-
Notifications
You must be signed in to change notification settings - Fork 7.9k
/
e2e_pg_loss.py
140 lines (129 loc) · 6.42 KB
/
e2e_pg_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn
import paddle
from .det_basic_loss import DiceLoss
from ppocr.utils.e2e_utils.extract_batchsize import pre_process
class PGLoss(nn.Layer):
def __init__(self,
tcl_bs,
max_text_length,
max_text_nums,
pad_num,
eps=1e-6,
**kwargs):
super(PGLoss, self).__init__()
self.tcl_bs = tcl_bs
self.max_text_nums = max_text_nums
self.max_text_length = max_text_length
self.pad_num = pad_num
self.dice_loss = DiceLoss(eps=eps)
def border_loss(self, f_border, l_border, l_score, l_mask):
l_border_split, l_border_norm = paddle.tensor.split(
l_border, num_or_sections=[4, 1], axis=1)
f_border_split = f_border
b, c, h, w = l_border_norm.shape
l_border_norm_split = paddle.expand(
x=l_border_norm, shape=[b, 4 * c, h, w])
b, c, h, w = l_score.shape
l_border_score = paddle.expand(x=l_score, shape=[b, 4 * c, h, w])
b, c, h, w = l_mask.shape
l_border_mask = paddle.expand(x=l_mask, shape=[b, 4 * c, h, w])
border_diff = l_border_split - f_border_split
abs_border_diff = paddle.abs(border_diff)
border_sign = abs_border_diff < 1.0
border_sign = paddle.cast(border_sign, dtype='float32')
border_sign.stop_gradient = True
border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \
(abs_border_diff - 0.5) * (1.0 - border_sign)
border_out_loss = l_border_norm_split * border_in_loss
border_loss = paddle.sum(border_out_loss * l_border_score * l_border_mask) / \
(paddle.sum(l_border_score * l_border_mask) + 1e-5)
return border_loss
def direction_loss(self, f_direction, l_direction, l_score, l_mask):
l_direction_split, l_direction_norm = paddle.tensor.split(
l_direction, num_or_sections=[2, 1], axis=1)
f_direction_split = f_direction
b, c, h, w = l_direction_norm.shape
l_direction_norm_split = paddle.expand(
x=l_direction_norm, shape=[b, 2 * c, h, w])
b, c, h, w = l_score.shape
l_direction_score = paddle.expand(x=l_score, shape=[b, 2 * c, h, w])
b, c, h, w = l_mask.shape
l_direction_mask = paddle.expand(x=l_mask, shape=[b, 2 * c, h, w])
direction_diff = l_direction_split - f_direction_split
abs_direction_diff = paddle.abs(direction_diff)
direction_sign = abs_direction_diff < 1.0
direction_sign = paddle.cast(direction_sign, dtype='float32')
direction_sign.stop_gradient = True
direction_in_loss = 0.5 * abs_direction_diff * abs_direction_diff * direction_sign + \
(abs_direction_diff - 0.5) * (1.0 - direction_sign)
direction_out_loss = l_direction_norm_split * direction_in_loss
direction_loss = paddle.sum(direction_out_loss * l_direction_score * l_direction_mask) / \
(paddle.sum(l_direction_score * l_direction_mask) + 1e-5)
return direction_loss
def ctcloss(self, f_char, tcl_pos, tcl_mask, tcl_label, label_t):
f_char = paddle.transpose(f_char, [0, 2, 3, 1])
tcl_pos = paddle.reshape(tcl_pos, [-1, 3])
tcl_pos = paddle.cast(tcl_pos, dtype=int)
f_tcl_char = paddle.gather_nd(f_char, tcl_pos)
f_tcl_char = paddle.reshape(f_tcl_char,
[-1, 64, 37]) # len(Lexicon_Table)+1
f_tcl_char_fg, f_tcl_char_bg = paddle.split(f_tcl_char, [36, 1], axis=2)
f_tcl_char_bg = f_tcl_char_bg * tcl_mask + (1.0 - tcl_mask) * 20.0
b, c, l = tcl_mask.shape
tcl_mask_fg = paddle.expand(x=tcl_mask, shape=[b, c, 36 * l])
tcl_mask_fg.stop_gradient = True
f_tcl_char_fg = f_tcl_char_fg * tcl_mask_fg + (1.0 - tcl_mask_fg) * (
-20.0)
f_tcl_char_mask = paddle.concat([f_tcl_char_fg, f_tcl_char_bg], axis=2)
f_tcl_char_ld = paddle.transpose(f_tcl_char_mask, (1, 0, 2))
N, B, _ = f_tcl_char_ld.shape
input_lengths = paddle.to_tensor([N] * B, dtype='int64')
cost = paddle.nn.functional.ctc_loss(
log_probs=f_tcl_char_ld,
labels=tcl_label,
input_lengths=input_lengths,
label_lengths=label_t,
blank=self.pad_num,
reduction='none')
cost = cost.mean()
return cost
def forward(self, predicts, labels):
images, tcl_maps, tcl_label_maps, border_maps \
, direction_maps, training_masks, label_list, pos_list, pos_mask = labels
# for all the batch_size
pos_list, pos_mask, label_list, label_t = pre_process(
label_list, pos_list, pos_mask, self.max_text_length,
self.max_text_nums, self.pad_num, self.tcl_bs)
f_score, f_border, f_direction, f_char = predicts['f_score'], predicts['f_border'], predicts['f_direction'], \
predicts['f_char']
score_loss = self.dice_loss(f_score, tcl_maps, training_masks)
border_loss = self.border_loss(f_border, border_maps, tcl_maps,
training_masks)
direction_loss = self.direction_loss(f_direction, direction_maps,
tcl_maps, training_masks)
ctc_loss = self.ctcloss(f_char, pos_list, pos_mask, label_list, label_t)
loss_all = score_loss + border_loss + direction_loss + 5 * ctc_loss
losses = {
'loss': loss_all,
"score_loss": score_loss,
"border_loss": border_loss,
"direction_loss": direction_loss,
"ctc_loss": ctc_loss
}
return losses