_output_data.shape)
- mel_handle.copy_from_cpu(am_output_data)
-
- voc_predictor.run()
- voc_output_names = voc_predictor.get_output_names()
- voc_output_handle = voc_predictor.get_output_handle(voc_output_names[0])
- wav = voc_output_handle.copy_to_cpu()
+ input=sentence)
+ wav = get_voc_output(
+ args, voc_predictor=voc_predictor, input=am_output_data)
+
+ N += wav.size
+ T += t.elapse
+ speed = wav.size / t.elapse
+ rtf = fs / speed
sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=24000)
+ print(
+ f"{utt_id}, mel: {am_output_data.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
+ )
print(f"{utt_id} done!")
+ print(f"generation speed: {N / T}Hz, RTF: {fs / (N / T) }")
if __name__ == "__main__":
diff --git a/paddlespeech/t2s/exps/syn_utils.py b/paddlespeech/t2s/exps/syn_utils.py
new file mode 100644
index 00000000000..c52cb372710
--- /dev/null
+++ b/paddlespeech/t2s/exps/syn_utils.py
@@ -0,0 +1,243 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+
+import numpy as np
+import paddle
+from paddle import jit
+from paddle.static import InputSpec
+
+from paddlespeech.s2t.utils.dynamic_import import dynamic_import
+from paddlespeech.t2s.datasets.data_table import DataTable
+from paddlespeech.t2s.frontend import English
+from paddlespeech.t2s.frontend.zh_frontend import Frontend
+from paddlespeech.t2s.modules.normalizer import ZScore
+
+model_alias = {
+ # acoustic model
+ "speedyspeech":
+ "paddlespeech.t2s.models.speedyspeech:SpeedySpeech",
+ "speedyspeech_inference":
+ "paddlespeech.t2s.models.speedyspeech:SpeedySpeechInference",
+ "fastspeech2":
+ "paddlespeech.t2s.models.fastspeech2:FastSpeech2",
+ "fastspeech2_inference":
+ "paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
+ "tacotron2":
+ "paddlespeech.t2s.models.tacotron2:Tacotron2",
+ "tacotron2_inference":
+ "paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
+ # voc
+ "pwgan":
+ "paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
+ "pwgan_inference":
+ "paddlespeech.t2s.models.parallel_wavegan:PWGInference",
+ "mb_melgan":
+ "paddlespeech.t2s.models.melgan:MelGANGenerator",
+ "mb_melgan_inference":
+ "paddlespeech.t2s.models.melgan:MelGANInference",
+ "style_melgan":
+ "paddlespeech.t2s.models.melgan:StyleMelGANGenerator",
+ "style_melgan_inference":
+ "paddlespeech.t2s.models.melgan:StyleMelGANInference",
+ "hifigan":
+ "paddlespeech.t2s.models.hifigan:HiFiGANGenerator",
+ "hifigan_inference":
+ "paddlespeech.t2s.models.hifigan:HiFiGANInference",
+ "wavernn":
+ "paddlespeech.t2s.models.wavernn:WaveRNN",
+ "wavernn_inference":
+ "paddlespeech.t2s.models.wavernn:WaveRNNInference",
+}
+
+
+# input
+def get_sentences(args):
+ # construct dataset for evaluation
+ sentences = []
+ with open(args.text, 'rt') as f:
+ for line in f:
+ items = line.strip().split()
+ utt_id = items[0]
+ if 'lang' in args and args.lang == 'zh':
+ sentence = "".join(items[1:])
+ elif 'lang' in args and args.lang == 'en':
+ sentence = " ".join(items[1:])
+ sentences.append((utt_id, sentence))
+ return sentences
+
+
+def get_test_dataset(args, test_metadata, am_name, am_dataset):
+ if am_name == 'fastspeech2':
+ fields = ["utt_id", "text"]
+ if am_dataset in {"aishell3", "vctk"} and args.speaker_dict:
+ print("multiple speaker fastspeech2!")
+ fields += ["spk_id"]
+ elif 'voice_cloning' in args and args.voice_cloning:
+ print("voice cloning!")
+ fields += ["spk_emb"]
+ else:
+ print("single speaker fastspeech2!")
+ elif am_name == 'speedyspeech':
+ fields = ["utt_id", "phones", "tones"]
+ elif am_name == 'tacotron2':
+ fields = ["utt_id", "text"]
+ if 'voice_cloning' in args and args.voice_cloning:
+ print("voice cloning!")
+ fields += ["spk_emb"]
+
+ test_dataset = DataTable(data=test_metadata, fields=fields)
+ return test_dataset
+
+
+# frontend
+def get_frontend(args):
+ if 'lang' in args and args.lang == 'zh':
+ frontend = Frontend(
+ phone_vocab_path=args.phones_dict, tone_vocab_path=args.tones_dict)
+ elif 'lang' in args and args.lang == 'en':
+ frontend = English(phone_vocab_path=args.phones_dict)
+ else:
+ print("wrong lang!")
+ print("frontend done!")
+ return frontend
+
+
+# dygraph
+def get_am_inference(args, am_config):
+ with open(args.phones_dict, "r") as f:
+ phn_id = [line.strip().split() for line in f.readlines()]
+ vocab_size = len(phn_id)
+ print("vocab_size:", vocab_size)
+
+ tone_size = None
+ if 'tones_dict' in args and args.tones_dict:
+ with open(args.tones_dict, "r") as f:
+ tone_id = [line.strip().split() for line in f.readlines()]
+ tone_size = len(tone_id)
+ print("tone_size:", tone_size)
+
+ spk_num = None
+ if 'speaker_dict' in args and args.speaker_dict:
+ with open(args.speaker_dict, 'rt') as f:
+ spk_id = [line.strip().split() for line in f.readlines()]
+ spk_num = len(spk_id)
+ print("spk_num:", spk_num)
+
+ odim = am_config.n_mels
+ # model: {model_name}_{dataset}
+ am_name = args.am[:args.am.rindex('_')]
+ am_dataset = args.am[args.am.rindex('_') + 1:]
+
+ am_class = dynamic_import(am_name, model_alias)
+ am_inference_class = dynamic_import(am_name + '_inference', model_alias)
+
+ if am_name == 'fastspeech2':
+ am = am_class(
+ idim=vocab_size, odim=odim, spk_num=spk_num, **am_config["model"])
+ elif am_name == 'speedyspeech':
+ am = am_class(
+ vocab_size=vocab_size,
+ tone_size=tone_size,
+ spk_num=spk_num,
+ **am_config["model"])
+ elif am_name == 'tacotron2':
+ am = am_class(idim=vocab_size, odim=odim, **am_config["model"])
+
+ am.set_state_dict(paddle.load(args.am_ckpt)["main_params"])
+ am.eval()
+ am_mu, am_std = np.load(args.am_stat)
+ am_mu = paddle.to_tensor(am_mu)
+ am_std = paddle.to_tensor(am_std)
+ am_normalizer = ZScore(am_mu, am_std)
+ am_inference = am_inference_class(am_normalizer, am)
+ am_inference.eval()
+ print("acoustic model done!")
+ return am_inference, am_name, am_dataset
+
+
+def get_voc_inference(args, voc_config):
+ # model: {model_name}_{dataset}
+ voc_name = args.voc[:args.voc.rindex('_')]
+ voc_class = dynamic_import(voc_name, model_alias)
+ voc_inference_class = dynamic_import(voc_name + '_inference', model_alias)
+ if voc_name != 'wavernn':
+ voc = voc_class(**voc_config["generator_params"])
+ voc.set_state_dict(paddle.load(args.voc_ckpt)["generator_params"])
+ voc.remove_weight_norm()
+ voc.eval()
+ else:
+ voc = voc_class(**voc_config["model"])
+ voc.set_state_dict(paddle.load(args.voc_ckpt)["main_params"])
+ voc.eval()
+
+ voc_mu, voc_std = np.load(args.voc_stat)
+ voc_mu = paddle.to_tensor(voc_mu)
+ voc_std = paddle.to_tensor(voc_std)
+ voc_normalizer = ZScore(voc_mu, voc_std)
+ voc_inference = voc_inference_class(voc_normalizer, voc)
+ voc_inference.eval()
+ print("voc done!")
+ return voc_inference
+
+
+# to static
+def am_to_static(args, am_inference, am_name, am_dataset):
+ if am_name == 'fastspeech2':
+ if am_dataset in {"aishell3", "vctk"} and args.speaker_dict:
+ am_inference = jit.to_static(
+ am_inference,
+ input_spec=[
+ InputSpec([-1], dtype=paddle.int64),
+ InputSpec([1], dtype=paddle.int64),
+ ], )
+ else:
+ am_inference = jit.to_static(
+ am_inference, input_spec=[InputSpec([-1], dtype=paddle.int64)])
+
+ elif am_name == 'speedyspeech':
+ if am_dataset in {"aishell3", "vctk"} and args.speaker_dict:
+ am_inference = jit.to_static(
+ am_inference,
+ input_spec=[
+ InputSpec([-1], dtype=paddle.int64), # text
+ InputSpec([-1], dtype=paddle.int64), # tone
+ InputSpec([1], dtype=paddle.int64), # spk_id
+ None # duration
+ ])
+ else:
+ am_inference = jit.to_static(
+ am_inference,
+ input_spec=[
+ InputSpec([-1], dtype=paddle.int64),
+ InputSpec([-1], dtype=paddle.int64)
+ ])
+
+ elif am_name == 'tacotron2':
+ am_inference = jit.to_static(
+ am_inference, input_spec=[InputSpec([-1], dtype=paddle.int64)])
+
+ paddle.jit.save(am_inference, os.path.join(args.inference_dir, args.am))
+ am_inference = paddle.jit.load(os.path.join(args.inference_dir, args.am))
+ return am_inference
+
+
+def voc_to_static(args, voc_inference):
+ voc_inference = jit.to_static(
+ voc_inference, input_spec=[
+ InputSpec([-1, 80], dtype=paddle.float32),
+ ])
+ paddle.jit.save(voc_inference, os.path.join(args.inference_dir, args.voc))
+ voc_inference = paddle.jit.load(os.path.join(args.inference_dir, args.voc))
+ return voc_inference
diff --git a/paddlespeech/t2s/exps/synthesize.py b/paddlespeech/t2s/exps/synthesize.py
index 81da14f2eae..abb1eb4eb6e 100644
--- a/paddlespeech/t2s/exps/synthesize.py
+++ b/paddlespeech/t2s/exps/synthesize.py
@@ -23,48 +23,11 @@
from timer import timer
from yacs.config import CfgNode
-from paddlespeech.s2t.utils.dynamic_import import dynamic_import
-from paddlespeech.t2s.datasets.data_table import DataTable
-from paddlespeech.t2s.modules.normalizer import ZScore
+from paddlespeech.t2s.exps.syn_utils import get_am_inference
+from paddlespeech.t2s.exps.syn_utils import get_test_dataset
+from paddlespeech.t2s.exps.syn_utils import get_voc_inference
from paddlespeech.t2s.utils import str2bool
-model_alias = {
- # acoustic model
- "speedyspeech":
- "paddlespeech.t2s.models.speedyspeech:SpeedySpeech",
- "speedyspeech_inference":
- "paddlespeech.t2s.models.speedyspeech:SpeedySpeechInference",
- "fastspeech2":
- "paddlespeech.t2s.models.fastspeech2:FastSpeech2",
- "fastspeech2_inference":
- "paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
- "tacotron2":
- "paddlespeech.t2s.models.tacotron2:Tacotron2",
- "tacotron2_inference":
- "paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
- # voc
- "pwgan":
- "paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
- "pwgan_inference":
- "paddlespeech.t2s.models.parallel_wavegan:PWGInference",
- "mb_melgan":
- "paddlespeech.t2s.models.melgan:MelGANGenerator",
- "mb_melgan_inference":
- "paddlespeech.t2s.models.melgan:MelGANInference",
- "style_melgan":
- "paddlespeech.t2s.models.melgan:StyleMelGANGenerator",
- "style_melgan_inference":
- "paddlespeech.t2s.models.melgan:StyleMelGANInference",
- "hifigan":
- "paddlespeech.t2s.models.hifigan:HiFiGANGenerator",
- "hifigan_inference":
- "paddlespeech.t2s.models.hifigan:HiFiGANInference",
- "wavernn":
- "paddlespeech.t2s.models.wavernn:WaveRNN",
- "wavernn_inference":
- "paddlespeech.t2s.models.wavernn:WaveRNNInference",
-}
-
def evaluate(args):
# dataloader has been too verbose
@@ -86,96 +49,12 @@ def evaluate(args):
print(am_config)
print(voc_config)
- # construct dataset for evaluation
-
- # model: {model_name}_{dataset}
- am_name = args.am[:args.am.rindex('_')]
- am_dataset = args.am[args.am.rindex('_') + 1:]
-
- if am_name == 'fastspeech2':
- fields = ["utt_id", "text"]
- spk_num = None
- if am_dataset in {"aishell3", "vctk"} and args.speaker_dict:
- print("multiple speaker fastspeech2!")
- with open(args.speaker_dict, 'rt') as f:
- spk_id = [line.strip().split() for line in f.readlines()]
- spk_num = len(spk_id)
- fields += ["spk_id"]
- elif args.voice_cloning:
- print("voice cloning!")
- fields += ["spk_emb"]
- else:
- print("single speaker fastspeech2!")
- print("spk_num:", spk_num)
- elif am_name == 'speedyspeech':
- fields = ["utt_id", "phones", "tones"]
- elif am_name == 'tacotron2':
- fields = ["utt_id", "text"]
- if args.voice_cloning:
- print("voice cloning!")
- fields += ["spk_emb"]
-
- test_dataset = DataTable(data=test_metadata, fields=fields)
-
- with open(args.phones_dict, "r") as f:
- phn_id = [line.strip().split() for line in f.readlines()]
- vocab_size = len(phn_id)
- print("vocab_size:", vocab_size)
-
- tone_size = None
- if args.tones_dict:
- with open(args.tones_dict, "r") as f:
- tone_id = [line.strip().split() for line in f.readlines()]
- tone_size = len(tone_id)
- print("tone_size:", tone_size)
-
# acoustic model
- odim = am_config.n_mels
- am_class = dynamic_import(am_name, model_alias)
- am_inference_class = dynamic_import(am_name + '_inference', model_alias)
-
- if am_name == 'fastspeech2':
- am = am_class(
- idim=vocab_size, odim=odim, spk_num=spk_num, **am_config["model"])
- elif am_name == 'speedyspeech':
- am = am_class(
- vocab_size=vocab_size, tone_size=tone_size, **am_config["model"])
- elif am_name == 'tacotron2':
- am = am_class(idim=vocab_size, odim=odim, **am_config["model"])
-
- am.set_state_dict(paddle.load(args.am_ckpt)["main_params"])
- am.eval()
- am_mu, am_std = np.load(args.am_stat)
- am_mu = paddle.to_tensor(am_mu)
- am_std = paddle.to_tensor(am_std)
- am_normalizer = ZScore(am_mu, am_std)
- am_inference = am_inference_class(am_normalizer, am)
- print("am_inference.training0:", am_inference.training)
- am_inference.eval()
- print("acoustic model done!")
+ am_inference, am_name, am_dataset = get_am_inference(args, am_config)
+ test_dataset = get_test_dataset(args, test_metadata, am_name, am_dataset)
# vocoder
- # model: {model_name}_{dataset}
- voc_name = args.voc[:args.voc.rindex('_')]
- voc_class = dynamic_import(voc_name, model_alias)
- voc_inference_class = dynamic_import(voc_name + '_inference', model_alias)
- if voc_name != 'wavernn':
- voc = voc_class(**voc_config["generator_params"])
- voc.set_state_dict(paddle.load(args.voc_ckpt)["generator_params"])
- voc.remove_weight_norm()
- voc.eval()
- else:
- voc = voc_class(**voc_config["model"])
- voc.set_state_dict(paddle.load(args.voc_ckpt)["main_params"])
- voc.eval()
- voc_mu, voc_std = np.load(args.voc_stat)
- voc_mu = paddle.to_tensor(voc_mu)
- voc_std = paddle.to_tensor(voc_std)
- voc_normalizer = ZScore(voc_mu, voc_std)
- voc_inference = voc_inference_class(voc_normalizer, voc)
- print("voc_inference.training0:", voc_inference.training)
- voc_inference.eval()
- print("voc done!")
+ voc_inference = get_voc_inference(args, voc_config)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
@@ -227,7 +106,7 @@ def evaluate(args):
print(f"generation speed: {N / T}Hz, RTF: {am_config.fs / (N / T) }")
-def main():
+def parse_args():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(
description="Synthesize with acoustic model & vocoder")
@@ -264,7 +143,6 @@ def main():
"--tones_dict", type=str, default=None, help="tone vocabulary file.")
parser.add_argument(
"--speaker_dict", type=str, default=None, help="speaker id map file.")
-
parser.add_argument(
"--voice-cloning",
type=str2bool,
@@ -278,10 +156,10 @@ def main():
choices=[
'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk',
'mb_melgan_csmsc', 'wavernn_csmsc', 'hifigan_csmsc',
+ 'hifigan_ljspeech', 'hifigan_aishell3', 'hifigan_vctk',
'style_melgan_csmsc'
],
help='Choose vocoder type of tts task.')
-
parser.add_argument(
'--voc_config',
type=str,
@@ -302,7 +180,12 @@ def main():
parser.add_argument("--output_dir", type=str, help="output dir.")
args = parser.parse_args()
+ return args
+
+
+def main():
+ args = parse_args()
if args.ngpu == 0:
paddle.set_device("cpu")
elif args.ngpu > 0:
diff --git a/paddlespeech/t2s/exps/synthesize_e2e.py b/paddlespeech/t2s/exps/synthesize_e2e.py
index 94180f8531a..10b33c60acf 100644
--- a/paddlespeech/t2s/exps/synthesize_e2e.py
+++ b/paddlespeech/t2s/exps/synthesize_e2e.py
@@ -12,59 +12,20 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
-import os
from pathlib import Path
-import numpy as np
import paddle
import soundfile as sf
import yaml
-from paddle import jit
-from paddle.static import InputSpec
from timer import timer
from yacs.config import CfgNode
-from paddlespeech.s2t.utils.dynamic_import import dynamic_import
-from paddlespeech.t2s.frontend import English
-from paddlespeech.t2s.frontend.zh_frontend import Frontend
-from paddlespeech.t2s.modules.normalizer import ZScore
-
-model_alias = {
- # acoustic model
- "speedyspeech":
- "paddlespeech.t2s.models.speedyspeech:SpeedySpeech",
- "speedyspeech_inference":
- "paddlespeech.t2s.models.speedyspeech:SpeedySpeechInference",
- "fastspeech2":
- "paddlespeech.t2s.models.fastspeech2:FastSpeech2",
- "fastspeech2_inference":
- "paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
- "tacotron2":
- "paddlespeech.t2s.models.tacotron2:Tacotron2",
- "tacotron2_inference":
- "paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
- # voc
- "pwgan":
- "paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
- "pwgan_inference":
- "paddlespeech.t2s.models.parallel_wavegan:PWGInference",
- "mb_melgan":
- "paddlespeech.t2s.models.melgan:MelGANGenerator",
- "mb_melgan_inference":
- "paddlespeech.t2s.models.melgan:MelGANInference",
- "style_melgan":
- "paddlespeech.t2s.models.melgan:StyleMelGANGenerator",
- "style_melgan_inference":
- "paddlespeech.t2s.models.melgan:StyleMelGANInference",
- "hifigan":
- "paddlespeech.t2s.models.hifigan:HiFiGANGenerator",
- "hifigan_inference":
- "paddlespeech.t2s.models.hifigan:HiFiGANInference",
- "wavernn":
- "paddlespeech.t2s.models.wavernn:WaveRNN",
- "wavernn_inference":
- "paddlespeech.t2s.models.wavernn:WaveRNNInference",
-}
+from paddlespeech.t2s.exps.syn_utils import am_to_static
+from paddlespeech.t2s.exps.syn_utils import get_am_inference
+from paddlespeech.t2s.exps.syn_utils import get_frontend
+from paddlespeech.t2s.exps.syn_utils import get_sentences
+from paddlespeech.t2s.exps.syn_utils import get_voc_inference
+from paddlespeech.t2s.exps.syn_utils import voc_to_static
def evaluate(args):
@@ -81,151 +42,24 @@ def evaluate(args):
print(am_config)
print(voc_config)
- # construct dataset for evaluation
- sentences = []
- with open(args.text, 'rt') as f:
- for line in f:
- items = line.strip().split()
- utt_id = items[0]
- if args.lang == 'zh':
- sentence = "".join(items[1:])
- elif args.lang == 'en':
- sentence = " ".join(items[1:])
- sentences.append((utt_id, sentence))
-
- with open(args.phones_dict, "r") as f:
- phn_id = [line.strip().split() for line in f.readlines()]
- vocab_size = len(phn_id)
- print("vocab_size:", vocab_size)
-
- tone_size = None
- if args.tones_dict:
- with open(args.tones_dict, "r") as f:
- tone_id = [line.strip().split() for line in f.readlines()]
- tone_size = len(tone_id)
- print("tone_size:", tone_size)
-
- spk_num = None
- if args.speaker_dict:
- with open(args.speaker_dict, 'rt') as f:
- spk_id = [line.strip().split() for line in f.readlines()]
- spk_num = len(spk_id)
- print("spk_num:", spk_num)
+ sentences = get_sentences(args)
# frontend
- if args.lang == 'zh':
- frontend = Frontend(
- phone_vocab_path=args.phones_dict, tone_vocab_path=args.tones_dict)
- elif args.lang == 'en':
- frontend = English(phone_vocab_path=args.phones_dict)
- print("frontend done!")
+ frontend = get_frontend(args)
# acoustic model
- odim = am_config.n_mels
- # model: {model_name}_{dataset}
- am_name = args.am[:args.am.rindex('_')]
- am_dataset = args.am[args.am.rindex('_') + 1:]
-
- am_class = dynamic_import(am_name, model_alias)
- am_inference_class = dynamic_import(am_name + '_inference', model_alias)
-
- if am_name == 'fastspeech2':
- am = am_class(
- idim=vocab_size, odim=odim, spk_num=spk_num, **am_config["model"])
- elif am_name == 'speedyspeech':
- am = am_class(
- vocab_size=vocab_size,
- tone_size=tone_size,
- spk_num=spk_num,
- **am_config["model"])
- elif am_name == 'tacotron2':
- am = am_class(idim=vocab_size, odim=odim, **am_config["model"])
-
- am.set_state_dict(paddle.load(args.am_ckpt)["main_params"])
- am.eval()
- am_mu, am_std = np.load(args.am_stat)
- am_mu = paddle.to_tensor(am_mu)
- am_std = paddle.to_tensor(am_std)
- am_normalizer = ZScore(am_mu, am_std)
- am_inference = am_inference_class(am_normalizer, am)
- am_inference.eval()
- print("acoustic model done!")
+ am_inference, am_name, am_dataset = get_am_inference(args, am_config)
# vocoder
- # model: {model_name}_{dataset}
- voc_name = args.voc[:args.voc.rindex('_')]
- voc_class = dynamic_import(voc_name, model_alias)
- voc_inference_class = dynamic_import(voc_name + '_inference', model_alias)
- if voc_name != 'wavernn':
- voc = voc_class(**voc_config["generator_params"])
- voc.set_state_dict(paddle.load(args.voc_ckpt)["generator_params"])
- voc.remove_weight_norm()
- voc.eval()
- else:
- voc = voc_class(**voc_config["model"])
- voc.set_state_dict(paddle.load(args.voc_ckpt)["main_params"])
- voc.eval()
-
- voc_mu, voc_std = np.load(args.voc_stat)
- voc_mu = paddle.to_tensor(voc_mu)
- voc_std = paddle.to_tensor(voc_std)
- voc_normalizer = ZScore(voc_mu, voc_std)
- voc_inference = voc_inference_class(voc_normalizer, voc)
- voc_inference.eval()
- print("voc done!")
+ voc_inference = get_voc_inference(args, voc_config)
# whether dygraph to static
if args.inference_dir:
# acoustic model
- if am_name == 'fastspeech2':
- if am_dataset in {"aishell3", "vctk"} and args.speaker_dict:
- am_inference = jit.to_static(
- am_inference,
- input_spec=[
- InputSpec([-1], dtype=paddle.int64),
- InputSpec([1], dtype=paddle.int64)
- ])
- else:
- am_inference = jit.to_static(
- am_inference,
- input_spec=[InputSpec([-1], dtype=paddle.int64)])
-
- elif am_name == 'speedyspeech':
- if am_dataset in {"aishell3", "vctk"} and args.speaker_dict:
- am_inference = jit.to_static(
- am_inference,
- input_spec=[
- InputSpec([-1], dtype=paddle.int64), # text
- InputSpec([-1], dtype=paddle.int64), # tone
- InputSpec([1], dtype=paddle.int64), # spk_id
- None # duration
- ])
- else:
- am_inference = jit.to_static(
- am_inference,
- input_spec=[
- InputSpec([-1], dtype=paddle.int64),
- InputSpec([-1], dtype=paddle.int64)
- ])
-
- elif am_name == 'tacotron2':
- am_inference = jit.to_static(
- am_inference, input_spec=[InputSpec([-1], dtype=paddle.int64)])
-
- paddle.jit.save(am_inference, os.path.join(args.inference_dir, args.am))
- am_inference = paddle.jit.load(
- os.path.join(args.inference_dir, args.am))
+ am_inference = am_to_static(args, am_inference, am_name, am_dataset)
# vocoder
- voc_inference = jit.to_static(
- voc_inference,
- input_spec=[
- InputSpec([-1, 80], dtype=paddle.float32),
- ])
- paddle.jit.save(voc_inference,
- os.path.join(args.inference_dir, args.voc))
- voc_inference = paddle.jit.load(
- os.path.join(args.inference_dir, args.voc))
+ voc_inference = voc_to_static(args, voc_inference)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
@@ -298,7 +132,7 @@ def evaluate(args):
print(f"generation speed: {N / T}Hz, RTF: {am_config.fs / (N / T) }")
-def main():
+def parse_args():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(
description="Synthesize with acoustic model & vocoder")
@@ -346,12 +180,19 @@ def main():
type=str,
default='pwgan_csmsc',
choices=[
- 'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk',
- 'mb_melgan_csmsc', 'style_melgan_csmsc', 'hifigan_csmsc',
- 'wavernn_csmsc'
+ 'pwgan_csmsc',
+ 'pwgan_ljspeech',
+ 'pwgan_aishell3',
+ 'pwgan_vctk',
+ 'mb_melgan_csmsc',
+ 'style_melgan_csmsc',
+ 'hifigan_csmsc',
+ 'hifigan_ljspeech',
+ 'hifigan_aishell3',
+ 'hifigan_vctk',
+ 'wavernn_csmsc',
],
help='Choose vocoder type of tts task.')
-
parser.add_argument(
'--voc_config',
type=str,
@@ -386,6 +227,11 @@ def main():
parser.add_argument("--output_dir", type=str, help="output dir.")
args = parser.parse_args()
+ return args
+
+
+def main():
+ args = parse_args()
if args.ngpu == 0:
paddle.set_device("cpu")
diff --git a/paddlespeech/t2s/exps/voice_cloning.py b/paddlespeech/t2s/exps/voice_cloning.py
index 3de30774f5b..1afd21dfffb 100644
--- a/paddlespeech/t2s/exps/voice_cloning.py
+++ b/paddlespeech/t2s/exps/voice_cloning.py
@@ -21,29 +21,12 @@
import yaml
from yacs.config import CfgNode
-from paddlespeech.s2t.utils.dynamic_import import dynamic_import
+from paddlespeech.t2s.exps.syn_utils import get_am_inference
+from paddlespeech.t2s.exps.syn_utils import get_voc_inference
from paddlespeech.t2s.frontend.zh_frontend import Frontend
-from paddlespeech.t2s.modules.normalizer import ZScore
from paddlespeech.vector.exps.ge2e.audio_processor import SpeakerVerificationPreprocessor
from paddlespeech.vector.models.lstm_speaker_encoder import LSTMSpeakerEncoder
-model_alias = {
- # acoustic model
- "fastspeech2":
- "paddlespeech.t2s.models.fastspeech2:FastSpeech2",
- "fastspeech2_inference":
- "paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
- "tacotron2":
- "paddlespeech.t2s.models.tacotron2:Tacotron2",
- "tacotron2_inference":
- "paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
- # voc
- "pwgan":
- "paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
- "pwgan_inference":
- "paddlespeech.t2s.models.parallel_wavegan:PWGInference",
-}
-
def voice_cloning(args):
# Init body.
@@ -79,55 +62,14 @@ def voice_cloning(args):
speaker_encoder.eval()
print("GE2E Done!")
- with open(args.phones_dict, "r") as f:
- phn_id = [line.strip().split() for line in f.readlines()]
- vocab_size = len(phn_id)
- print("vocab_size:", vocab_size)
+ frontend = Frontend(phone_vocab_path=args.phones_dict)
+ print("frontend done!")
# acoustic model
- odim = am_config.n_mels
- # model: {model_name}_{dataset}
- am_name = args.am[:args.am.rindex('_')]
- am_dataset = args.am[args.am.rindex('_') + 1:]
-
- am_class = dynamic_import(am_name, model_alias)
- am_inference_class = dynamic_import(am_name + '_inference', model_alias)
-
- if am_name == 'fastspeech2':
- am = am_class(
- idim=vocab_size, odim=odim, spk_num=None, **am_config["model"])
- elif am_name == 'tacotron2':
- am = am_class(idim=vocab_size, odim=odim, **am_config["model"])
-
- am.set_state_dict(paddle.load(args.am_ckpt)["main_params"])
- am.eval()
- am_mu, am_std = np.load(args.am_stat)
- am_mu = paddle.to_tensor(am_mu)
- am_std = paddle.to_tensor(am_std)
- am_normalizer = ZScore(am_mu, am_std)
- am_inference = am_inference_class(am_normalizer, am)
- am_inference.eval()
- print("acoustic model done!")
+ am_inference, *_ = get_am_inference(args, am_config)
# vocoder
- # model: {model_name}_{dataset}
- voc_name = args.voc[:args.voc.rindex('_')]
- voc_class = dynamic_import(voc_name, model_alias)
- voc_inference_class = dynamic_import(voc_name + '_inference', model_alias)
- voc = voc_class(**voc_config["generator_params"])
- voc.set_state_dict(paddle.load(args.voc_ckpt)["generator_params"])
- voc.remove_weight_norm()
- voc.eval()
- voc_mu, voc_std = np.load(args.voc_stat)
- voc_mu = paddle.to_tensor(voc_mu)
- voc_std = paddle.to_tensor(voc_std)
- voc_normalizer = ZScore(voc_mu, voc_std)
- voc_inference = voc_inference_class(voc_normalizer, voc)
- voc_inference.eval()
- print("voc done!")
-
- frontend = Frontend(phone_vocab_path=args.phones_dict)
- print("frontend done!")
+ voc_inference = get_voc_inference(args, voc_config)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
@@ -170,7 +112,7 @@ def voice_cloning(args):
print(f"{utt_id} done!")
-def main():
+def parse_args():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(description="")
parser.add_argument(
@@ -240,6 +182,11 @@ def main():
parser.add_argument("--output-dir", type=str, help="output dir.")
args = parser.parse_args()
+ return args
+
+
+def main():
+ args = parse_args()
if args.ngpu == 0:
paddle.set_device("cpu")
diff --git a/paddlespeech/t2s/modules/predictor/length_regulator.py b/paddlespeech/t2s/modules/predictor/length_regulator.py
index 62d707d2234..2472c413bea 100644
--- a/paddlespeech/t2s/modules/predictor/length_regulator.py
+++ b/paddlespeech/t2s/modules/predictor/length_regulator.py
@@ -101,6 +101,16 @@ def forward(self, xs, ds, alpha=1.0, is_inference=False):
assert alpha > 0
ds = paddle.round(ds.cast(dtype=paddle.float32) * alpha)
ds = ds.cast(dtype=paddle.int64)
+ '''
+ from distutils.version import LooseVersion
+ from paddlespeech.t2s.modules.nets_utils import pad_list
+ # 这里在 paddle 2.2.2 的动转静是不通的
+ # if LooseVersion(paddle.__version__) >= "2.3.0" or hasattr(paddle, 'repeat_interleave'):
+ # if LooseVersion(paddle.__version__) >= "2.3.0":
+ if hasattr(paddle, 'repeat_interleave'):
+ repeat = [paddle.repeat_interleave(x, d, axis=0) for x, d in zip(xs, ds)]
+ return pad_list(repeat, self.pad_value)
+ '''
if is_inference:
return self.expand(xs, ds)
else:
diff --git a/paddlespeech/vector/cluster/diarization.py b/paddlespeech/vector/cluster/diarization.py
new file mode 100644
index 00000000000..6432acb8169
--- /dev/null
+++ b/paddlespeech/vector/cluster/diarization.py
@@ -0,0 +1,1082 @@
+# Copyright (c) 2022 SpeechBrain Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+This script contains basic functions used for speaker diarization.
+This script has an optional dependency on open source sklearn library.
+A few sklearn functions are modified in this script as per requirement.
+"""
+
+import argparse
+import warnings
+import scipy
+import numpy as np
+from distutils.util import strtobool
+
+from scipy import sparse
+from scipy.sparse.linalg import eigsh
+from scipy.sparse.csgraph import connected_components
+from scipy.sparse.csgraph import laplacian as csgraph_laplacian
+
+import sklearn
+from sklearn.neighbors import kneighbors_graph
+from sklearn.cluster import SpectralClustering
+from sklearn.cluster._kmeans import k_means
+
+
+def _graph_connected_component(graph, node_id):
+ """
+ Find the largest graph connected components that contains one
+ given node.
+
+ Arguments
+ ---------
+ graph : array-like, shape: (n_samples, n_samples)
+ Adjacency matrix of the graph, non-zero weight means an edge
+ between the nodes.
+ node_id : int
+ The index of the query node of the graph.
+
+ Returns
+ -------
+ connected_components_matrix : array-like
+ shape - (n_samples,).
+ An array of bool value indicating the indexes of the nodes belonging
+ to the largest connected components of the given query node.
+ """
+
+ n_node = graph.shape[0]
+ if sparse.issparse(graph):
+ # speed up row-wise access to boolean connection mask
+ graph = graph.tocsr()
+ connected_nodes = np.zeros(n_node, dtype=bool)
+ nodes_to_explore = np.zeros(n_node, dtype=bool)
+ nodes_to_explore[node_id] = True
+ for _ in range(n_node):
+ last_num_component = connected_nodes.sum()
+ np.logical_or(connected_nodes, nodes_to_explore, out=connected_nodes)
+ if last_num_component >= connected_nodes.sum():
+ break
+ indices = np.where(nodes_to_explore)[0]
+ nodes_to_explore.fill(False)
+ for i in indices:
+ if sparse.issparse(graph):
+ neighbors = graph[i].toarray().ravel()
+ else:
+ neighbors = graph[i]
+ np.logical_or(nodes_to_explore, neighbors, out=nodes_to_explore)
+ return connected_nodes
+
+
+def _graph_is_connected(graph):
+ """
+ Return whether the graph is connected (True) or Not (False)
+
+ Arguments
+ ---------
+ graph : array-like or sparse matrix, shape: (n_samples, n_samples)
+ Adjacency matrix of the graph, non-zero weight means an edge between the nodes.
+
+ Returns
+ -------
+ is_connected : bool
+ True means the graph is fully connected and False means not.
+ """
+
+ if sparse.isspmatrix(graph):
+ # sparse graph, find all the connected components
+ n_connected_components, _ = connected_components(graph)
+ return n_connected_components == 1
+ else:
+ # dense graph, find all connected components start from node 0
+ return _graph_connected_component(graph, 0).sum() == graph.shape[0]
+
+
+def _set_diag(laplacian, value, norm_laplacian):
+ """
+ Set the diagonal of the laplacian matrix and convert it to a sparse
+ format well suited for eigenvalue decomposition.
+
+ Arguments
+ ---------
+ laplacian : array or sparse matrix
+ The graph laplacian.
+ value : float
+ The value of the diagonal.
+ norm_laplacian : bool
+ Whether the value of the diagonal should be changed or not.
+
+ Returns
+ -------
+ laplacian : array or sparse matrix
+ An array of matrix in a form that is well suited to fast eigenvalue
+ decomposition, depending on the bandwidth of the matrix.
+ """
+
+ n_nodes = laplacian.shape[0]
+ # We need all entries in the diagonal to values
+ if not sparse.isspmatrix(laplacian):
+ if norm_laplacian:
+ laplacian.flat[::n_nodes + 1] = value
+ else:
+ laplacian = laplacian.tocoo()
+ if norm_laplacian:
+ diag_idx = laplacian.row == laplacian.col
+ laplacian.data[diag_idx] = value
+ # If the matrix has a small number of diagonals (as in the
+ # case of structured matrices coming from images), the
+ # dia format might be best suited for matvec products:
+ n_diags = np.unique(laplacian.row - laplacian.col).size
+ if n_diags <= 7:
+ # 3 or less outer diagonals on each side
+ laplacian = laplacian.todia()
+ else:
+ # csr has the fastest matvec and is thus best suited to
+ # arpack
+ laplacian = laplacian.tocsr()
+ return laplacian
+
+
+def _deterministic_vector_sign_flip(u):
+ """
+ Modify the sign of vectors for reproducibility. Flips the sign of
+ elements of all the vectors (rows of u) such that the absolute
+ maximum element of each vector is positive.
+
+ Arguments
+ ---------
+ u : ndarray
+ Array with vectors as its rows.
+
+ Returns
+ -------
+ u_flipped : ndarray
+ Array with the sign flipped vectors as its rows. The same shape as `u`.
+ """
+
+ max_abs_rows = np.argmax(np.abs(u), axis=1)
+ signs = np.sign(u[range(u.shape[0]), max_abs_rows])
+ u *= signs[:, np.newaxis]
+ return u
+
+
+def _check_random_state(seed):
+ """
+ Turn seed into a np.random.RandomState instance.
+
+ Arguments
+ ---------
+ seed : None | int | instance of RandomState
+ If seed is None, return the RandomState singleton used by np.random.
+ If seed is an int, return a new RandomState instance seeded with seed.
+ If seed is already a RandomState instance, return it.
+ Otherwise raise ValueError.
+ """
+
+ if seed is None or seed is np.random:
+ return np.random.mtrand._rand
+ if isinstance(seed, numbers.Integral):
+ return np.random.RandomState(seed)
+ if isinstance(seed, np.random.RandomState):
+ return seed
+ raise ValueError("%r cannot be used to seed a np.random.RandomState"
+ " instance" % seed)
+
+
+def spectral_embedding(
+ adjacency,
+ n_components=8,
+ norm_laplacian=True,
+ drop_first=True, ):
+ """
+ Returns spectral embeddings.
+
+ Arguments
+ ---------
+ adjacency : array-like or sparse graph
+ shape - (n_samples, n_samples)
+ The adjacency matrix of the graph to embed.
+ n_components : int
+ The dimension of the projection subspace.
+ norm_laplacian : bool
+ If True, then compute normalized Laplacian.
+ drop_first : bool
+ Whether to drop the first eigenvector.
+
+ Returns
+ -------
+ embedding : array
+ Spectral embeddings for each sample.
+
+ Example
+ -------
+ >>> import numpy as np
+ >>> import diarization as diar
+ >>> affinity = np.array([[1, 1, 1, 0.5, 0, 0, 0, 0, 0, 0.5],
+ ... [1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
+ ... [1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
+ ... [0.5, 0, 0, 1, 1, 1, 0, 0, 0, 0],
+ ... [0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
+ ... [0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
+ ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
+ ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
+ ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
+ ... [0.5, 0, 0, 0, 0, 0, 1, 1, 1, 1]])
+ >>> embs = diar.spectral_embedding(affinity, 3)
+ >>> # Notice similar embeddings
+ >>> print(np.around(embs , decimals=3))
+ [[ 0.075 0.244 0.285]
+ [ 0.083 0.356 -0.203]
+ [ 0.083 0.356 -0.203]
+ [ 0.26 -0.149 0.154]
+ [ 0.29 -0.218 -0.11 ]
+ [ 0.29 -0.218 -0.11 ]
+ [-0.198 -0.084 -0.122]
+ [-0.198 -0.084 -0.122]
+ [-0.198 -0.084 -0.122]
+ [-0.167 -0.044 0.316]]
+ """
+
+ # Whether to drop the first eigenvector
+ if drop_first:
+ n_components = n_components + 1
+
+ if not _graph_is_connected(adjacency):
+ warnings.warn("Graph is not fully connected, spectral embedding"
+ " may not work as expected.")
+
+ laplacian, dd = csgraph_laplacian(
+ adjacency, normed=norm_laplacian, return_diag=True)
+
+ laplacian = _set_diag(laplacian, 1, norm_laplacian)
+
+ laplacian *= -1
+
+ vals, diffusion_map = eigsh(
+ laplacian,
+ k=n_components,
+ sigma=1.0,
+ which="LM", )
+
+ embedding = diffusion_map.T[n_components::-1]
+
+ if norm_laplacian:
+ embedding = embedding / dd
+
+ embedding = _deterministic_vector_sign_flip(embedding)
+ if drop_first:
+ return embedding[1:n_components].T
+ else:
+ return embedding[:n_components].T
+
+
+def spectral_clustering(
+ affinity,
+ n_clusters=8,
+ n_components=None,
+ random_state=None,
+ n_init=10, ):
+ """
+ Performs spectral clustering.
+
+ Arguments
+ ---------
+ affinity : matrix
+ Affinity matrix.
+ n_clusters : int
+ Number of clusters for kmeans.
+ n_components : int
+ Number of components to retain while estimating spectral embeddings.
+ random_state : int
+ A pseudo random number generator used by kmeans.
+ n_init : int
+ Number of time the k-means algorithm will be run with different centroid seeds.
+
+ Returns
+ -------
+ labels : array
+ Cluster label for each sample.
+
+ Example
+ -------
+ >>> import numpy as np
+ >>> diarization as diar
+ >>> affinity = np.array([[1, 1, 1, 0.5, 0, 0, 0, 0, 0, 0.5],
+ ... [1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
+ ... [1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
+ ... [0.5, 0, 0, 1, 1, 1, 0, 0, 0, 0],
+ ... [0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
+ ... [0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
+ ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
+ ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
+ ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
+ ... [0.5, 0, 0, 0, 0, 0, 1, 1, 1, 1]])
+ >>> labs = diar.spectral_clustering(affinity, 3)
+ >>> # print (labs) # [2 2 2 1 1 1 0 0 0 0]
+ """
+
+ random_state = _check_random_state(random_state)
+ n_components = n_clusters if n_components is None else n_components
+
+ maps = spectral_embedding(
+ affinity,
+ n_components=n_components,
+ drop_first=False, )
+
+ _, labels, _ = k_means(
+ maps, n_clusters, random_state=random_state, n_init=n_init)
+
+ return labels
+
+
+class EmbeddingMeta:
+ """
+ A utility class to pack deep embeddings and meta-information in one object.
+
+ Arguments
+ ---------
+ segset : list
+ List of session IDs as an array of strings.
+ stats : tensor
+ An ndarray of float64. Each line contains embedding
+ from the corresponding session.
+ """
+
+ def __init__(
+ self,
+ segset=None,
+ stats=None, ):
+
+ if segset is None:
+ self.segset = numpy.empty(0, dtype="|O")
+ self.stats = numpy.array([], dtype=np.float64)
+ else:
+ self.segset = segset
+ self.stats = stats
+
+ def norm_stats(self):
+ """
+ Divide all first-order statistics by their Euclidean norm.
+ """
+
+ vect_norm = np.clip(np.linalg.norm(self.stats, axis=1), 1e-08, np.inf)
+ self.stats = (self.stats.transpose() / vect_norm).transpose()
+
+
+class SpecClustUnorm:
+ """
+ This class implements the spectral clustering with unnormalized affinity matrix.
+ Useful when affinity matrix is based on cosine similarities.
+
+ Reference
+ ---------
+ Von Luxburg, U. A tutorial on spectral clustering. Stat Comput 17, 395–416 (2007).
+ https://doi.org/10.1007/s11222-007-9033-z
+
+ Example
+ -------
+ >>> import diarization as diar
+ >>> clust = diar.SpecClustUnorm(min_num_spkrs=2, max_num_spkrs=10)
+ >>> emb = [[ 2.1, 3.1, 4.1, 4.2, 3.1],
+ ... [ 2.2, 3.1, 4.2, 4.2, 3.2],
+ ... [ 2.0, 3.0, 4.0, 4.1, 3.0],
+ ... [ 8.0, 7.0, 7.0, 8.1, 9.0],
+ ... [ 8.1, 7.1, 7.2, 8.1, 9.2],
+ ... [ 8.3, 7.4, 7.0, 8.4, 9.0],
+ ... [ 0.3, 0.4, 0.4, 0.5, 0.8],
+ ... [ 0.4, 0.3, 0.6, 0.7, 0.8],
+ ... [ 0.2, 0.3, 0.2, 0.3, 0.7],
+ ... [ 0.3, 0.4, 0.4, 0.4, 0.7],]
+ >>> # Estimating similarity matrix
+ >>> sim_mat = clust.get_sim_mat(emb)
+ >>> print (np.around(sim_mat[5:,5:], decimals=3))
+ [[1. 0.957 0.961 0.904 0.966]
+ [0.957 1. 0.977 0.982 0.997]
+ [0.961 0.977 1. 0.928 0.972]
+ [0.904 0.982 0.928 1. 0.976]
+ [0.966 0.997 0.972 0.976 1. ]]
+ >>> # Prunning
+ >>> prunned_sim_mat = clust.p_pruning(sim_mat, 0.3)
+ >>> print (np.around(prunned_sim_mat[5:,5:], decimals=3))
+ [[1. 0. 0. 0. 0. ]
+ [0. 1. 0. 0.982 0.997]
+ [0. 0.977 1. 0. 0.972]
+ [0. 0.982 0. 1. 0.976]
+ [0. 0.997 0. 0.976 1. ]]
+ >>> # Symmetrization
+ >>> sym_prund_sim_mat = 0.5 * (prunned_sim_mat + prunned_sim_mat.T)
+ >>> print (np.around(sym_prund_sim_mat[5:,5:], decimals=3))
+ [[1. 0. 0. 0. 0. ]
+ [0. 1. 0.489 0.982 0.997]
+ [0. 0.489 1. 0. 0.486]
+ [0. 0.982 0. 1. 0.976]
+ [0. 0.997 0.486 0.976 1. ]]
+ >>> # Laplacian
+ >>> laplacian = clust.get_laplacian(sym_prund_sim_mat)
+ >>> print (np.around(laplacian[5:,5:], decimals=3))
+ [[ 1.999 0. 0. 0. 0. ]
+ [ 0. 2.468 -0.489 -0.982 -0.997]
+ [ 0. -0.489 0.975 0. -0.486]
+ [ 0. -0.982 0. 1.958 -0.976]
+ [ 0. -0.997 -0.486 -0.976 2.458]]
+ >>> # Spectral Embeddings
+ >>> spec_emb, num_of_spk = clust.get_spec_embs(laplacian, 3)
+ >>> print(num_of_spk)
+ 3
+ >>> # Clustering
+ >>> clust.cluster_embs(spec_emb, num_of_spk)
+ >>> # print (clust.labels_) # [0 0 0 2 2 2 1 1 1 1]
+ >>> # Complete spectral clustering
+ >>> clust.do_spec_clust(emb, k_oracle=3, p_val=0.3)
+ >>> # print(clust.labels_) # [0 0 0 2 2 2 1 1 1 1]
+ """
+
+ def __init__(self, min_num_spkrs=2, max_num_spkrs=10):
+
+ self.min_num_spkrs = min_num_spkrs
+ self.max_num_spkrs = max_num_spkrs
+
+ def do_spec_clust(self, X, k_oracle, p_val):
+ """
+ Function for spectral clustering.
+
+ Arguments
+ ---------
+ X : array
+ (n_samples, n_features).
+ Embeddings extracted from the model.
+ k_oracle : int
+ Number of speakers (when oracle number of speakers).
+ p_val : float
+ p percent value to prune the affinity matrix.
+ """
+
+ # Similarity matrix computation
+ sim_mat = self.get_sim_mat(X)
+
+ # Refining similarity matrix with p_val
+ prunned_sim_mat = self.p_pruning(sim_mat, p_val)
+
+ # Symmetrization
+ sym_prund_sim_mat = 0.5 * (prunned_sim_mat + prunned_sim_mat.T)
+
+ # Laplacian calculation
+ laplacian = self.get_laplacian(sym_prund_sim_mat)
+
+ # Get Spectral Embeddings
+ emb, num_of_spk = self.get_spec_embs(laplacian, k_oracle)
+
+ # Perform clustering
+ self.cluster_embs(emb, num_of_spk)
+
+ def get_sim_mat(self, X):
+ """
+ Returns the similarity matrix based on cosine similarities.
+
+ Arguments
+ ---------
+ X : array
+ (n_samples, n_features).
+ Embeddings extracted from the model.
+
+ Returns
+ -------
+ M : array
+ (n_samples, n_samples).
+ Similarity matrix with cosine similarities between each pair of embedding.
+ """
+
+ # Cosine similarities
+ M = sklearn.metrics.pairwise.cosine_similarity(X, X)
+ return M
+
+ def p_pruning(self, A, pval):
+ """
+ Refine the affinity matrix by zeroing less similar values.
+
+ Arguments
+ ---------
+ A : array
+ (n_samples, n_samples).
+ Affinity matrix.
+ pval : float
+ p-value to be retained in each row of the affinity matrix.
+
+ Returns
+ -------
+ A : array
+ (n_samples, n_samples).
+ Prunned affinity matrix based on p_val.
+ """
+
+ n_elems = int((1 - pval) * A.shape[0])
+
+ # For each row in a affinity matrix
+ for i in range(A.shape[0]):
+ low_indexes = np.argsort(A[i, :])
+ low_indexes = low_indexes[0:n_elems]
+
+ # Replace smaller similarity values by 0s
+ A[i, low_indexes] = 0
+
+ return A
+
+ def get_laplacian(self, M):
+ """
+ Returns the un-normalized laplacian for the given affinity matrix.
+
+ Arguments
+ ---------
+ M : array
+ (n_samples, n_samples)
+ Affinity matrix.
+
+ Returns
+ -------
+ L : array
+ (n_samples, n_samples)
+ Laplacian matrix.
+ """
+
+ M[np.diag_indices(M.shape[0])] = 0
+ D = np.sum(np.abs(M), axis=1)
+ D = np.diag(D)
+ L = D - M
+ return L
+
+ def get_spec_embs(self, L, k_oracle=4):
+ """
+ Returns spectral embeddings and estimates the number of speakers
+ using maximum Eigen gap.
+
+ Arguments
+ ---------
+ L : array (n_samples, n_samples)
+ Laplacian matrix.
+ k_oracle : int
+ Number of speakers when the condition is oracle number of speakers,
+ else None.
+
+ Returns
+ -------
+ emb : array (n_samples, n_components)
+ Spectral embedding for each sample with n Eigen components.
+ num_of_spk : int
+ Estimated number of speakers. If the condition is set to the oracle
+ number of speakers then returns k_oracle.
+ """
+
+ lambdas, eig_vecs = scipy.linalg.eigh(L)
+
+ # if params["oracle_n_spkrs"] is True:
+ if k_oracle is not None:
+ num_of_spk = k_oracle
+ else:
+ lambda_gap_list = self.get_eigen_gaps(lambdas[1:self.max_num_spkrs])
+
+ num_of_spk = (np.argmax(
+ lambda_gap_list[:min(self.max_num_spkrs, len(lambda_gap_list))])
+ + 2)
+
+ if num_of_spk < self.min_num_spkrs:
+ num_of_spk = self.min_num_spkrs
+
+ emb = eig_vecs[:, 0:num_of_spk]
+
+ return emb, num_of_spk
+
+ def cluster_embs(self, emb, k):
+ """
+ Clusters the embeddings using kmeans.
+
+ Arguments
+ ---------
+ emb : array (n_samples, n_components)
+ Spectral embedding for each sample with n Eigen components.
+ k : int
+ Number of clusters to kmeans.
+
+ Returns
+ -------
+ self.labels_ : self
+ Labels for each sample embedding.
+ """
+ _, self.labels_, _ = k_means(emb, k)
+
+ def get_eigen_gaps(self, eig_vals):
+ """
+ Returns the difference (gaps) between the Eigen values.
+
+ Arguments
+ ---------
+ eig_vals : list
+ List of eigen values
+
+ Returns
+ -------
+ eig_vals_gap_list : list
+ List of differences (gaps) between adjacent Eigen values.
+ """
+
+ eig_vals_gap_list = []
+ for i in range(len(eig_vals) - 1):
+ gap = float(eig_vals[i + 1]) - float(eig_vals[i])
+ eig_vals_gap_list.append(gap)
+
+ return eig_vals_gap_list
+
+
+class SpecCluster(SpectralClustering):
+ def perform_sc(self, X, n_neighbors=10):
+ """
+ Performs spectral clustering using sklearn on embeddings.
+
+ Arguments
+ ---------
+ X : array (n_samples, n_features)
+ Embeddings to be clustered.
+ n_neighbors : int
+ Number of neighbors in estimating affinity matrix.
+ """
+
+ # Computation of affinity matrix
+ connectivity = kneighbors_graph(
+ X,
+ n_neighbors=n_neighbors,
+ include_self=True, )
+ self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
+
+ # Perform spectral clustering on affinity matrix
+ self.labels_ = spectral_clustering(
+ self.affinity_matrix_,
+ n_clusters=self.n_clusters, )
+ return self
+
+
+def is_overlapped(end1, start2):
+ """
+ Returns True if segments are overlapping.
+
+ Arguments
+ ---------
+ end1 : float
+ End time of the first segment.
+ start2 : float
+ Start time of the second segment.
+
+ Returns
+ -------
+ overlapped : bool
+ True of segments overlapped else False.
+
+ Example
+ -------
+ >>> import diarization as diar
+ >>> diar.is_overlapped(5.5, 3.4)
+ True
+ >>> diar.is_overlapped(5.5, 6.4)
+ False
+ """
+
+ if start2 > end1:
+ return False
+ else:
+ return True
+
+
+def merge_ssegs_same_speaker(lol):
+ """
+ Merge adjacent sub-segs from the same speaker.
+
+ Arguments
+ ---------
+ lol : list of list
+ Each list contains [rec_id, seg_start, seg_end, spkr_id].
+
+ Returns
+ -------
+ new_lol : list of list
+ new_lol contains adjacent segments merged from the same speaker ID.
+
+ Example
+ -------
+ >>> import diarization as diar
+ >>> lol=[['r1', 5.5, 7.0, 's1'],
+ ... ['r1', 6.5, 9.0, 's1'],
+ ... ['r1', 8.0, 11.0, 's1'],
+ ... ['r1', 11.5, 13.0, 's2'],
+ ... ['r1', 14.0, 15.0, 's2'],
+ ... ['r1', 14.5, 15.0, 's1']]
+ >>> diar.merge_ssegs_same_speaker(lol)
+ [['r1', 5.5, 11.0, 's1'], ['r1', 11.5, 13.0, 's2'], ['r1', 14.0, 15.0, 's2'], ['r1', 14.5, 15.0, 's1']]
+ """
+
+ new_lol = []
+
+ # Start from the first sub-seg
+ sseg = lol[0]
+ flag = False
+ for i in range(1, len(lol)):
+ next_sseg = lol[i]
+
+ # IF sub-segments overlap AND has same speaker THEN merge
+ if is_overlapped(sseg[2], next_sseg[1]) and sseg[3] == next_sseg[3]:
+ sseg[2] = next_sseg[2] # just update the end time
+ # This is important. For the last sseg, if it is the same speaker the merge
+ # Make sure we don't append the last segment once more. Hence, set FLAG=True
+ if i == len(lol) - 1:
+ flag = True
+ new_lol.append(sseg)
+ else:
+ new_lol.append(sseg)
+ sseg = next_sseg
+
+ # Add last segment only when it was skipped earlier.
+ if flag is False:
+ new_lol.append(lol[-1])
+
+ return new_lol
+
+
+def distribute_overlap(lol):
+ """
+ Distributes the overlapped speech equally among the adjacent segments
+ with different speakers.
+
+ Arguments
+ ---------
+ lol : list of list
+ It has each list structure as [rec_id, seg_start, seg_end, spkr_id].
+
+ Returns
+ -------
+ new_lol : list of list
+ It contains the overlapped part equally divided among the adjacent
+ segments with different speaker IDs.
+
+ Example
+ -------
+ >>> import diarization as diar
+ >>> lol = [['r1', 5.5, 9.0, 's1'],
+ ... ['r1', 8.0, 11.0, 's2'],
+ ... ['r1', 11.5, 13.0, 's2'],
+ ... ['r1', 12.0, 15.0, 's1']]
+ >>> diar.distribute_overlap(lol)
+ [['r1', 5.5, 8.5, 's1'], ['r1', 8.5, 11.0, 's2'], ['r1', 11.5, 12.5, 's2'], ['r1', 12.5, 15.0, 's1']]
+ """
+
+ new_lol = []
+ sseg = lol[0]
+
+ # Add first sub-segment here to avoid error at: "if new_lol[-1] != sseg:" when new_lol is empty
+ # new_lol.append(sseg)
+
+ for i in range(1, len(lol)):
+ next_sseg = lol[i]
+ # No need to check if they are different speakers.
+ # Because if segments are overlapped then they always have different speakers.
+ # This is because similar speaker's adjacent sub-segments are already merged by "merge_ssegs_same_speaker()"
+
+ if is_overlapped(sseg[2], next_sseg[1]):
+
+ # Get overlap duration.
+ # Now this overlap will be divided equally between adjacent segments.
+ overlap = sseg[2] - next_sseg[1]
+
+ # Update end time of old seg
+ sseg[2] = sseg[2] - (overlap / 2.0)
+
+ # Update start time of next seg
+ next_sseg[1] = next_sseg[1] + (overlap / 2.0)
+
+ if len(new_lol) == 0:
+ # For first sub-segment entry
+ new_lol.append(sseg)
+ else:
+ # To avoid duplicate entries
+ if new_lol[-1] != sseg:
+ new_lol.append(sseg)
+
+ # Current sub-segment is next sub-segment
+ sseg = next_sseg
+
+ else:
+ # For the first sseg
+ if len(new_lol) == 0:
+ new_lol.append(sseg)
+ else:
+ # To avoid duplicate entries
+ if new_lol[-1] != sseg:
+ new_lol.append(sseg)
+
+ # Update the current sub-segment
+ sseg = next_sseg
+
+ # Add the remaining last sub-segment
+ new_lol.append(next_sseg)
+
+ return new_lol
+
+
+def write_rttm(segs_list, out_rttm_file):
+ """
+ Writes the segment list in RTTM format (A standard NIST format).
+
+ Arguments
+ ---------
+ segs_list : list of list
+ Each list contains [rec_id, seg_start, seg_end, spkr_id].
+ out_rttm_file : str
+ Path of the output RTTM file.
+ """
+
+ rttm = []
+ rec_id = segs_list[0][0]
+
+ for seg in segs_list:
+ new_row = [
+ "SPEAKER",
+ rec_id,
+ "0",
+ str(round(seg[1], 4)),
+ str(round(seg[2] - seg[1], 4)),
+ "",
+ "",
+ seg[3],
+ "",
+ "",
+ ]
+ rttm.append(new_row)
+
+ with open(out_rttm_file, "w") as f:
+ for row in rttm:
+ line_str = " ".join(row)
+ f.write("%s\n" % line_str)
+
+
+def do_AHC(diary_obj, out_rttm_file, rec_id, k_oracle=4, p_val=0.3):
+ """
+ Performs Agglomerative Hierarchical Clustering on embeddings.
+
+ Arguments
+ ---------
+ diary_obj : EmbeddingMeta type
+ Contains embeddings in diary_obj.stats and segment IDs in diary_obj.segset.
+ out_rttm_file : str
+ Path of the output RTTM file.
+ rec_id : str
+ Recording ID for the recording under processing.
+ k : int
+ Number of speaker (None, if it has to be estimated).
+ pval : float
+ `pval` for prunning affinity matrix. Used only when number of speakers
+ are unknown. Note that this is just for experiment. Prefer Spectral clustering
+ for better clustering results.
+ """
+
+ from sklearn.cluster import AgglomerativeClustering
+
+ # p_val is the threshold_val (for AHC)
+ diary_obj.norm_stats()
+
+ # processing
+ if k_oracle is not None:
+ num_of_spk = k_oracle
+
+ clustering = AgglomerativeClustering(
+ n_clusters=num_of_spk,
+ affinity="cosine",
+ linkage="average", ).fit(diary_obj.stats)
+ labels = clustering.labels_
+
+ else:
+ # Estimate num of using max eigen gap with `cos` affinity matrix.
+ # This is just for experimentation.
+ clustering = AgglomerativeClustering(
+ n_clusters=None,
+ affinity="cosine",
+ linkage="average",
+ distance_threshold=p_val, ).fit(diary_obj.stats)
+ labels = clustering.labels_
+
+ # Convert labels to speaker boundaries
+ subseg_ids = diary_obj.segset
+ lol = []
+
+ for i in range(labels.shape[0]):
+ spkr_id = rec_id + "_" + str(labels[i])
+
+ sub_seg = subseg_ids[i]
+
+ splitted = sub_seg.rsplit("_", 2)
+ rec_id = str(splitted[0])
+ sseg_start = float(splitted[1])
+ sseg_end = float(splitted[2])
+
+ a = [rec_id, sseg_start, sseg_end, spkr_id]
+ lol.append(a)
+
+ # Sorting based on start time of sub-segment
+ lol.sort(key=lambda x: float(x[1]))
+
+ # Merge and split in 2 simple steps: (i) Merge sseg of same speakers then (ii) split different speakers
+ # Step 1: Merge adjacent sub-segments that belong to same speaker (or cluster)
+ lol = merge_ssegs_same_speaker(lol)
+
+ # Step 2: Distribute duration of adjacent overlapping sub-segments belonging to different speakers (or cluster)
+ # Taking mid-point as the splitting time location.
+ lol = distribute_overlap(lol)
+
+ # logger.info("Completed diarizing " + rec_id)
+ write_rttm(lol, out_rttm_file)
+
+
+def do_spec_clustering(diary_obj, out_rttm_file, rec_id, k, pval, affinity_type,
+ n_neighbors):
+ """
+ Performs spectral clustering on embeddings. This function calls specific
+ clustering algorithms as per affinity.
+
+ Arguments
+ ---------
+ diary_obj : EmbeddingMeta type
+ Contains embeddings in diary_obj.stats and segment IDs in diary_obj.segset.
+ out_rttm_file : str
+ Path of the output RTTM file.
+ rec_id : str
+ Recording ID for the recording under processing.
+ k : int
+ Number of speaker (None, if it has to be estimated).
+ pval : float
+ `pval` for prunning affinity matrix.
+ affinity_type : str
+ Type of similarity to be used to get affinity matrix (cos or nn).
+ """
+
+ if affinity_type == "cos":
+ clust_obj = SpecClustUnorm(min_num_spkrs=2, max_num_spkrs=10)
+ k_oracle = k # use it only when oracle num of speakers
+ clust_obj.do_spec_clust(diary_obj.stats, k_oracle, pval)
+ labels = clust_obj.labels_
+ else:
+ clust_obj = SpecCluster(
+ n_clusters=k,
+ assign_labels="kmeans",
+ random_state=1234,
+ affinity="nearest_neighbors", )
+ clust_obj.perform_sc(diary_obj.stats, n_neighbors)
+ labels = clust_obj.labels_
+
+ # Convert labels to speaker boundaries
+ subseg_ids = diary_obj.segset
+ lol = []
+
+ for i in range(labels.shape[0]):
+ spkr_id = rec_id + "_" + str(labels[i])
+
+ sub_seg = subseg_ids[i]
+
+ splitted = sub_seg.rsplit("_", 2)
+ rec_id = str(splitted[0])
+ sseg_start = float(splitted[1])
+ sseg_end = float(splitted[2])
+
+ a = [rec_id, sseg_start, sseg_end, spkr_id]
+ lol.append(a)
+
+ # Sorting based on start time of sub-segment
+ lol.sort(key=lambda x: float(x[1]))
+
+ # Merge and split in 2 simple steps: (i) Merge sseg of same speakers then (ii) split different speakers
+ # Step 1: Merge adjacent sub-segments that belong to same speaker (or cluster)
+ lol = merge_ssegs_same_speaker(lol)
+
+ # Step 2: Distribute duration of adjacent overlapping sub-segments belonging to different speakers (or cluster)
+ # Taking mid-point as the splitting time location.
+ lol = distribute_overlap(lol)
+
+ # logger.info("Completed diarizing " + rec_id)
+ write_rttm(lol, out_rttm_file)
+
+
+if __name__ == '__main__':
+
+ parser = argparse.ArgumentParser(
+ prog='python diarization.py --backend AHC', description='diarizing')
+ parser.add_argument(
+ '--sys_rttm_dir',
+ required=False,
+ help='Directory to store system RTTM files')
+ parser.add_argument(
+ '--ref_rttm_dir',
+ required=False,
+ help='Directory to store reference RTTM files')
+ parser.add_argument(
+ '--backend', default="AHC", help='type of backend, AHC or SC or kmeans')
+ parser.add_argument(
+ '--oracle_n_spkrs',
+ default=True,
+ type=strtobool,
+ help='Oracle num of speakers')
+ parser.add_argument(
+ '--mic_type',
+ default="Mix-Headset",
+ help='Type of microphone to be used')
+ parser.add_argument(
+ '--affinity', default="cos", help='affinity matrix, cos or nn')
+ parser.add_argument(
+ '--max_subseg_dur',
+ default=3.0,
+ type=float,
+ help='Duration in seconds of a subsegments to be prepared from larger segments'
+ )
+ parser.add_argument(
+ '--overlap',
+ default=1.5,
+ type=float,
+ help='Overlap duration in seconds between adjacent subsegments')
+
+ args = parser.parse_args()
+
+ pval = 0.3
+ rec_id = "utt0001"
+ n_neighbors = 10
+ out_rttm_file = "./out.rttm"
+
+ embeddings = np.empty(shape=[0, 32], dtype=np.float64)
+ segset = []
+
+ for i in range(10):
+ seg = [rec_id + "_" + str(i) + "_" + str(i + 1)]
+ segset = segset + seg
+ emb = np.random.rand(1, 32)
+ embeddings = np.concatenate((embeddings, emb), axis=0)
+
+ segset = np.array(segset, dtype="|O")
+ stat_obj = EmbeddingMeta(segset, embeddings)
+ if args.oracle_n_spkrs is True:
+ num_spkrs = 2
+
+ if args.backend == "SC":
+ print("begin SC ")
+ do_spec_clustering(
+ stat_obj,
+ out_rttm_file,
+ rec_id,
+ num_spkrs,
+ pval,
+ args.affinity,
+ n_neighbors, )
+ if args.backend == "AHC":
+ print("begin AHC ")
+ do_AHC(stat_obj, out_rttm_file, rec_id, num_spkrs, pval)
diff --git a/setup.py b/setup.py
index f86758bab25..82ff6341265 100644
--- a/setup.py
+++ b/setup.py
@@ -27,7 +27,7 @@
HERE = Path(os.path.abspath(os.path.dirname(__file__)))
-VERSION = '0.1.2'
+VERSION = '0.2.0'
base = [
"editdistance",
diff --git a/speechx/.gitignore b/speechx/.gitignore
new file mode 100644
index 00000000000..e0c61847075
--- /dev/null
+++ b/speechx/.gitignore
@@ -0,0 +1 @@
+tools/valgrind*
diff --git a/speechx/CMakeLists.txt b/speechx/CMakeLists.txt
index e003136a9d7..f1330d1da66 100644
--- a/speechx/CMakeLists.txt
+++ b/speechx/CMakeLists.txt
@@ -2,18 +2,32 @@ cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
project(paddlespeech VERSION 0.1)
+set(CMAKE_PROJECT_INCLUDE_BEFORE "${CMAKE_CURRENT_SOURCE_DIR}/cmake/EnableCMP0048.cmake")
+
set(CMAKE_VERBOSE_MAKEFILE on)
+
# set std-14
set(CMAKE_CXX_STANDARD 14)
-# include file
+# cmake dir
+set(speechx_cmake_dir ${PROJECT_SOURCE_DIR}/cmake)
+
+# Modules
+list(APPEND CMAKE_MODULE_PATH ${speechx_cmake_dir}/external)
+list(APPEND CMAKE_MODULE_PATH ${speechx_cmake_dir})
include(FetchContent)
include(ExternalProject)
+
# fc_patch dir
set(FETCHCONTENT_QUIET off)
get_filename_component(fc_patch "fc_patch" REALPATH BASE_DIR "${CMAKE_SOURCE_DIR}")
set(FETCHCONTENT_BASE_DIR ${fc_patch})
+# compiler option
+# Keep the same with openfst, -fPIC or -fpic
+set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} --std=c++14 -pthread -fPIC -O0 -Wall -g")
+SET(CMAKE_CXX_FLAGS_DEBUG "$ENV{CXXFLAGS} --std=c++14 -pthread -fPIC -O0 -Wall -g -ggdb")
+SET(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} --std=c++14 -pthread -fPIC -O3 -Wall")
###############################################################################
# Option Configurations
@@ -25,91 +39,92 @@ option(TEST_DEBUG "option for debug" OFF)
###############################################################################
# Include third party
###############################################################################
-# #example for include third party
-# FetchContent_Declare()
-# # FetchContent_MakeAvailable was not added until CMake 3.14
+# example for include third party
+# FetchContent_MakeAvailable was not added until CMake 3.14
# FetchContent_MakeAvailable()
# include_directories()
+# gflags
+include(gflags)
+
+# glog
+include(glog)
+
+# gtest
+include(gtest)
+
# ABSEIL-CPP
-include(FetchContent)
-FetchContent_Declare(
- absl
- GIT_REPOSITORY "https://github.com/abseil/abseil-cpp.git"
- GIT_TAG "20210324.1"
-)
-FetchContent_MakeAvailable(absl)
+include(absl)
# libsndfile
-include(FetchContent)
-FetchContent_Declare(
- libsndfile
- GIT_REPOSITORY "https://github.com/libsndfile/libsndfile.git"
- GIT_TAG "1.0.31"
-)
-FetchContent_MakeAvailable(libsndfile)
+include(libsndfile)
-# gflags
-FetchContent_Declare(
- gflags
- URL https://github.com/gflags/gflags/archive/v2.2.1.zip
- URL_HASH SHA256=4e44b69e709c826734dbbbd5208f61888a2faf63f239d73d8ba0011b2dccc97a
-)
-FetchContent_MakeAvailable(gflags)
-include_directories(${gflags_BINARY_DIR}/include)
+# boost
+# include(boost) # not work
+set(boost_SOURCE_DIR ${fc_patch}/boost-src)
+set(BOOST_ROOT ${boost_SOURCE_DIR})
+# #find_package(boost REQUIRED PATHS ${BOOST_ROOT})
-# glog
-FetchContent_Declare(
- glog
- URL https://github.com/google/glog/archive/v0.4.0.zip
- URL_HASH SHA256=9e1b54eb2782f53cd8af107ecf08d2ab64b8d0dc2b7f5594472f3bd63ca85cdc
-)
-FetchContent_MakeAvailable(glog)
-include_directories(${glog_BINARY_DIR})
+# Eigen
+include(eigen)
+find_package(Eigen3 REQUIRED)
-# gtest
-FetchContent_Declare(googletest
- URL https://github.com/google/googletest/archive/release-1.10.0.zip
- URL_HASH SHA256=94c634d499558a76fa649edb13721dce6e98fb1e7018dfaeba3cd7a083945e91
-)
-FetchContent_MakeAvailable(googletest)
+# Kenlm
+include(kenlm)
+add_dependencies(kenlm eigen boost)
+
+#openblas
+include(openblas)
# openfst
-set(openfst_SOURCE_DIR ${fc_patch}/openfst-src)
-set(openfst_BINARY_DIR ${fc_patch}/openfst-build)
-set(openfst_PREFIX_DIR ${fc_patch}/openfst-subbuild/openfst-populate-prefix)
-ExternalProject_Add(openfst
- URL https://github.com/mjansche/openfst/archive/refs/tags/1.7.2.zip
- URL_HASH SHA256=ffc56931025579a8af3515741c0f3b0fc3a854c023421472c07ca0c6389c75e6
- SOURCE_DIR ${openfst_SOURCE_DIR}
- BINARY_DIR ${openfst_BINARY_DIR}
- CONFIGURE_COMMAND ${openfst_SOURCE_DIR}/configure --prefix=${openfst_PREFIX_DIR}
- "CPPFLAGS=-I${gflags_BINARY_DIR}/include -I${glog_SOURCE_DIR}/src -I${glog_BINARY_DIR}"
- "LDFLAGS=-L${gflags_BINARY_DIR} -L${glog_BINARY_DIR}"
- "LIBS=-lgflags_nothreads -lglog -lpthread"
- BUILD_COMMAND make -j 4
-)
+include(openfst)
add_dependencies(openfst gflags glog)
-link_directories(${openfst_PREFIX_DIR}/lib)
-include_directories(${openfst_PREFIX_DIR}/include)
-add_subdirectory(speechx)
-#openblas
-#set(OpenBLAS_INSTALL_PREFIX ${fc_patch}/OpenBLAS)
-#set(OpenBLAS_SOURCE_DIR ${fc_patch}/OpenBLAS-src)
-#ExternalProject_Add(
-# OpenBLAS
-# GIT_REPOSITORY https://github.com/xianyi/OpenBLAS
-# GIT_TAG v0.3.13
-# GIT_SHALLOW TRUE
-# GIT_PROGRESS TRUE
-# CONFIGURE_COMMAND ""
-# BUILD_IN_SOURCE TRUE
-# BUILD_COMMAND make USE_LOCKING=1 USE_THREAD=0
-# INSTALL_COMMAND make PREFIX=${OpenBLAS_INSTALL_PREFIX} install
-# UPDATE_DISCONNECTED TRUE
-#)
+# paddle lib
+set(paddle_SOURCE_DIR ${fc_patch}/paddle-lib)
+set(paddle_PREFIX_DIR ${fc_patch}/paddle-lib-prefix)
+ExternalProject_Add(paddle
+ URL https://paddle-inference-lib.bj.bcebos.com/2.2.2/cxx_c/Linux/CPU/gcc8.2_avx_mkl/paddle_inference.tgz
+ URL_HASH SHA256=7c6399e778c6554a929b5a39ba2175e702e115145e8fa690d2af974101d98873
+ PREFIX ${paddle_PREFIX_DIR}
+ SOURCE_DIR ${paddle_SOURCE_DIR}
+ CONFIGURE_COMMAND ""
+ BUILD_COMMAND ""
+ INSTALL_COMMAND ""
+)
+
+set(PADDLE_LIB ${fc_patch}/paddle-lib)
+include_directories("${PADDLE_LIB}/paddle/include")
+set(PADDLE_LIB_THIRD_PARTY_PATH "${PADDLE_LIB}/third_party/install/")
+include_directories("${PADDLE_LIB_THIRD_PARTY_PATH}protobuf/include")
+include_directories("${PADDLE_LIB_THIRD_PARTY_PATH}xxhash/include")
+include_directories("${PADDLE_LIB_THIRD_PARTY_PATH}cryptopp/include")
+
+link_directories("${PADDLE_LIB_THIRD_PARTY_PATH}protobuf/lib")
+link_directories("${PADDLE_LIB_THIRD_PARTY_PATH}xxhash/lib")
+link_directories("${PADDLE_LIB_THIRD_PARTY_PATH}cryptopp/lib")
+link_directories("${PADDLE_LIB}/paddle/lib")
+link_directories("${PADDLE_LIB_THIRD_PARTY_PATH}mklml/lib")
+
+##paddle with mkl
+set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")
+set(MATH_LIB_PATH "${PADDLE_LIB_THIRD_PARTY_PATH}mklml")
+include_directories("${MATH_LIB_PATH}/include")
+set(MATH_LIB ${MATH_LIB_PATH}/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
+ ${MATH_LIB_PATH}/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
+set(MKLDNN_PATH "${PADDLE_LIB_THIRD_PARTY_PATH}mkldnn")
+include_directories("${MKLDNN_PATH}/include")
+set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
+set(EXTERNAL_LIB "-lrt -ldl -lpthread")
+
+set(DEPS ${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX})
+set(DEPS ${DEPS}
+ ${MATH_LIB} ${MKLDNN_LIB}
+ glog gflags protobuf xxhash cryptopp
+ ${EXTERNAL_LIB})
+
+
###############################################################################
# Add local library
@@ -121,4 +136,9 @@ add_subdirectory(speechx)
# if dir do not have CmakeLists.txt
#add_library(lib_name STATIC file.cc)
#target_link_libraries(lib_name item0 item1)
-#add_dependencies(lib_name depend-target)
\ No newline at end of file
+#add_dependencies(lib_name depend-target)
+
+set(SPEECHX_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/speechx)
+
+add_subdirectory(speechx)
+add_subdirectory(examples)
\ No newline at end of file
diff --git a/speechx/README.md b/speechx/README.md
new file mode 100644
index 00000000000..7d73b61c6fa
--- /dev/null
+++ b/speechx/README.md
@@ -0,0 +1,61 @@
+# SpeechX -- All in One Speech Task Inference
+
+## Environment
+
+We develop under:
+* docker - registry.baidubce.com/paddlepaddle/paddle:2.1.1-gpu-cuda10.2-cudnn7
+* os - Ubuntu 16.04.7 LTS
+* gcc/g++ - 8.2.0
+* cmake - 3.16.0
+
+> We make sure all things work fun under docker, and recommend using it to develop and deploy.
+
+* [How to Install Docker](https://docs.docker.com/engine/install/)
+* [A Docker Tutorial for Beginners](https://docker-curriculum.com/)
+* [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/overview.html)
+
+## Build
+
+1. First to launch docker container.
+
+```
+nvidia-docker run --privileged --net=host --ipc=host -it --rm -v $PWD:/workspace --name=dev registry.baidubce.com/paddlepaddle/paddle:2.1.1-gpu-cuda10.2-cudnn7 /bin/bash
+```
+
+* More `Paddle` docker images you can see [here](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/docker/linux-docker.html).
+
+* If you want only work under cpu, please download corresponded [image](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/docker/linux-docker.html), and using `docker` instead `nviida-docker`.
+
+
+2. Build `speechx` and `examples`.
+
+```
+pushd /path/to/speechx
+./build.sh
+```
+
+3. Go to `examples` to have a fun.
+
+More details please see `README.md` under `examples`.
+
+
+## Valgrind (Optional)
+
+> If using docker please check `--privileged` is set when `docker run`.
+
+* Fatal error at startup: `a function redirection which is mandatory for this platform-tool combination cannot be set up`
+```
+apt-get install libc6-dbg
+```
+
+* Install
+
+```
+pushd tools
+./setup_valgrind.sh
+popd
+```
+
+## TODO
+
+* DecibelNormalizer: there is a little bit difference between offline and online db norm. The computation of online db norm read feature chunk by chunk, which causes the feature size is different with offline db norm. In normalizer.cc:73, the samples.size() is different, which causes the difference of result.
diff --git a/speechx/build.sh b/speechx/build.sh
new file mode 100755
index 00000000000..3e9600d538c
--- /dev/null
+++ b/speechx/build.sh
@@ -0,0 +1,28 @@
+#!/usr/bin/env bash
+
+# the build script had verified in the paddlepaddle docker image.
+# please follow the instruction below to install PaddlePaddle image.
+# https://www.paddlepaddle.org.cn/documentation/docs/zh/install/docker/linux-docker.html
+
+boost_SOURCE_DIR=$PWD/fc_patch/boost-src
+if [ ! -d ${boost_SOURCE_DIR} ]; then wget -c https://boostorg.jfrog.io/artifactory/main/release/1.75.0/source/boost_1_75_0.tar.gz
+ tar xzfv boost_1_75_0.tar.gz
+ mkdir -p $PWD/fc_patch
+ mv boost_1_75_0 ${boost_SOURCE_DIR}
+ cd ${boost_SOURCE_DIR}
+ bash ./bootstrap.sh
+ ./b2
+ cd -
+ echo -e "\n"
+fi
+
+#rm -rf build
+mkdir -p build
+cd build
+
+cmake .. -DBOOST_ROOT:STRING=${boost_SOURCE_DIR}
+#cmake ..
+
+make -j1
+
+cd -
diff --git a/speechx/cmake/EnableCMP0048.cmake b/speechx/cmake/EnableCMP0048.cmake
new file mode 100644
index 00000000000..1b59188fd7d
--- /dev/null
+++ b/speechx/cmake/EnableCMP0048.cmake
@@ -0,0 +1 @@
+cmake_policy(SET CMP0048 NEW)
\ No newline at end of file
diff --git a/speechx/cmake/external/absl.cmake b/speechx/cmake/external/absl.cmake
new file mode 100644
index 00000000000..2c5e5af5ca5
--- /dev/null
+++ b/speechx/cmake/external/absl.cmake
@@ -0,0 +1,16 @@
+include(FetchContent)
+
+
+set(BUILD_SHARED_LIBS OFF) # up to you
+set(BUILD_TESTING OFF) # to disable abseil test, or gtest will fail.
+set(ABSL_ENABLE_INSTALL ON) # now you can enable install rules even in subproject...
+
+FetchContent_Declare(
+ absl
+ GIT_REPOSITORY "https://github.com/abseil/abseil-cpp.git"
+ GIT_TAG "20210324.1"
+)
+FetchContent_MakeAvailable(absl)
+
+set(EIGEN3_INCLUDE_DIR ${Eigen3_SOURCE_DIR})
+include_directories(${absl_SOURCE_DIR})
\ No newline at end of file
diff --git a/speechx/cmake/external/boost.cmake b/speechx/cmake/external/boost.cmake
new file mode 100644
index 00000000000..6bc97aad4da
--- /dev/null
+++ b/speechx/cmake/external/boost.cmake
@@ -0,0 +1,27 @@
+include(FetchContent)
+set(Boost_DEBUG ON)
+
+set(Boost_PREFIX_DIR ${fc_patch}/boost)
+set(Boost_SOURCE_DIR ${fc_patch}/boost-src)
+
+FetchContent_Declare(
+ Boost
+ URL https://boostorg.jfrog.io/artifactory/main/release/1.75.0/source/boost_1_75_0.tar.gz
+ URL_HASH SHA256=aeb26f80e80945e82ee93e5939baebdca47b9dee80a07d3144be1e1a6a66dd6a
+ PREFIX ${Boost_PREFIX_DIR}
+ SOURCE_DIR ${Boost_SOURCE_DIR}
+)
+
+execute_process(COMMAND bootstrap.sh WORKING_DIRECTORY ${Boost_SOURCE_DIR})
+execute_process(COMMAND b2 WORKING_DIRECTORY ${Boost_SOURCE_DIR})
+
+FetchContent_MakeAvailable(Boost)
+
+message(STATUS "boost src dir: ${Boost_SOURCE_DIR}")
+message(STATUS "boost inc dir: ${Boost_INCLUDE_DIR}")
+message(STATUS "boost bin dir: ${Boost_BINARY_DIR}")
+
+set(BOOST_ROOT ${Boost_SOURCE_DIR})
+message(STATUS "boost root dir: ${BOOST_ROOT}")
+
+include_directories(${Boost_SOURCE_DIR})
\ No newline at end of file
diff --git a/speechx/cmake/external/eigen.cmake b/speechx/cmake/external/eigen.cmake
new file mode 100644
index 00000000000..12bd3cdf517
--- /dev/null
+++ b/speechx/cmake/external/eigen.cmake
@@ -0,0 +1,27 @@
+include(FetchContent)
+
+# update eigen to the commit id f612df27 on 03/16/2021
+set(EIGEN_PREFIX_DIR ${fc_patch}/eigen3)
+
+FetchContent_Declare(
+ Eigen3
+ GIT_REPOSITORY https://gitlab.com/libeigen/eigen.git
+ GIT_TAG master
+ PREFIX ${EIGEN_PREFIX_DIR}
+ GIT_SHALLOW TRUE
+ GIT_PROGRESS TRUE)
+
+set(EIGEN_BUILD_DOC OFF)
+# note: To disable eigen tests,
+# you should put this code in a add_subdirectory to avoid to change
+# BUILD_TESTING for your own project too since variables are directory
+# scoped
+set(BUILD_TESTING OFF)
+set(EIGEN_BUILD_PKGCONFIG OFF)
+set( OFF)
+FetchContent_MakeAvailable(Eigen3)
+
+message(STATUS "eigen src dir: ${Eigen3_SOURCE_DIR}")
+message(STATUS "eigen bin dir: ${Eigen3_BINARY_DIR}")
+#include_directories(${Eigen3_SOURCE_DIR})
+#link_directories(${Eigen3_BINARY_DIR})
\ No newline at end of file
diff --git a/speechx/cmake/external/gflags.cmake b/speechx/cmake/external/gflags.cmake
new file mode 100644
index 00000000000..66ae47f7098
--- /dev/null
+++ b/speechx/cmake/external/gflags.cmake
@@ -0,0 +1,12 @@
+include(FetchContent)
+
+FetchContent_Declare(
+ gflags
+ URL https://github.com/gflags/gflags/archive/v2.2.1.zip
+ URL_HASH SHA256=4e44b69e709c826734dbbbd5208f61888a2faf63f239d73d8ba0011b2dccc97a
+)
+
+FetchContent_MakeAvailable(gflags)
+
+# openfst need
+include_directories(${gflags_BINARY_DIR}/include)
\ No newline at end of file
diff --git a/speechx/cmake/external/glog.cmake b/speechx/cmake/external/glog.cmake
new file mode 100644
index 00000000000..dcfd86c3ed5
--- /dev/null
+++ b/speechx/cmake/external/glog.cmake
@@ -0,0 +1,8 @@
+include(FetchContent)
+FetchContent_Declare(
+ glog
+ URL https://github.com/google/glog/archive/v0.4.0.zip
+ URL_HASH SHA256=9e1b54eb2782f53cd8af107ecf08d2ab64b8d0dc2b7f5594472f3bd63ca85cdc
+)
+FetchContent_MakeAvailable(glog)
+include_directories(${glog_BINARY_DIR} ${glog_SOURCE_DIR}/src)
diff --git a/speechx/cmake/external/gtest.cmake b/speechx/cmake/external/gtest.cmake
new file mode 100644
index 00000000000..7fe397fcb08
--- /dev/null
+++ b/speechx/cmake/external/gtest.cmake
@@ -0,0 +1,9 @@
+include(FetchContent)
+FetchContent_Declare(
+ gtest
+ URL https://github.com/google/googletest/archive/release-1.10.0.zip
+ URL_HASH SHA256=94c634d499558a76fa649edb13721dce6e98fb1e7018dfaeba3cd7a083945e91
+)
+FetchContent_MakeAvailable(gtest)
+
+include_directories(${gtest_BINARY_DIR} ${gtest_SOURCE_DIR}/src)
\ No newline at end of file
diff --git a/speechx/cmake/external/kenlm.cmake b/speechx/cmake/external/kenlm.cmake
new file mode 100644
index 00000000000..17c76c3f633
--- /dev/null
+++ b/speechx/cmake/external/kenlm.cmake
@@ -0,0 +1,10 @@
+include(FetchContent)
+FetchContent_Declare(
+ kenlm
+ GIT_REPOSITORY "https://github.com/kpu/kenlm.git"
+ GIT_TAG "df2d717e95183f79a90b2fa6e4307083a351ca6a"
+)
+# https://github.com/kpu/kenlm/blob/master/cmake/modules/FindEigen3.cmake
+set(EIGEN3_INCLUDE_DIR ${Eigen3_SOURCE_DIR})
+FetchContent_MakeAvailable(kenlm)
+include_directories(${kenlm_SOURCE_DIR})
\ No newline at end of file
diff --git a/speechx/cmake/external/libsndfile.cmake b/speechx/cmake/external/libsndfile.cmake
new file mode 100644
index 00000000000..52d64bacd31
--- /dev/null
+++ b/speechx/cmake/external/libsndfile.cmake
@@ -0,0 +1,56 @@
+include(FetchContent)
+
+# https://github.com/pongasoft/vst-sam-spl-64/blob/master/libsndfile.cmake
+# https://github.com/popojan/goban/blob/master/CMakeLists.txt#L38
+# https://github.com/ddiakopoulos/libnyquist/blob/master/CMakeLists.txt
+
+if(LIBSNDFILE_ROOT_DIR)
+ # instructs FetchContent to not download or update but use the location instead
+ set(FETCHCONTENT_SOURCE_DIR_LIBSNDFILE ${LIBSNDFILE_ROOT_DIR})
+else()
+ set(FETCHCONTENT_SOURCE_DIR_LIBSNDFILE "")
+endif()
+
+set(LIBSNDFILE_GIT_REPO "https://github.com/libsndfile/libsndfile.git" CACHE STRING "libsndfile git repository url" FORCE)
+set(LIBSNDFILE_GIT_TAG 1.0.31 CACHE STRING "libsndfile git tag" FORCE)
+
+FetchContent_Declare(libsndfile
+ GIT_REPOSITORY ${LIBSNDFILE_GIT_REPO}
+ GIT_TAG ${LIBSNDFILE_GIT_TAG}
+ GIT_CONFIG advice.detachedHead=false
+# GIT_SHALLOW true
+ CONFIGURE_COMMAND ""
+ BUILD_COMMAND ""
+ INSTALL_COMMAND ""
+ TEST_COMMAND ""
+ )
+
+FetchContent_GetProperties(libsndfile)
+if(NOT libsndfile_POPULATED)
+ if(FETCHCONTENT_SOURCE_DIR_LIBSNDFILE)
+ message(STATUS "Using libsndfile from local ${FETCHCONTENT_SOURCE_DIR_LIBSNDFILE}")
+ else()
+ message(STATUS "Fetching libsndfile ${LIBSNDFILE_GIT_REPO}/tree/${LIBSNDFILE_GIT_TAG}")
+ endif()
+ FetchContent_Populate(libsndfile)
+endif()
+
+set(LIBSNDFILE_ROOT_DIR ${libsndfile_SOURCE_DIR})
+set(LIBSNDFILE_INCLUDE_DIR "${libsndfile_BINARY_DIR}/src")
+
+function(libsndfile_build)
+ option(BUILD_PROGRAMS "Build programs" OFF)
+ option(BUILD_EXAMPLES "Build examples" OFF)
+ option(BUILD_TESTING "Build examples" OFF)
+ option(ENABLE_CPACK "Enable CPack support" OFF)
+ option(ENABLE_PACKAGE_CONFIG "Generate and install package config file" OFF)
+ option(BUILD_REGTEST "Build regtest" OFF)
+ # finally we include libsndfile itself
+ add_subdirectory(${libsndfile_SOURCE_DIR} ${libsndfile_BINARY_DIR} EXCLUDE_FROM_ALL)
+ # copying .hh for c++ support
+ #file(COPY "${libsndfile_SOURCE_DIR}/src/sndfile.hh" DESTINATION ${LIBSNDFILE_INCLUDE_DIR})
+endfunction()
+
+libsndfile_build()
+
+include_directories(${LIBSNDFILE_INCLUDE_DIR})
\ No newline at end of file
diff --git a/speechx/cmake/external/openblas.cmake b/speechx/cmake/external/openblas.cmake
new file mode 100644
index 00000000000..3c202f7f689
--- /dev/null
+++ b/speechx/cmake/external/openblas.cmake
@@ -0,0 +1,37 @@
+include(FetchContent)
+
+set(OpenBLAS_SOURCE_DIR ${fc_patch}/OpenBLAS-src)
+set(OpenBLAS_PREFIX ${fc_patch}/OpenBLAS-prefix)
+
+# ######################################################################################################################
+# OPENBLAS https://github.com/lattice/quda/blob/develop/CMakeLists.txt#L575
+# ######################################################################################################################
+enable_language(Fortran)
+#TODO: switch to CPM
+include(GNUInstallDirs)
+ExternalProject_Add(
+ OPENBLAS
+ GIT_REPOSITORY https://github.com/xianyi/OpenBLAS.git
+ GIT_TAG v0.3.10
+ GIT_SHALLOW YES
+ PREFIX ${OpenBLAS_PREFIX}
+ SOURCE_DIR ${OpenBLAS_SOURCE_DIR}
+ CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=
+ CMAKE_GENERATOR "Unix Makefiles")
+
+
+# https://cmake.org/cmake/help/latest/module/ExternalProject.html?highlight=externalproject_get_property#external-project-definition
+ExternalProject_Get_Property(OPENBLAS INSTALL_DIR)
+set(OpenBLAS_INSTALL_PREFIX ${INSTALL_DIR})
+add_library(openblas STATIC IMPORTED)
+add_dependencies(openblas OPENBLAS)
+set_target_properties(openblas PROPERTIES IMPORTED_LINK_INTERFACE_LANGUAGES Fortran)
+# ${CMAKE_INSTALL_LIBDIR} lib
+set_target_properties(openblas PROPERTIES IMPORTED_LOCATION ${OpenBLAS_INSTALL_PREFIX}/${CMAKE_INSTALL_LIBDIR}/libopenblas.a)
+
+
+# https://cmake.org/cmake/help/latest/command/install.html?highlight=cmake_install_libdir#installing-targets
+# ${CMAKE_INSTALL_LIBDIR} lib
+# ${CMAKE_INSTALL_INCLUDEDIR} include
+link_directories(${OpenBLAS_INSTALL_PREFIX}/${CMAKE_INSTALL_LIBDIR})
+include_directories(${OpenBLAS_INSTALL_PREFIX}/${CMAKE_INSTALL_INCLUDEDIR})
\ No newline at end of file
diff --git a/speechx/cmake/external/openfst.cmake b/speechx/cmake/external/openfst.cmake
new file mode 100644
index 00000000000..07abb18e81d
--- /dev/null
+++ b/speechx/cmake/external/openfst.cmake
@@ -0,0 +1,19 @@
+include(FetchContent)
+set(openfst_SOURCE_DIR ${fc_patch}/openfst-src)
+set(openfst_BINARY_DIR ${fc_patch}/openfst-build)
+
+ExternalProject_Add(openfst
+ URL https://github.com/mjansche/openfst/archive/refs/tags/1.7.2.zip
+ URL_HASH SHA256=ffc56931025579a8af3515741c0f3b0fc3a854c023421472c07ca0c6389c75e6
+# #PREFIX ${openfst_PREFIX_DIR}
+# SOURCE_DIR ${openfst_SOURCE_DIR}
+# BINARY_DIR ${openfst_BINARY_DIR}
+ CONFIGURE_COMMAND ${openfst_SOURCE_DIR}/configure --prefix=${openfst_PREFIX_DIR}
+ "CPPFLAGS=-I${gflags_BINARY_DIR}/include -I${glog_SOURCE_DIR}/src -I${glog_BINARY_DIR}"
+ "LDFLAGS=-L${gflags_BINARY_DIR} -L${glog_BINARY_DIR}"
+ "LIBS=-lgflags_nothreads -lglog -lpthread"
+ COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/patch/openfst ${openfst_SOURCE_DIR}
+ BUILD_COMMAND make -j 4
+)
+link_directories(${openfst_PREFIX_DIR}/lib)
+include_directories(${openfst_PREFIX_DIR}/include)
diff --git a/speechx/examples/.gitignore b/speechx/examples/.gitignore
new file mode 100644
index 00000000000..b7075fa56c3
--- /dev/null
+++ b/speechx/examples/.gitignore
@@ -0,0 +1,2 @@
+*.ark
+paddle_asr_model/
diff --git a/speechx/examples/.gitkeep b/speechx/examples/.gitkeep
deleted file mode 100644
index e69de29bb2d..00000000000
diff --git a/speechx/examples/CMakeLists.txt b/speechx/examples/CMakeLists.txt
new file mode 100644
index 00000000000..ef0a72b8838
--- /dev/null
+++ b/speechx/examples/CMakeLists.txt
@@ -0,0 +1,5 @@
+cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
+
+add_subdirectory(feat)
+add_subdirectory(nnet)
+add_subdirectory(decoder)
diff --git a/speechx/examples/README.md b/speechx/examples/README.md
new file mode 100644
index 00000000000..941c4272d9a
--- /dev/null
+++ b/speechx/examples/README.md
@@ -0,0 +1,16 @@
+# Examples
+
+* decoder - online decoder to work as offline
+* feat - mfcc, linear
+* nnet - ds2 nn
+
+## How to run
+
+`run.sh` is the entry point.
+
+Example to play `decoder`:
+
+```
+pushd decoder
+bash run.sh
+```
diff --git a/speechx/examples/decoder/CMakeLists.txt b/speechx/examples/decoder/CMakeLists.txt
new file mode 100644
index 00000000000..4bd5c6cf066
--- /dev/null
+++ b/speechx/examples/decoder/CMakeLists.txt
@@ -0,0 +1,5 @@
+cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
+
+add_executable(offline_decoder_main ${CMAKE_CURRENT_SOURCE_DIR}/offline_decoder_main.cc)
+target_include_directories(offline_decoder_main PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
+target_link_libraries(offline_decoder_main PUBLIC nnet decoder fst utils gflags glog kaldi-base kaldi-matrix kaldi-util ${DEPS})
diff --git a/speechx/examples/decoder/offline_decoder_main.cc b/speechx/examples/decoder/offline_decoder_main.cc
new file mode 100644
index 00000000000..44127c73b4e
--- /dev/null
+++ b/speechx/examples/decoder/offline_decoder_main.cc
@@ -0,0 +1,101 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// todo refactor, repalce with gtest
+
+#include "base/flags.h"
+#include "base/log.h"
+#include "decoder/ctc_beam_search_decoder.h"
+#include "frontend/raw_audio.h"
+#include "kaldi/util/table-types.h"
+#include "nnet/decodable.h"
+#include "nnet/paddle_nnet.h"
+
+DEFINE_string(feature_respecifier, "", "test feature rspecifier");
+DEFINE_string(model_path, "avg_1.jit.pdmodel", "paddle nnet model");
+DEFINE_string(param_path, "avg_1.jit.pdiparams", "paddle nnet model param");
+DEFINE_string(dict_file, "vocab.txt", "vocabulary of lm");
+DEFINE_string(lm_path, "lm.klm", "language model");
+
+
+using kaldi::BaseFloat;
+using kaldi::Matrix;
+using std::vector;
+
+int main(int argc, char* argv[]) {
+ gflags::ParseCommandLineFlags(&argc, &argv, false);
+ google::InitGoogleLogging(argv[0]);
+
+ kaldi::SequentialBaseFloatMatrixReader feature_reader(
+ FLAGS_feature_respecifier);
+ std::string model_graph = FLAGS_model_path;
+ std::string model_params = FLAGS_param_path;
+ std::string dict_file = FLAGS_dict_file;
+ std::string lm_path = FLAGS_lm_path;
+
+ int32 num_done = 0, num_err = 0;
+
+ ppspeech::CTCBeamSearchOptions opts;
+ opts.dict_file = dict_file;
+ opts.lm_path = lm_path;
+ ppspeech::CTCBeamSearch decoder(opts);
+
+ ppspeech::ModelOptions model_opts;
+ model_opts.model_path = model_graph;
+ model_opts.params_path = model_params;
+ std::shared_ptr nnet(
+ new ppspeech::PaddleNnet(model_opts));
+ std::shared_ptr raw_data(
+ new ppspeech::RawDataCache());
+ std::shared_ptr decodable(
+ new ppspeech::Decodable(nnet, raw_data));
+
+ int32 chunk_size = 35;
+ decoder.InitDecoder();
+
+ for (; !feature_reader.Done(); feature_reader.Next()) {
+ string utt = feature_reader.Key();
+ const kaldi::Matrix feature = feature_reader.Value();
+ raw_data->SetDim(feature.NumCols());
+ int32 row_idx = 0;
+ int32 num_chunks = feature.NumRows() / chunk_size;
+ for (int chunk_idx = 0; chunk_idx < num_chunks; ++chunk_idx) {
+ kaldi::Vector feature_chunk(chunk_size *
+ feature.NumCols());
+ for (int row_id = 0; row_id < chunk_size; ++row_id) {
+ kaldi::SubVector tmp(feature, row_idx);
+ kaldi::SubVector f_chunk_tmp(
+ feature_chunk.Data() + row_id * feature.NumCols(),
+ feature.NumCols());
+ f_chunk_tmp.CopyFromVec(tmp);
+ row_idx++;
+ }
+ raw_data->Accept(feature_chunk);
+ if (chunk_idx == num_chunks - 1) {
+ raw_data->SetFinished();
+ }
+ decoder.AdvanceDecode(decodable);
+ }
+ std::string result;
+ result = decoder.GetFinalBestPath();
+ KALDI_LOG << " the result of " << utt << " is " << result;
+ decodable->Reset();
+ decoder.Reset();
+ ++num_done;
+ }
+
+ KALDI_LOG << "Done " << num_done << " utterances, " << num_err
+ << " with errors.";
+ return (num_done != 0 ? 0 : 1);
+}
diff --git a/speechx/examples/decoder/path.sh b/speechx/examples/decoder/path.sh
new file mode 100644
index 00000000000..7b4b7545b38
--- /dev/null
+++ b/speechx/examples/decoder/path.sh
@@ -0,0 +1,14 @@
+# This contains the locations of binarys build required for running the examples.
+
+SPEECHX_ROOT=$PWD/../..
+SPEECHX_EXAMPLES=$SPEECHX_ROOT/build/examples
+
+SPEECHX_TOOLS=$SPEECHX_ROOT/tools
+TOOLS_BIN=$SPEECHX_TOOLS/valgrind/install/bin
+
+[ -d $SPEECHX_EXAMPLES ] || { echo "Error: 'build/examples' directory not found. please ensure that the project build successfully"; }
+
+export LC_AL=C
+
+SPEECHX_BIN=$SPEECHX_EXAMPLES/decoder
+export PATH=$PATH:$SPEECHX_BIN:$TOOLS_BIN
diff --git a/speechx/examples/decoder/run.sh b/speechx/examples/decoder/run.sh
new file mode 100755
index 00000000000..fc5e9182463
--- /dev/null
+++ b/speechx/examples/decoder/run.sh
@@ -0,0 +1,40 @@
+#!/bin/bash
+set +x
+set -e
+
+. path.sh
+
+# 1. compile
+if [ ! -d ${SPEECHX_EXAMPLES} ]; then
+ pushd ${SPEECHX_ROOT}
+ bash build.sh
+ popd
+fi
+
+
+# 2. download model
+if [ ! -d ../paddle_asr_model ]; then
+ wget -c https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/paddle_asr_model.tar.gz
+ tar xzfv paddle_asr_model.tar.gz
+ mv ./paddle_asr_model ../
+ # produce wav scp
+ echo "utt1 " $PWD/../paddle_asr_model/BAC009S0764W0290.wav > ../paddle_asr_model/wav.scp
+fi
+
+model_dir=../paddle_asr_model
+feat_wspecifier=./feats.ark
+cmvn=./cmvn.ark
+
+# 3. run feat
+linear_spectrogram_main \
+ --wav_rspecifier=scp:$model_dir/wav.scp \
+ --feature_wspecifier=ark,t:$feat_wspecifier \
+ --cmvn_write_path=$cmvn
+
+# 4. run decoder
+offline_decoder_main \
+ --feature_respecifier=ark:$feat_wspecifier \
+ --model_path=$model_dir/avg_1.jit.pdmodel \
+ --param_path=$model_dir/avg_1.jit.pdparams \
+ --dict_file=$model_dir/vocab.txt \
+ --lm_path=$model_dir/avg_1.jit.klm
\ No newline at end of file
diff --git a/speechx/examples/decoder/valgrind.sh b/speechx/examples/decoder/valgrind.sh
new file mode 100755
index 00000000000..14efe0ba42b
--- /dev/null
+++ b/speechx/examples/decoder/valgrind.sh
@@ -0,0 +1,26 @@
+#!/bin/bash
+
+# this script is for memory check, so please run ./run.sh first.
+
+set +x
+set -e
+
+. ./path.sh
+
+if [ ! -d ${SPEECHX_TOOLS}/valgrind/install ]; then
+ echo "please install valgrind in the speechx tools dir.\n"
+ exit 1
+fi
+
+model_dir=../paddle_asr_model
+feat_wspecifier=./feats.ark
+cmvn=./cmvn.ark
+
+valgrind --tool=memcheck --track-origins=yes --leak-check=full --show-leak-kinds=all \
+ offline_decoder_main \
+ --feature_respecifier=ark:$feat_wspecifier \
+ --model_path=$model_dir/avg_1.jit.pdmodel \
+ --param_path=$model_dir/avg_1.jit.pdparams \
+ --dict_file=$model_dir/vocab.txt \
+ --lm_path=$model_dir/avg_1.jit.klm
+
diff --git a/speechx/examples/feat/CMakeLists.txt b/speechx/examples/feat/CMakeLists.txt
new file mode 100644
index 00000000000..b8f516afb5a
--- /dev/null
+++ b/speechx/examples/feat/CMakeLists.txt
@@ -0,0 +1,10 @@
+cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
+
+
+add_executable(mfcc-test ${CMAKE_CURRENT_SOURCE_DIR}/feature-mfcc-test.cc)
+target_include_directories(mfcc-test PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
+target_link_libraries(mfcc-test kaldi-mfcc)
+
+add_executable(linear_spectrogram_main ${CMAKE_CURRENT_SOURCE_DIR}/linear_spectrogram_main.cc)
+target_include_directories(linear_spectrogram_main PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
+target_link_libraries(linear_spectrogram_main frontend kaldi-util kaldi-feat-common gflags glog)
\ No newline at end of file
diff --git a/speechx/examples/feat/feature-mfcc-test.cc b/speechx/examples/feat/feature-mfcc-test.cc
new file mode 100644
index 00000000000..ae32aba9e6a
--- /dev/null
+++ b/speechx/examples/feat/feature-mfcc-test.cc
@@ -0,0 +1,720 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// feat/feature-mfcc-test.cc
+
+// Copyright 2009-2011 Karel Vesely; Petr Motlicek
+
+// See ../../COPYING for clarification regarding multiple authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
+// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
+// MERCHANTABLITY OR NON-INFRINGEMENT.
+// See the Apache 2 License for the specific language governing permissions and
+// limitations under the License.
+
+
+#include
+
+#include "base/kaldi-math.h"
+#include "feat/feature-mfcc.h"
+#include "feat/wave-reader.h"
+#include "matrix/kaldi-matrix-inl.h"
+
+using namespace kaldi;
+
+
+static void UnitTestReadWave() {
+ std::cout << "=== UnitTestReadWave() ===\n";
+
+ Vector v, v2;
+
+ std::cout << "<<<=== Reading waveform\n";
+
+ {
+ std::ifstream is("test_data/test.wav", std::ios_base::binary);
+ WaveData wave;
+ wave.Read(is);
+ const Matrix data(wave.Data());
+ KALDI_ASSERT(data.NumRows() == 1);
+ v.Resize(data.NumCols());
+ v.CopyFromVec(data.Row(0));
+ }
+
+ std::cout
+ << "<<<=== Reading Vector waveform, prepared by matlab\n";
+ std::ifstream input("test_data/test_matlab.ascii");
+ KALDI_ASSERT(input.good());
+ v2.Read(input, false);
+ input.close();
+
+ std::cout
+ << "<<<=== Comparing freshly read waveform to 'libsndfile' waveform\n";
+ KALDI_ASSERT(v.Dim() == v2.Dim());
+ for (int32 i = 0; i < v.Dim(); i++) {
+ KALDI_ASSERT(v(i) == v2(i));
+ }
+ std::cout << "<<<=== Comparing done\n";
+
+ // std::cout << "== The Waveform Samples == \n";
+ // std::cout << v;
+
+ std::cout << "Test passed :)\n\n";
+}
+
+
+/**
+ */
+static void UnitTestSimple() {
+ std::cout << "=== UnitTestSimple() ===\n";
+
+ Vector v(100000);
+ Matrix m;
+
+ // init with noise
+ for (int32 i = 0; i < v.Dim(); i++) {
+ v(i) = (abs(i * 433024253) % 65535) - (65535 / 2);
+ }
+
+ std::cout << "<<<=== Just make sure it runs... Nothing is compared\n";
+ // the parametrization object
+ MfccOptions op;
+ // trying to have same opts as baseline.
+ op.frame_opts.dither = 0.0;
+ op.frame_opts.preemph_coeff = 0.0;
+ op.frame_opts.window_type = "rectangular";
+ op.frame_opts.remove_dc_offset = false;
+ op.frame_opts.round_to_power_of_two = true;
+ op.mel_opts.low_freq = 0.0;
+ op.mel_opts.htk_mode = true;
+ op.htk_compat = true;
+
+ Mfcc mfcc(op);
+ // use default parameters
+
+ // compute mfccs.
+ mfcc.Compute(v, 1.0, &m);
+
+ // possibly dump
+ // std::cout << "== Output features == \n" << m;
+ std::cout << "Test passed :)\n\n";
+}
+
+
+static void UnitTestHTKCompare1() {
+ std::cout << "=== UnitTestHTKCompare1() ===\n";
+
+ std::ifstream is("test_data/test.wav", std::ios_base::binary);
+ WaveData wave;
+ wave.Read(is);
+ KALDI_ASSERT(wave.Data().NumRows() == 1);
+ SubVector waveform(wave.Data(), 0);
+
+ // read the HTK features
+ Matrix htk_features;
+ {
+ std::ifstream is("test_data/test.wav.fea_htk.1",
+ std::ios::in | std::ios_base::binary);
+ bool ans = ReadHtk(is, &htk_features, 0);
+ KALDI_ASSERT(ans);
+ }
+
+ // use mfcc with default configuration...
+ MfccOptions op;
+ op.frame_opts.dither = 0.0;
+ op.frame_opts.preemph_coeff = 0.0;
+ op.frame_opts.window_type = "hamming";
+ op.frame_opts.remove_dc_offset = false;
+ op.frame_opts.round_to_power_of_two = true;
+ op.mel_opts.low_freq = 0.0;
+ op.mel_opts.htk_mode = true;
+ op.htk_compat = true;
+ op.use_energy = false; // C0 not energy.
+
+ Mfcc mfcc(op);
+
+ // calculate kaldi features
+ Matrix kaldi_raw_features;
+ mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
+
+ DeltaFeaturesOptions delta_opts;
+ Matrix kaldi_features;
+ ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
+
+ // compare the results
+ bool passed = true;
+ int32 i_old = -1;
+ KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
+ KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
+ // Ignore ends-- we make slightly different choices than
+ // HTK about how to treat the deltas at the ends.
+ for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
+ for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
+ BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
+ if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
+ // print the non-matching data only once per-line
+ if (i_old != i) {
+ std::cout << "\n\n\n[HTK-row: " << i << "] "
+ << htk_features.Row(i) << "\n";
+ std::cout << "[Kaldi-row: " << i << "] "
+ << kaldi_features.Row(i) << "\n\n\n";
+ i_old = i;
+ }
+ // print indices of non-matching cells
+ std::cout << "[" << i << ", " << j << "]";
+ passed = false;
+ }
+ }
+ }
+ if (!passed) KALDI_ERR << "Test failed";
+
+ // write the htk features for later inspection
+ HtkHeader header = {
+ kaldi_features.NumRows(),
+ 100000, // 10ms
+ static_cast(sizeof(float) * kaldi_features.NumCols()),
+ 021406 // MFCC_D_A_0
+ };
+ {
+ std::ofstream os("tmp.test.wav.fea_kaldi.1",
+ std::ios::out | std::ios::binary);
+ WriteHtk(os, kaldi_features, header);
+ }
+
+ std::cout << "Test passed :)\n\n";
+
+ unlink("tmp.test.wav.fea_kaldi.1");
+}
+
+
+static void UnitTestHTKCompare2() {
+ std::cout << "=== UnitTestHTKCompare2() ===\n";
+
+ std::ifstream is("test_data/test.wav", std::ios_base::binary);
+ WaveData wave;
+ wave.Read(is);
+ KALDI_ASSERT(wave.Data().NumRows() == 1);
+ SubVector waveform(wave.Data(), 0);
+
+ // read the HTK features
+ Matrix htk_features;
+ {
+ std::ifstream is("test_data/test.wav.fea_htk.2",
+ std::ios::in | std::ios_base::binary);
+ bool ans = ReadHtk(is, &htk_features, 0);
+ KALDI_ASSERT(ans);
+ }
+
+ // use mfcc with default configuration...
+ MfccOptions op;
+ op.frame_opts.dither = 0.0;
+ op.frame_opts.preemph_coeff = 0.0;
+ op.frame_opts.window_type = "hamming";
+ op.frame_opts.remove_dc_offset = false;
+ op.frame_opts.round_to_power_of_two = true;
+ op.mel_opts.low_freq = 0.0;
+ op.mel_opts.htk_mode = true;
+ op.htk_compat = true;
+ op.use_energy = true; // Use energy.
+
+ Mfcc mfcc(op);
+
+ // calculate kaldi features
+ Matrix kaldi_raw_features;
+ mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
+
+ DeltaFeaturesOptions delta_opts;
+ Matrix kaldi_features;
+ ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
+
+ // compare the results
+ bool passed = true;
+ int32 i_old = -1;
+ KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
+ KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
+ // Ignore ends-- we make slightly different choices than
+ // HTK about how to treat the deltas at the ends.
+ for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
+ for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
+ BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
+ if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
+ // print the non-matching data only once per-line
+ if (i_old != i) {
+ std::cout << "\n\n\n[HTK-row: " << i << "] "
+ << htk_features.Row(i) << "\n";
+ std::cout << "[Kaldi-row: " << i << "] "
+ << kaldi_features.Row(i) << "\n\n\n";
+ i_old = i;
+ }
+ // print indices of non-matching cells
+ std::cout << "[" << i << ", " << j << "]";
+ passed = false;
+ }
+ }
+ }
+ if (!passed) KALDI_ERR << "Test failed";
+
+ // write the htk features for later inspection
+ HtkHeader header = {
+ kaldi_features.NumRows(),
+ 100000, // 10ms
+ static_cast(sizeof(float) * kaldi_features.NumCols()),
+ 021406 // MFCC_D_A_0
+ };
+ {
+ std::ofstream os("tmp.test.wav.fea_kaldi.2",
+ std::ios::out | std::ios::binary);
+ WriteHtk(os, kaldi_features, header);
+ }
+
+ std::cout << "Test passed :)\n\n";
+
+ unlink("tmp.test.wav.fea_kaldi.2");
+}
+
+
+static void UnitTestHTKCompare3() {
+ std::cout << "=== UnitTestHTKCompare3() ===\n";
+
+ std::ifstream is("test_data/test.wav", std::ios_base::binary);
+ WaveData wave;
+ wave.Read(is);
+ KALDI_ASSERT(wave.Data().NumRows() == 1);
+ SubVector waveform(wave.Data(), 0);
+
+ // read the HTK features
+ Matrix htk_features;
+ {
+ std::ifstream is("test_data/test.wav.fea_htk.3",
+ std::ios::in | std::ios_base::binary);
+ bool ans = ReadHtk(is, &htk_features, 0);
+ KALDI_ASSERT(ans);
+ }
+
+ // use mfcc with default configuration...
+ MfccOptions op;
+ op.frame_opts.dither = 0.0;
+ op.frame_opts.preemph_coeff = 0.0;
+ op.frame_opts.window_type = "hamming";
+ op.frame_opts.remove_dc_offset = false;
+ op.frame_opts.round_to_power_of_two = true;
+ op.htk_compat = true;
+ op.use_energy = true; // Use energy.
+ op.mel_opts.low_freq = 20.0;
+ // op.mel_opts.debug_mel = true;
+ op.mel_opts.htk_mode = true;
+
+ Mfcc mfcc(op);
+
+ // calculate kaldi features
+ Matrix kaldi_raw_features;
+ mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
+
+ DeltaFeaturesOptions delta_opts;
+ Matrix kaldi_features;
+ ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
+
+ // compare the results
+ bool passed = true;
+ int32 i_old = -1;
+ KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
+ KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
+ // Ignore ends-- we make slightly different choices than
+ // HTK about how to treat the deltas at the ends.
+ for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
+ for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
+ BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
+ if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
+ // print the non-matching data only once per-line
+ if (static_cast(i_old) != i) {
+ std::cout << "\n\n\n[HTK-row: " << i << "] "
+ << htk_features.Row(i) << "\n";
+ std::cout << "[Kaldi-row: " << i << "] "
+ << kaldi_features.Row(i) << "\n\n\n";
+ i_old = i;
+ }
+ // print indices of non-matching cells
+ std::cout << "[" << i << ", " << j << "]";
+ passed = false;
+ }
+ }
+ }
+ if (!passed) KALDI_ERR << "Test failed";
+
+ // write the htk features for later inspection
+ HtkHeader header = {
+ kaldi_features.NumRows(),
+ 100000, // 10ms
+ static_cast(sizeof(float) * kaldi_features.NumCols()),
+ 021406 // MFCC_D_A_0
+ };
+ {
+ std::ofstream os("tmp.test.wav.fea_kaldi.3",
+ std::ios::out | std::ios::binary);
+ WriteHtk(os, kaldi_features, header);
+ }
+
+ std::cout << "Test passed :)\n\n";
+
+ unlink("tmp.test.wav.fea_kaldi.3");
+}
+
+
+static void UnitTestHTKCompare4() {
+ std::cout << "=== UnitTestHTKCompare4() ===\n";
+
+ std::ifstream is("test_data/test.wav", std::ios_base::binary);
+ WaveData wave;
+ wave.Read(is);
+ KALDI_ASSERT(wave.Data().NumRows() == 1);
+ SubVector waveform(wave.Data(), 0);
+
+ // read the HTK features
+ Matrix htk_features;
+ {
+ std::ifstream is("test_data/test.wav.fea_htk.4",
+ std::ios::in | std::ios_base::binary);
+ bool ans = ReadHtk(is, &htk_features, 0);
+ KALDI_ASSERT(ans);
+ }
+
+ // use mfcc with default configuration...
+ MfccOptions op;
+ op.frame_opts.dither = 0.0;
+ op.frame_opts.window_type = "hamming";
+ op.frame_opts.remove_dc_offset = false;
+ op.frame_opts.round_to_power_of_two = true;
+ op.mel_opts.low_freq = 0.0;
+ op.htk_compat = true;
+ op.use_energy = true; // Use energy.
+ op.mel_opts.htk_mode = true;
+
+ Mfcc mfcc(op);
+
+ // calculate kaldi features
+ Matrix kaldi_raw_features;
+ mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
+
+ DeltaFeaturesOptions delta_opts;
+ Matrix kaldi_features;
+ ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
+
+ // compare the results
+ bool passed = true;
+ int32 i_old = -1;
+ KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
+ KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
+ // Ignore ends-- we make slightly different choices than
+ // HTK about how to treat the deltas at the ends.
+ for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
+ for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
+ BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
+ if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
+ // print the non-matching data only once per-line
+ if (static_cast(i_old) != i) {
+ std::cout << "\n\n\n[HTK-row: " << i << "] "
+ << htk_features.Row(i) << "\n";
+ std::cout << "[Kaldi-row: " << i << "] "
+ << kaldi_features.Row(i) << "\n\n\n";
+ i_old = i;
+ }
+ // print indices of non-matching cells
+ std::cout << "[" << i << ", " << j << "]";
+ passed = false;
+ }
+ }
+ }
+ if (!passed) KALDI_ERR << "Test failed";
+
+ // write the htk features for later inspection
+ HtkHeader header = {
+ kaldi_features.NumRows(),
+ 100000, // 10ms
+ static_cast(sizeof(float) * kaldi_features.NumCols()),
+ 021406 // MFCC_D_A_0
+ };
+ {
+ std::ofstream os("tmp.test.wav.fea_kaldi.4",
+ std::ios::out | std::ios::binary);
+ WriteHtk(os, kaldi_features, header);
+ }
+
+ std::cout << "Test passed :)\n\n";
+
+ unlink("tmp.test.wav.fea_kaldi.4");
+}
+
+
+static void UnitTestHTKCompare5() {
+ std::cout << "=== UnitTestHTKCompare5() ===\n";
+
+ std::ifstream is("test_data/test.wav", std::ios_base::binary);
+ WaveData wave;
+ wave.Read(is);
+ KALDI_ASSERT(wave.Data().NumRows() == 1);
+ SubVector waveform(wave.Data(), 0);
+
+ // read the HTK features
+ Matrix htk_features;
+ {
+ std::ifstream is("test_data/test.wav.fea_htk.5",
+ std::ios::in | std::ios_base::binary);
+ bool ans = ReadHtk(is, &htk_features, 0);
+ KALDI_ASSERT(ans);
+ }
+
+ // use mfcc with default configuration...
+ MfccOptions op;
+ op.frame_opts.dither = 0.0;
+ op.frame_opts.window_type = "hamming";
+ op.frame_opts.remove_dc_offset = false;
+ op.frame_opts.round_to_power_of_two = true;
+ op.htk_compat = true;
+ op.use_energy = true; // Use energy.
+ op.mel_opts.low_freq = 0.0;
+ op.mel_opts.vtln_low = 100.0;
+ op.mel_opts.vtln_high = 7500.0;
+ op.mel_opts.htk_mode = true;
+
+ BaseFloat vtln_warp =
+ 1.1; // our approach identical to htk for warp factor >1,
+ // differs slightly for higher mel bins if warp_factor <0.9
+
+ Mfcc mfcc(op);
+
+ // calculate kaldi features
+ Matrix kaldi_raw_features;
+ mfcc.Compute(waveform, vtln_warp, &kaldi_raw_features);
+
+ DeltaFeaturesOptions delta_opts;
+ Matrix kaldi_features;
+ ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
+
+ // compare the results
+ bool passed = true;
+ int32 i_old = -1;
+ KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
+ KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
+ // Ignore ends-- we make slightly different choices than
+ // HTK about how to treat the deltas at the ends.
+ for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
+ for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
+ BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
+ if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
+ // print the non-matching data only once per-line
+ if (static_cast(i_old) != i) {
+ std::cout << "\n\n\n[HTK-row: " << i << "] "
+ << htk_features.Row(i) << "\n";
+ std::cout << "[Kaldi-row: " << i << "] "
+ << kaldi_features.Row(i) << "\n\n\n";
+ i_old = i;
+ }
+ // print indices of non-matching cells
+ std::cout << "[" << i << ", " << j << "]";
+ passed = false;
+ }
+ }
+ }
+ if (!passed) KALDI_ERR << "Test failed";
+
+ // write the htk features for later inspection
+ HtkHeader header = {
+ kaldi_features.NumRows(),
+ 100000, // 10ms
+ static_cast(sizeof(float) * kaldi_features.NumCols()),
+ 021406 // MFCC_D_A_0
+ };
+ {
+ std::ofstream os("tmp.test.wav.fea_kaldi.5",
+ std::ios::out | std::ios::binary);
+ WriteHtk(os, kaldi_features, header);
+ }
+
+ std::cout << "Test passed :)\n\n";
+
+ unlink("tmp.test.wav.fea_kaldi.5");
+}
+
+static void UnitTestHTKCompare6() {
+ std::cout << "=== UnitTestHTKCompare6() ===\n";
+
+
+ std::ifstream is("test_data/test.wav", std::ios_base::binary);
+ WaveData wave;
+ wave.Read(is);
+ KALDI_ASSERT(wave.Data().NumRows() == 1);
+ SubVector waveform(wave.Data(), 0);
+
+ // read the HTK features
+ Matrix htk_features;
+ {
+ std::ifstream is("test_data/test.wav.fea_htk.6",
+ std::ios::in | std::ios_base::binary);
+ bool ans = ReadHtk(is, &htk_features, 0);
+ KALDI_ASSERT(ans);
+ }
+
+ // use mfcc with default configuration...
+ MfccOptions op;
+ op.frame_opts.dither = 0.0;
+ op.frame_opts.preemph_coeff = 0.97;
+ op.frame_opts.window_type = "hamming";
+ op.frame_opts.remove_dc_offset = false;
+ op.frame_opts.round_to_power_of_two = true;
+ op.mel_opts.num_bins = 24;
+ op.mel_opts.low_freq = 125.0;
+ op.mel_opts.high_freq = 7800.0;
+ op.htk_compat = true;
+ op.use_energy = false; // C0 not energy.
+
+ Mfcc mfcc(op);
+
+ // calculate kaldi features
+ Matrix kaldi_raw_features;
+ mfcc.Compute(waveform, 1.0, &kaldi_raw_features);
+
+ DeltaFeaturesOptions delta_opts;
+ Matrix kaldi_features;
+ ComputeDeltas(delta_opts, kaldi_raw_features, &kaldi_features);
+
+ // compare the results
+ bool passed = true;
+ int32 i_old = -1;
+ KALDI_ASSERT(kaldi_features.NumRows() == htk_features.NumRows());
+ KALDI_ASSERT(kaldi_features.NumCols() == htk_features.NumCols());
+ // Ignore ends-- we make slightly different choices than
+ // HTK about how to treat the deltas at the ends.
+ for (int32 i = 10; i + 10 < kaldi_features.NumRows(); i++) {
+ for (int32 j = 0; j < kaldi_features.NumCols(); j++) {
+ BaseFloat a = kaldi_features(i, j), b = htk_features(i, j);
+ if ((std::abs(b - a)) > 1.0) { //<< TOLERANCE TO DIFFERENCES!!!!!
+ // print the non-matching data only once per-line
+ if (static_cast(i_old) != i) {
+ std::cout << "\n\n\n[HTK-row: " << i << "] "
+ << htk_features.Row(i) << "\n";
+ std::cout << "[Kaldi-row: " << i << "] "
+ << kaldi_features.Row(i) << "\n\n\n";
+ i_old = i;
+ }
+ // print indices of non-matching cells
+ std::cout << "[" << i << ", " << j << "]";
+ passed = false;
+ }
+ }
+ }
+ if (!passed) KALDI_ERR << "Test failed";
+
+ // write the htk features for later inspection
+ HtkHeader header = {
+ kaldi_features.NumRows(),
+ 100000, // 10ms
+ static_cast(sizeof(float) * kaldi_features.NumCols()),
+ 021406 // MFCC_D_A_0
+ };
+ {
+ std::ofstream os("tmp.test.wav.fea_kaldi.6",
+ std::ios::out | std::ios::binary);
+ WriteHtk(os, kaldi_features, header);
+ }
+
+ std::cout << "Test passed :)\n\n";
+
+ unlink("tmp.test.wav.fea_kaldi.6");
+}
+
+void UnitTestVtln() {
+ // Test the function VtlnWarpFreq.
+ BaseFloat low_freq = 10, high_freq = 7800, vtln_low_cutoff = 20,
+ vtln_high_cutoff = 7400;
+
+ for (size_t i = 0; i < 100; i++) {
+ BaseFloat freq = 5000, warp_factor = 0.9 + RandUniform() * 0.2;
+ AssertEqual(MelBanks::VtlnWarpFreq(vtln_low_cutoff,
+ vtln_high_cutoff,
+ low_freq,
+ high_freq,
+ warp_factor,
+ freq),
+ freq / warp_factor);
+
+ AssertEqual(MelBanks::VtlnWarpFreq(vtln_low_cutoff,
+ vtln_high_cutoff,
+ low_freq,
+ high_freq,
+ warp_factor,
+ low_freq),
+ low_freq);
+ AssertEqual(MelBanks::VtlnWarpFreq(vtln_low_cutoff,
+ vtln_high_cutoff,
+ low_freq,
+ high_freq,
+ warp_factor,
+ high_freq),
+ high_freq);
+ BaseFloat freq2 = low_freq + (high_freq - low_freq) * RandUniform(),
+ freq3 = freq2 +
+ (high_freq - freq2) * RandUniform(); // freq3>=freq2
+ BaseFloat w2 = MelBanks::VtlnWarpFreq(vtln_low_cutoff,
+ vtln_high_cutoff,
+ low_freq,
+ high_freq,
+ warp_factor,
+ freq2);
+ BaseFloat w3 = MelBanks::VtlnWarpFreq(vtln_low_cutoff,
+ vtln_high_cutoff,
+ low_freq,
+ high_freq,
+ warp_factor,
+ freq3);
+ KALDI_ASSERT(w3 >= w2); // increasing function.
+ BaseFloat w3dash = MelBanks::VtlnWarpFreq(
+ vtln_low_cutoff, vtln_high_cutoff, low_freq, high_freq, 1.0, freq3);
+ AssertEqual(w3dash, freq3);
+ }
+}
+
+static void UnitTestFeat() {
+ UnitTestVtln();
+ UnitTestReadWave();
+ UnitTestSimple();
+ UnitTestHTKCompare1();
+ UnitTestHTKCompare2();
+ // commenting out this one as it doesn't compare right now I normalized
+ // the way the FFT bins are treated (removed offset of 0.5)... this seems
+ // to relate to the way frequency zero behaves.
+ UnitTestHTKCompare3();
+ UnitTestHTKCompare4();
+ UnitTestHTKCompare5();
+ UnitTestHTKCompare6();
+ std::cout << "Tests succeeded.\n";
+}
+
+
+int main() {
+ try {
+ for (int i = 0; i < 5; i++) UnitTestFeat();
+ std::cout << "Tests succeeded.\n";
+ return 0;
+ } catch (const std::exception &e) {
+ std::cerr << e.what();
+ return 1;
+ }
+}
diff --git a/speechx/examples/feat/linear_spectrogram_main.cc b/speechx/examples/feat/linear_spectrogram_main.cc
new file mode 100644
index 00000000000..9ed4d6f9344
--- /dev/null
+++ b/speechx/examples/feat/linear_spectrogram_main.cc
@@ -0,0 +1,248 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// todo refactor, repalce with gtest
+
+#include "frontend/linear_spectrogram.h"
+#include "base/flags.h"
+#include "base/log.h"
+#include "frontend/feature_cache.h"
+#include "frontend/feature_extractor_interface.h"
+#include "frontend/normalizer.h"
+#include "frontend/raw_audio.h"
+#include "kaldi/feat/wave-reader.h"
+#include "kaldi/util/kaldi-io.h"
+#include "kaldi/util/table-types.h"
+
+DEFINE_string(wav_rspecifier, "", "test wav scp path");
+DEFINE_string(feature_wspecifier, "", "output feats wspecifier");
+DEFINE_string(cmvn_write_path, "./cmvn.ark", "write cmvn");
+
+
+std::vector mean_{
+ -13730251.531853663, -12982852.199316509, -13673844.299583456,
+ -13089406.559646806, -12673095.524938712, -12823859.223276224,
+ -13590267.158903603, -14257618.467152044, -14374605.116185192,
+ -14490009.21822485, -14849827.158924166, -15354435.470563512,
+ -15834149.206532761, -16172971.985514281, -16348740.496746974,
+ -16423536.699409386, -16556246.263649225, -16744088.772748645,
+ -16916184.08510357, -17054034.840031497, -17165612.509455364,
+ -17255955.470915023, -17322572.527648456, -17408943.862033736,
+ -17521554.799865916, -17620623.254924215, -17699792.395918526,
+ -17723364.411134344, -17741483.4433254, -17747426.888704527,
+ -17733315.928209435, -17748780.160905756, -17808336.883775543,
+ -17895918.671983004, -18009812.59173023, -18098188.66548325,
+ -18195798.958462656, -18293617.62980999, -18397432.92077201,
+ -18505834.787318766, -18585451.8100908, -18652438.235649142,
+ -18700960.306275308, -18734944.58792185, -18737426.313365128,
+ -18735347.165987637, -18738813.444170244, -18737086.848890636,
+ -18731576.2474336, -18717405.44095871, -18703089.25545657,
+ -18691014.546456724, -18692460.568905357, -18702119.628629155,
+ -18727710.621126678, -18761582.72034647, -18806745.835547544,
+ -18850674.8692112, -18884431.510951452, -18919999.992506847,
+ -18939303.799078144, -18952946.273760635, -18980289.22996379,
+ -19011610.17803294, -19040948.61805145, -19061021.429847397,
+ -19112055.53768819, -19149667.414264943, -19201127.05091321,
+ -19270250.82564605, -19334606.883057203, -19390513.336589377,
+ -19444176.259208687, -19502755.000038862, -19544333.014549147,
+ -19612668.183176614, -19681902.19006569, -19771969.951249883,
+ -19873329.723376893, -19996752.59235844, -20110031.131400537,
+ -20231658.612529557, -20319378.894054495, -20378534.45718066,
+ -20413332.089584175, -20438147.844177883, -20443710.248040095,
+ -20465457.02238927, -20488610.969337028, -20516295.16424432,
+ -20541423.795738827, -20553192.874953747, -20573605.50701977,
+ -20577871.61936797, -20571807.008916274, -20556242.38912231,
+ -20542199.30819195, -20521239.063551214, -20519150.80004532,
+ -20527204.80248933, -20536933.769257784, -20543470.522332076,
+ -20549700.089992985, -20551525.24958494, -20554873.406493705,
+ -20564277.65794227, -20572211.740052115, -20574305.69550465,
+ -20575494.450104576, -20567092.577932164, -20549302.929608088,
+ -20545445.11878376, -20546625.326603737, -20549190.03499401,
+ -20554824.947828256, -20568341.378989458, -20577582.331383612,
+ -20577980.519402675, -20566603.03458152, -20560131.592262644,
+ -20552166.469060015, -20549063.06763577, -20544490.562339947,
+ -20539817.82346569, -20528747.715731595, -20518026.24576161,
+ -20510977.844974525, -20506874.36087992, -20506731.11977665,
+ -20510482.133420516, -20507760.92101862, -20494644.834457114,
+ -20480107.89304893, -20461312.091867123, -20442941.75080173,
+ -20426123.02834838, -20424607.675283, -20426810.369107097,
+ -20434024.50097819, -20437404.75544205, -20447688.63916367,
+ -20460893.335563846, -20482922.735127095, -20503610.119434915,
+ -20527062.76448319, -20557830.035128627, -20593274.72068722,
+ -20632528.452965066, -20673637.471334763, -20733106.97143075,
+ -20842921.0447562, -21054357.83621519, -21416569.534189366,
+ -21978460.272811692, -22753170.052172784, -23671344.10563395,
+ -24613499.293358143, -25406477.12230188, -25884377.82156489,
+ -26049040.62791664, -26996879.104431007};
+std::vector variance_{
+ 213747175.10846674, 188395815.34302503, 212706429.10966414,
+ 199109025.81461075, 189235901.23864496, 194901336.53253657,
+ 217481594.29306737, 238689869.12327808, 243977501.24115244,
+ 248479623.6431067, 259766741.47116545, 275516766.7790273,
+ 291271202.3691234, 302693239.8220509, 308627358.3997694,
+ 311143911.38788426, 315446105.07731867, 321705430.9341829,
+ 327458907.4659941, 332245072.43223983, 336251717.5935284,
+ 339694069.7639722, 342188204.4322228, 345587110.31313115,
+ 349903086.2875232, 353660214.20643026, 356700344.5270885,
+ 357665362.3529641, 358493352.05658793, 358857951.620328,
+ 358375239.52774596, 358899733.6342954, 361051818.3511561,
+ 364361716.05025816, 368750322.3771452, 372047800.6462831,
+ 375655861.1349018, 379358519.1980013, 383327605.3935181,
+ 387458599.282341, 390434692.3406868, 392994486.35057056,
+ 394874418.04603153, 396230525.79763395, 396365592.0414835,
+ 396334819.8242737, 396488353.19250053, 396438877.00744957,
+ 396197980.4459586, 395590921.6672991, 395001107.62072515,
+ 394528291.7318225, 394593110.424006, 395018405.59353715,
+ 396110577.5415993, 397506704.0371068, 399400197.4657644,
+ 401243568.2468382, 402687134.7805103, 404136047.2872507,
+ 404883170.001883, 405522253.219517, 406660365.3626476,
+ 407919346.0991902, 409045348.5384909, 409759588.7889818,
+ 411974821.8564483, 413489718.78201455, 415535392.56684107,
+ 418466481.97674364, 421104678.35678065, 423405392.5200779,
+ 425550570.40798235, 427929423.9579701, 429585274.253478,
+ 432368493.55181056, 435193587.13513297, 438886855.20476013,
+ 443058876.8633751, 448181232.5093362, 452883835.6332396,
+ 458056721.77926534, 461816531.22735566, 464363620.1970998,
+ 465886343.5057493, 466928872.0651, 467180536.42647296,
+ 468111848.70714295, 469138695.3071312, 470378429.6930793,
+ 471517958.7132626, 472109050.4262365, 473087417.0177867,
+ 473381322.04648733, 473220195.85483915, 472666071.8998819,
+ 472124669.87879956, 471298571.411737, 471251033.2902761,
+ 471672676.43128747, 472177147.2193172, 472572361.7711908,
+ 472968783.7751127, 473156295.4164052, 473398034.82676554,
+ 473897703.5203811, 474328271.33112127, 474452670.98002136,
+ 474549003.99284613, 474252887.13567275, 473557462.909069,
+ 473483385.85193115, 473609738.04855174, 473746944.82085115,
+ 474016729.91696435, 474617321.94138587, 475045097.237122,
+ 475125402.586558, 474664112.9824912, 474426247.5800283,
+ 474104075.42796475, 473978219.7273978, 473773171.7798875,
+ 473578534.69508696, 473102924.16904145, 472651240.5232615,
+ 472374383.1810912, 472209479.6956096, 472202298.8921673,
+ 472370090.76781124, 472220933.99374026, 471625467.37106377,
+ 470994646.51883453, 470182428.9637543, 469348211.5939578,
+ 468570387.4467277, 468540442.7225135, 468672018.90414184,
+ 468994346.9533251, 469138757.58201426, 469553915.95710236,
+ 470134523.38582784, 471082421.62055486, 471962316.51804745,
+ 472939745.1708408, 474250621.5944825, 475773933.43199486,
+ 477465399.71087736, 479218782.61382693, 481752299.7930922,
+ 486608947.8984568, 496119403.2067917, 512730085.5704984,
+ 539048915.2641417, 576285298.3548826, 621610270.2240586,
+ 669308196.4436442, 710656993.5957186, 736344437.3725077,
+ 745481288.0241544, 801121432.9925804};
+int count_ = 912592;
+
+void WriteMatrix() {
+ kaldi::Matrix cmvn_stats(2, mean_.size() + 1);
+ for (size_t idx = 0; idx < mean_.size(); ++idx) {
+ cmvn_stats(0, idx) = mean_[idx];
+ cmvn_stats(1, idx) = variance_[idx];
+ }
+ cmvn_stats(0, mean_.size()) = count_;
+ kaldi::WriteKaldiObject(cmvn_stats, FLAGS_cmvn_write_path, true);
+}
+
+int main(int argc, char* argv[]) {
+ gflags::ParseCommandLineFlags(&argc, &argv, false);
+ google::InitGoogleLogging(argv[0]);
+
+ kaldi::SequentialTableReader wav_reader(
+ FLAGS_wav_rspecifier);
+ kaldi::BaseFloatMatrixWriter feat_writer(FLAGS_feature_wspecifier);
+ WriteMatrix();
+
+ // test feature linear_spectorgram: wave --> decibel_normalizer --> hanning
+ // window -->linear_spectrogram --> cmvn
+ int32 num_done = 0, num_err = 0;
+ // std::unique_ptr data_source(new
+ // ppspeech::RawDataCache());
+ std::unique_ptr data_source(
+ new ppspeech::RawAudioCache());
+
+ ppspeech::LinearSpectrogramOptions opt;
+ opt.frame_opts.frame_length_ms = 20;
+ opt.frame_opts.frame_shift_ms = 10;
+ ppspeech::DecibelNormalizerOptions db_norm_opt;
+ std::unique_ptr base_feature_extractor(
+ new ppspeech::DecibelNormalizer(db_norm_opt, std::move(data_source)));
+
+ std::unique_ptr linear_spectrogram(
+ new ppspeech::LinearSpectrogram(opt,
+ std::move(base_feature_extractor)));
+
+ std::unique_ptr cmvn(
+ new ppspeech::CMVN(FLAGS_cmvn_write_path,
+ std::move(linear_spectrogram)));
+
+ ppspeech::FeatureCache feature_cache(kint16max, std::move(cmvn));
+
+ float streaming_chunk = 0.36;
+ int sample_rate = 16000;
+ int chunk_sample_size = streaming_chunk * sample_rate;
+
+ for (; !wav_reader.Done(); wav_reader.Next()) {
+ std::string utt = wav_reader.Key();
+ const kaldi::WaveData& wave_data = wav_reader.Value();
+
+ int32 this_channel = 0;
+ kaldi::SubVector waveform(wave_data.Data(),
+ this_channel);
+ int tot_samples = waveform.Dim();
+ int sample_offset = 0;
+ std::vector> feats;
+ int feature_rows = 0;
+ while (sample_offset < tot_samples) {
+ int cur_chunk_size =
+ std::min(chunk_sample_size, tot_samples - sample_offset);
+
+ kaldi::Vector wav_chunk(cur_chunk_size);
+ for (int i = 0; i < cur_chunk_size; ++i) {
+ wav_chunk(i) = waveform(sample_offset + i);
+ }
+ kaldi::Vector features;
+ feature_cache.Accept(wav_chunk);
+ if (cur_chunk_size < chunk_sample_size) {
+ feature_cache.SetFinished();
+ }
+ feature_cache.Read(&features);
+ if (features.Dim() == 0) break;
+
+ feats.push_back(features);
+ sample_offset += cur_chunk_size;
+ feature_rows += features.Dim() / feature_cache.Dim();
+ }
+
+ int cur_idx = 0;
+ kaldi::Matrix features(feature_rows,
+ feature_cache.Dim());
+ for (auto feat : feats) {
+ int num_rows = feat.Dim() / feature_cache.Dim();
+ for (int row_idx = 0; row_idx < num_rows; ++row_idx) {
+ for (size_t col_idx = 0; col_idx < feature_cache.Dim();
+ ++col_idx) {
+ features(cur_idx, col_idx) =
+ feat(row_idx * feature_cache.Dim() + col_idx);
+ }
+ ++cur_idx;
+ }
+ }
+ feat_writer.Write(utt, features);
+
+ if (num_done % 50 == 0 && num_done != 0)
+ KALDI_VLOG(2) << "Processed " << num_done << " utterances";
+ num_done++;
+ }
+ KALDI_LOG << "Done " << num_done << " utterances, " << num_err
+ << " with errors.";
+ return (num_done != 0 ? 0 : 1);
+}
diff --git a/speechx/examples/feat/path.sh b/speechx/examples/feat/path.sh
new file mode 100644
index 00000000000..8ab7ee29918
--- /dev/null
+++ b/speechx/examples/feat/path.sh
@@ -0,0 +1,14 @@
+# This contains the locations of binarys build required for running the examples.
+
+SPEECHX_ROOT=$PWD/../..
+SPEECHX_EXAMPLES=$SPEECHX_ROOT/build/examples
+
+SPEECHX_TOOLS=$SPEECHX_ROOT/tools
+TOOLS_BIN=$SPEECHX_TOOLS/valgrind/install/bin
+
+[ -d $SPEECHX_EXAMPLES ] || { echo "Error: 'build/examples' directory not found. please ensure that the project build successfully"; }
+
+export LC_AL=C
+
+SPEECHX_BIN=$SPEECHX_EXAMPLES/feat
+export PATH=$PATH:$SPEECHX_BIN:$TOOLS_BIN
diff --git a/speechx/examples/feat/run.sh b/speechx/examples/feat/run.sh
new file mode 100755
index 00000000000..bd21bd7f4e1
--- /dev/null
+++ b/speechx/examples/feat/run.sh
@@ -0,0 +1,31 @@
+#!/bin/bash
+set +x
+set -e
+
+. ./path.sh
+
+# 1. compile
+if [ ! -d ${SPEECHX_EXAMPLES} ]; then
+ pushd ${SPEECHX_ROOT}
+ bash build.sh
+ popd
+fi
+
+# 2. download model
+if [ ! -d ../paddle_asr_model ]; then
+ wget https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/paddle_asr_model.tar.gz
+ tar xzfv paddle_asr_model.tar.gz
+ mv ./paddle_asr_model ../
+ # produce wav scp
+ echo "utt1 " $PWD/../paddle_asr_model/BAC009S0764W0290.wav > ../paddle_asr_model/wav.scp
+fi
+
+model_dir=../paddle_asr_model
+feat_wspecifier=./feats.ark
+cmvn=./cmvn.ark
+
+# 3. run feat
+linear_spectrogram_main \
+ --wav_rspecifier=scp:$model_dir/wav.scp \
+ --feature_wspecifier=ark,t:$feat_wspecifier \
+ --cmvn_write_path=$cmvn
diff --git a/speechx/examples/feat/valgrind.sh b/speechx/examples/feat/valgrind.sh
new file mode 100755
index 00000000000..f8aab63f8c9
--- /dev/null
+++ b/speechx/examples/feat/valgrind.sh
@@ -0,0 +1,24 @@
+#!/bin/bash
+
+# this script is for memory check, so please run ./run.sh first.
+
+set +x
+set -e
+
+. ./path.sh
+
+if [ ! -d ${SPEECHX_TOOLS}/valgrind/install ]; then
+ echo "please install valgrind in the speechx tools dir.\n"
+ exit 1
+fi
+
+model_dir=../paddle_asr_model
+feat_wspecifier=./feats.ark
+cmvn=./cmvn.ark
+
+valgrind --tool=memcheck --track-origins=yes --leak-check=full --show-leak-kinds=all \
+ linear_spectrogram_main \
+ --wav_rspecifier=scp:$model_dir/wav.scp \
+ --feature_wspecifier=ark,t:$feat_wspecifier \
+ --cmvn_write_path=$cmvn
+
diff --git a/speechx/examples/nnet/CMakeLists.txt b/speechx/examples/nnet/CMakeLists.txt
new file mode 100644
index 00000000000..20f4008ce53
--- /dev/null
+++ b/speechx/examples/nnet/CMakeLists.txt
@@ -0,0 +1,5 @@
+cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
+
+add_executable(pp-model-test ${CMAKE_CURRENT_SOURCE_DIR}/pp-model-test.cc)
+target_include_directories(pp-model-test PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
+target_link_libraries(pp-model-test PUBLIC nnet gflags ${DEPS})
\ No newline at end of file
diff --git a/speechx/examples/nnet/path.sh b/speechx/examples/nnet/path.sh
new file mode 100644
index 00000000000..f70e70eeaa1
--- /dev/null
+++ b/speechx/examples/nnet/path.sh
@@ -0,0 +1,14 @@
+# This contains the locations of binarys build required for running the examples.
+
+SPEECHX_ROOT=$PWD/../..
+SPEECHX_EXAMPLES=$SPEECHX_ROOT/build/examples
+
+SPEECHX_TOOLS=$SPEECHX_ROOT/tools
+TOOLS_BIN=$SPEECHX_TOOLS/valgrind/install/bin
+
+[ -d $SPEECHX_EXAMPLES ] || { echo "Error: 'build/examples' directory not found. please ensure that the project build successfully"; }
+
+export LC_AL=C
+
+SPEECHX_BIN=$SPEECHX_EXAMPLES/nnet
+export PATH=$PATH:$SPEECHX_BIN:$TOOLS_BIN
diff --git a/speechx/examples/nnet/pp-model-test.cc b/speechx/examples/nnet/pp-model-test.cc
new file mode 100644
index 00000000000..2db354a79a6
--- /dev/null
+++ b/speechx/examples/nnet/pp-model-test.cc
@@ -0,0 +1,193 @@
+// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include "paddle_inference_api.h"
+
+using std::cout;
+using std::endl;
+
+DEFINE_string(model_path, "avg_1.jit.pdmodel", "xxx.pdmodel");
+DEFINE_string(param_path, "avg_1.jit.pdiparams", "xxx.pdiparams");
+
+
+void produce_data(std::vector>* data);
+void model_forward_test();
+
+void produce_data(std::vector>* data) {
+ int chunk_size = 35; // chunk_size in frame
+ int col_size = 161; // feat dim
+ cout << "chunk size: " << chunk_size << endl;
+ cout << "feat dim: " << col_size << endl;
+
+ data->reserve(chunk_size);
+ data->back().reserve(col_size);
+ for (int row = 0; row < chunk_size; ++row) {
+ data->push_back(std::vector());
+ for (int col_idx = 0; col_idx < col_size; ++col_idx) {
+ data->back().push_back(0.201);
+ }
+ }
+}
+
+void model_forward_test() {
+ std::cout << "1. read the data" << std::endl;
+ std::vector> feats;
+ produce_data(&feats);
+
+ std::cout << "2. load the model" << std::endl;
+ ;
+ std::string model_graph = FLAGS_model_path;
+ std::string model_params = FLAGS_param_path;
+ cout << "model path: " << model_graph << endl;
+ cout << "model param path : " << model_params << endl;
+
+ paddle_infer::Config config;
+ config.SetModel(model_graph, model_params);
+ config.SwitchIrOptim(false);
+ cout << "SwitchIrOptim: " << false << endl;
+ config.DisableFCPadding();
+ cout << "DisableFCPadding: " << endl;
+ auto predictor = paddle_infer::CreatePredictor(config);
+
+ std::cout << "3. feat shape, row=" << feats.size()
+ << ",col=" << feats[0].size() << std::endl;
+ std::vector pp_input_mat;
+ for (const auto& item : feats) {
+ pp_input_mat.insert(pp_input_mat.end(), item.begin(), item.end());
+ }
+
+ std::cout << "4. fead the data to model" << std::endl;
+ int row = feats.size();
+ int col = feats[0].size();
+ std::vector input_names = predictor->GetInputNames();
+ std::vector output_names = predictor->GetOutputNames();
+ for (auto name : input_names) {
+ cout << "model input names: " << name << endl;
+ }
+ for (auto name : output_names) {
+ cout << "model output names: " << name << endl;
+ }
+
+ // input
+ std::unique_ptr input_tensor =
+ predictor->GetInputHandle(input_names[0]);
+ std::vector INPUT_SHAPE = {1, row, col};
+ input_tensor->Reshape(INPUT_SHAPE);
+ input_tensor->CopyFromCpu(pp_input_mat.data());
+
+ // input length
+ std::unique_ptr input_len =
+ predictor->GetInputHandle(input_names[1]);
+ std::vector input_len_size = {1};
+ input_len->Reshape(input_len_size);
+ std::vector audio_len;
+ audio_len.push_back(row);
+ input_len->CopyFromCpu(audio_len.data());
+
+ // state_h
+ std::unique_ptr chunk_state_h_box =
+ predictor->GetInputHandle(input_names[2]);
+ std::vector chunk_state_h_box_shape = {3, 1, 1024};
+ chunk_state_h_box->Reshape(chunk_state_h_box_shape);
+ int chunk_state_h_box_size =
+ std::accumulate(chunk_state_h_box_shape.begin(),
+ chunk_state_h_box_shape.end(),
+ 1,
+ std::multiplies());
+ std::vector chunk_state_h_box_data(chunk_state_h_box_size, 0.0f);
+ chunk_state_h_box->CopyFromCpu(chunk_state_h_box_data.data());
+
+ // state_c
+ std::unique_ptr chunk_state_c_box =
+ predictor->GetInputHandle(input_names[3]);
+ std::vector chunk_state_c_box_shape = {3, 1, 1024};
+ chunk_state_c_box->Reshape(chunk_state_c_box_shape);
+ int chunk_state_c_box_size =
+ std::accumulate(chunk_state_c_box_shape.begin(),
+ chunk_state_c_box_shape.end(),
+ 1,
+ std::multiplies());
+ std::vector chunk_state_c_box_data(chunk_state_c_box_size, 0.0f);
+ chunk_state_c_box->CopyFromCpu(chunk_state_c_box_data.data());
+
+ // run
+ bool success = predictor->Run();
+
+ // state_h out
+ std::unique_ptr h_out =
+ predictor->GetOutputHandle(output_names[2]);
+ std::vector h_out_shape = h_out->shape();
+ int h_out_size = std::accumulate(
+ h_out_shape.begin(), h_out_shape.end(), 1, std::multiplies());
+ std::vector h_out_data(h_out_size);
+ h_out->CopyToCpu(h_out_data.data());
+
+ // stage_c out
+ std::unique_ptr c_out =
+ predictor->GetOutputHandle(output_names[3]);
+ std::vector c_out_shape = c_out->shape();
+ int c_out_size = std::accumulate(
+ c_out_shape.begin(), c_out_shape.end(), 1, std::multiplies());
+ std::vector c_out_data(c_out_size);
+ c_out->CopyToCpu(c_out_data.data());
+
+ // output tensor
+ std::unique_ptr output_tensor =
+ predictor->GetOutputHandle(output_names[0]);
+ std::vector output_shape = output_tensor->shape();
+ std::vector output_probs;
+ int output_size = std::accumulate(
+ output_shape.begin(), output_shape.end(), 1, std::multiplies());
+ output_probs.resize(output_size);
+ output_tensor->CopyToCpu(output_probs.data());
+ row = output_shape[1];
+ col = output_shape[2];
+
+ // probs
+ std::vector> probs;
+ probs.reserve(row);
+ for (int i = 0; i < row; i++) {
+ probs.push_back(std::vector());
+ probs.back().reserve(col);
+
+ for (int j = 0; j < col; j++) {
+ probs.back().push_back(output_probs[i * col + j]);
+ }
+ }
+
+ std::vector> log_feat = probs;
+ std::cout << "probs, row: " << log_feat.size()
+ << " col: " << log_feat[0].size() << std::endl;
+ for (size_t row_idx = 0; row_idx < log_feat.size(); ++row_idx) {
+ for (size_t col_idx = 0; col_idx < log_feat[row_idx].size();
+ ++col_idx) {
+ std::cout << log_feat[row_idx][col_idx] << " ";
+ }
+ std::cout << std::endl;
+ }
+}
+
+int main(int argc, char* argv[]) {
+ gflags::ParseCommandLineFlags(&argc, &argv, true);
+ model_forward_test();
+ return 0;
+}
diff --git a/speechx/examples/nnet/run.sh b/speechx/examples/nnet/run.sh
new file mode 100755
index 00000000000..4d67d198842
--- /dev/null
+++ b/speechx/examples/nnet/run.sh
@@ -0,0 +1,29 @@
+#!/bin/bash
+set +x
+set -e
+
+. path.sh
+
+# 1. compile
+if [ ! -d ${SPEECHX_EXAMPLES} ]; then
+ pushd ${SPEECHX_ROOT}
+ bash build.sh
+ popd
+fi
+
+# 2. download model
+if [ ! -d ../paddle_asr_model ]; then
+ wget https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/paddle_asr_model.tar.gz
+ tar xzfv paddle_asr_model.tar.gz
+ mv ./paddle_asr_model ../
+ # produce wav scp
+ echo "utt1 " $PWD/../paddle_asr_model/BAC009S0764W0290.wav > ../paddle_asr_model/wav.scp
+fi
+
+model_dir=../paddle_asr_model
+
+# 4. run decoder
+pp-model-test \
+ --model_path=$model_dir/avg_1.jit.pdmodel \
+ --param_path=$model_dir/avg_1.jit.pdparams
+
diff --git a/speechx/examples/nnet/valgrind.sh b/speechx/examples/nnet/valgrind.sh
new file mode 100755
index 00000000000..2a08c6082f7
--- /dev/null
+++ b/speechx/examples/nnet/valgrind.sh
@@ -0,0 +1,20 @@
+#!/bin/bash
+
+# this script is for memory check, so please run ./run.sh first.
+
+set +x
+set -e
+
+. ./path.sh
+
+if [ ! -d ${SPEECHX_TOOLS}/valgrind/install ]; then
+ echo "please install valgrind in the speechx tools dir.\n"
+ exit 1
+fi
+
+model_dir=../paddle_asr_model
+
+valgrind --tool=memcheck --track-origins=yes --leak-check=full --show-leak-kinds=all \
+ pp-model-test \
+ --model_path=$model_dir/avg_1.jit.pdmodel \
+ --param_path=$model_dir/avg_1.jit.pdparams
\ No newline at end of file
diff --git a/speechx/patch/CPPLINT.cfg b/speechx/patch/CPPLINT.cfg
new file mode 100644
index 00000000000..51ff339c184
--- /dev/null
+++ b/speechx/patch/CPPLINT.cfg
@@ -0,0 +1 @@
+exclude_files=.*
diff --git a/speechx/patch/openfst/src/include/fst/flags.h b/speechx/patch/openfst/src/include/fst/flags.h
new file mode 100644
index 00000000000..b5ec8ff7416
--- /dev/null
+++ b/speechx/patch/openfst/src/include/fst/flags.h
@@ -0,0 +1,228 @@
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// See www.openfst.org for extensive documentation on this weighted
+// finite-state transducer library.
+//
+// Google-style flag handling declarations and inline definitions.
+
+#ifndef FST_LIB_FLAGS_H_
+#define FST_LIB_FLAGS_H_
+
+#include
+
+#include
+#include