-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
train.py
executable file
·212 lines (182 loc) · 6.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
# add python path of PaddleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
# ignore warning log
import warnings
warnings.filterwarnings('ignore')
import cv2
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.engine import Trainer, TrainerCot, init_parallel_env, set_random_seed, init_fleet_env
from ppdet.engine.trainer_ssod import Trainer_DenseTeacher, Trainer_ARSL, Trainer_Semi_RTDETR
from ppdet.slim import build_slim_model
from ppdet.utils.cli import ArgsParser, merge_args
import ppdet.utils.check as check
from ppdet.utils.logger import setup_logger
logger = setup_logger('train')
def parse_args():
parser = ArgsParser()
parser.add_argument(
"--eval",
action='store_true',
default=False,
help="Whether to perform evaluation in train")
parser.add_argument(
"-r", "--resume", default=None, help="weights path for resume")
parser.add_argument(
"--slim_config",
default=None,
type=str,
help="Configuration file of slim method.")
parser.add_argument(
"--enable_ce",
type=bool,
default=False,
help="If set True, enable continuous evaluation job."
"This flag is only used for internal test.")
parser.add_argument(
"--amp",
action='store_true',
default=False,
help="Enable auto mixed precision training.")
parser.add_argument(
"--fleet", action='store_true', default=False, help="Use fleet or not")
parser.add_argument(
"--use_vdl",
type=bool,
default=False,
help="whether to record the data to VisualDL.")
parser.add_argument(
'--vdl_log_dir',
type=str,
default="vdl_log_dir/scalar",
help='VisualDL logging directory for scalar.')
parser.add_argument(
"--use_wandb",
type=bool,
default=False,
help="whether to record the data to wandb.")
parser.add_argument(
'--save_prediction_only',
action='store_true',
default=False,
help='Whether to save the evaluation results only')
parser.add_argument(
'--profiler_options',
type=str,
default=None,
help="The option of profiler, which should be in "
"format \"key1=value1;key2=value2;key3=value3\"."
"please see ppdet/utils/profiler.py for detail.")
parser.add_argument(
'--save_proposals',
action='store_true',
default=False,
help='Whether to save the train proposals')
parser.add_argument(
'--proposals_path',
type=str,
default="sniper/proposals.json",
help='Train proposals directory')
parser.add_argument(
"--to_static",
action='store_true',
default=False,
help="Enable dy2st to train.")
args = parser.parse_args()
return args
def run(FLAGS, cfg):
# init fleet environment
if cfg.fleet:
init_fleet_env(cfg.get('find_unused_parameters', False))
else:
# init parallel environment if nranks > 1
init_parallel_env()
if FLAGS.enable_ce:
set_random_seed(0)
# build trainer
ssod_method = cfg.get('ssod_method', None)
if ssod_method is not None:
if ssod_method == 'DenseTeacher':
trainer = Trainer_DenseTeacher(cfg, mode='train')
elif ssod_method == 'ARSL':
trainer = Trainer_ARSL(cfg, mode='train')
elif ssod_method == 'Semi_RTDETR':
trainer = Trainer_Semi_RTDETR(cfg, mode='train')
else:
raise ValueError(
"Semi-Supervised Object Detection only no support this method.")
elif cfg.get('use_cot', False):
trainer = TrainerCot(cfg, mode='train')
else:
trainer = Trainer(cfg, mode='train')
# load weights
if FLAGS.resume is not None:
trainer.resume_weights(FLAGS.resume)
elif 'pretrain_student_weights' in cfg and 'pretrain_teacher_weights' in cfg \
and cfg.pretrain_teacher_weights and cfg.pretrain_student_weights:
trainer.load_semi_weights(cfg.pretrain_teacher_weights,
cfg.pretrain_student_weights)
elif 'pretrain_weights' in cfg and cfg.pretrain_weights:
trainer.load_weights(cfg.pretrain_weights)
# training
trainer.train(FLAGS.eval)
def main():
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
merge_args(cfg, FLAGS)
merge_config(FLAGS.opt)
# disable npu in config by default
if 'use_npu' not in cfg:
cfg.use_npu = False
# disable xpu in config by default
if 'use_xpu' not in cfg:
cfg.use_xpu = False
if 'use_gpu' not in cfg:
cfg.use_gpu = False
# disable mlu in config by default
if 'use_mlu' not in cfg:
cfg.use_mlu = False
if cfg.use_gpu:
place = paddle.set_device('gpu')
elif cfg.use_npu:
place = paddle.set_device('npu')
elif cfg.use_xpu:
place = paddle.set_device('xpu')
elif cfg.use_mlu:
place = paddle.set_device('mlu')
else:
place = paddle.set_device('cpu')
if FLAGS.slim_config:
cfg = build_slim_model(cfg, FLAGS.slim_config)
# FIXME: Temporarily solve the priority problem of FLAGS.opt
merge_config(FLAGS.opt)
check.check_config(cfg)
check.check_gpu(cfg.use_gpu)
check.check_npu(cfg.use_npu)
check.check_xpu(cfg.use_xpu)
check.check_mlu(cfg.use_mlu)
check.check_version()
run(FLAGS, cfg)
if __name__ == "__main__":
main()