From 3e9c3cb309e09375c87f156133a84ad76468427c Mon Sep 17 00:00:00 2001 From: rich04lin <152049331+rich04lin@users.noreply.github.com> Date: Tue, 17 Dec 2024 09:55:50 +0800 Subject: [PATCH] [CodeStyle][Typos][C-59] Fix typos (`Conver`) (#70259) --- _typos.toml | 1 - .../decomp_rule/decomp_rule/composite.h | 90 ++++++------- .../decomp_rule/decomp_vjp/details.h | 118 +++++++++--------- .../primitive/decomp_utils/decomp_utils.h | 4 +- 4 files changed, 106 insertions(+), 107 deletions(-) diff --git a/_typos.toml b/_typos.toml index 44b00526270719..d38fce38416d41 100644 --- a/_typos.toml +++ b/_typos.toml @@ -41,7 +41,6 @@ caculate = 'caculate' calcualtion = 'calcualtion' checkings = 'checkings' childs = 'childs' -Conver = 'Conver' convience = 'convience' coodinate = 'coodinate' copyed = 'copyed' diff --git a/paddle/fluid/primitive/decomp_rule/decomp_rule/composite.h b/paddle/fluid/primitive/decomp_rule/decomp_rule/composite.h index 9e6aef48307d26..58d630f7caa781 100644 --- a/paddle/fluid/primitive/decomp_rule/decomp_rule/composite.h +++ b/paddle/fluid/primitive/decomp_rule/decomp_rule/composite.h @@ -36,7 +36,7 @@ Tensor any_decomp(const Tensor& x, const IntArray& axis, bool keepdim) { template Tensor mean_decomp(const Tensor& x, const IntArray& axis, bool keepdim) { - auto x_tmp = ConverToMT(x); + auto x_tmp = ConvertToMT(x); std::vector x_dim = x_tmp.shape(); int64_t axis_size = axis.size(); @@ -82,7 +82,7 @@ Tensor mean_decomp(const Tensor& x, const IntArray& axis, bool keepdim) { Tensor res = sum_x / value; - return ConverToOrig(res, x.dtype()); + return ConvertToOrig(res, x.dtype()); } static void check_valid_type(const DataType& dtype) { @@ -112,7 +112,7 @@ Tensor p_norm_decomp(const Tensor& x, const float epsilon = 1.0e-12f, const bool& keepdim = false, const bool& asvector = false) { - auto x_tmp = ConverToMT(x); + auto x_tmp = ConvertToMT(x); Tensor res; if (porder == 0.0) { @@ -146,17 +146,17 @@ Tensor p_norm_decomp(const Tensor& x, res = elementwise_pow(res, inv_porder_tensor); } - return ConverToOrig(res, x.dtype()); + return ConvertToOrig(res, x.dtype()); } template Tensor pow_decomp(const Tensor& x, const paddle::Scalar& y) { - auto x_cast = ConverToMT(x); + auto x_cast = ConvertToMT(x); check_valid_type(y.dtype()); Tensor y_full = full_scalar(y, x_cast.dtype(), x_cast.place()); auto ans = elementwise_pow(x_cast, y_full); - return ConverToOrig(ans, x.dtype()); + return ConvertToOrig(ans, x.dtype()); } template @@ -263,7 +263,7 @@ std::tuple batch_norm_decomp( bool use_global_stats, bool trainable_statistics) { auto org_dtype = x.dtype(); - Tensor x_cast = ConverToMT(x); + Tensor x_cast = ConvertToMT(x); BatchNormDecompHelper decomp_help(x, scale, bias, data_layout); @@ -319,7 +319,7 @@ std::tuple batch_norm_decomp( : bias.get()); } - y = ConverToOrig(y, org_dtype); + y = ConvertToOrig(y, org_dtype); if (!use_run_stat) { batch_mean_ = squeeze(batch_mean, reduce_axes); @@ -336,25 +336,25 @@ std::tuple batch_norm_decomp( template Tensor softmax_decomp(const Tensor& x, const int& axis) { - auto x_tmp = ConverToMT(x); + auto x_tmp = ConvertToMT(x); auto max_tmp = max(x_tmp, {axis}, true); auto molecular = exp(x_tmp - max_tmp); auto res = molecular / sum(molecular, {axis}, molecular.dtype(), true); - return ConverToOrig(res, x.dtype()); + return ConvertToOrig(res, x.dtype()); } template Tensor log_softmax_decomp(const Tensor& x, const int& axis) { - auto x_tmp = ConverToMT(x); + auto x_tmp = ConvertToMT(x); auto max_tmp = max(x_tmp, {axis}, true); auto sub = x_tmp - max_tmp; auto molecular = exp(sub); auto res = sub - log(sum(molecular, {axis}, molecular.dtype(), true)); - return ConverToOrig(res, x.dtype()); + return ConvertToOrig(res, x.dtype()); } template @@ -411,9 +411,9 @@ Tensor stack_decomp(const std::vector& x, const int& axis) { template Tensor silu_decomp(const Tensor& x) { - auto x_tmp = ConverToMT(x); + auto x_tmp = ConvertToMT(x); auto res = x_tmp * sigmoid(x_tmp); - return ConverToOrig(res, x.dtype()); + return ConvertToOrig(res, x.dtype()); } template @@ -541,7 +541,7 @@ std::tuple layer_norm_decomp( int begin_norm_axis) { std::vector reduce_axis; auto org_dtype = x.dtype(); - Tensor x_cast = ConverToMT(x); + Tensor x_cast = ConvertToMT(x); auto x_dims = x.dims(); @@ -562,13 +562,13 @@ std::tuple layer_norm_decomp( Tensor scale_cast; if (scale) { scale_cast = decomp_helper.Process(scale.get(), x_cast); - scale_cast = ConverToMT(scale_cast); + scale_cast = ConvertToMT(scale_cast); out = out * scale_cast; } Tensor bias_cast; if (bias) { bias_cast = decomp_helper.Process(bias.get(), x_cast); - bias_cast = ConverToMT(bias_cast); + bias_cast = ConvertToMT(bias_cast); out = out + bias_cast; } mean_ = squeeze(mean_, reduce_axis); @@ -577,7 +577,7 @@ std::tuple layer_norm_decomp( // same as LayerNormInferMeta // x: float32 --> out: float32, mean: float32, variance: float32 // x: float16 --> out: float16, mean: float32, variance: float32 - out = ConverToOrig(out, org_dtype); + out = ConvertToOrig(out, org_dtype); return std::make_tuple(out, mean_, variance); } @@ -751,7 +751,7 @@ std::tuple instance_norm_decomp( const paddle::optional& bias, float epsilon) { auto org_dtype = x.dtype(); - Tensor x_cast = ConverToMT(x); + Tensor x_cast = ConvertToMT(x); const std::vector x_dims = x.shape(); if (has_dynamic_shape(x_dims)) { @@ -790,20 +790,20 @@ std::tuple instance_norm_decomp( if (scale) { auto scale_cast = backend::reshape(scale.get(), slice_shape_tensor); - scale_cast = ConverToMT(scale_cast); + scale_cast = ConvertToMT(scale_cast); out = out * scale_cast; } if (bias) { auto bias_cast = backend::reshape(bias.get(), slice_shape_tensor); - bias_cast = ConverToMT(bias_cast); + bias_cast = ConvertToMT(bias_cast); out = out + bias_cast; } std::vector res_shape(1, -1); auto mean_out = reshape(mean_, res_shape); auto variance_out = reshape(rsqrt_var, res_shape); - auto res = ConverToOrig(out, org_dtype); + auto res = ConvertToOrig(out, org_dtype); return std::make_tuple(res, mean_out, variance_out); } @@ -830,20 +830,20 @@ std::tuple instance_norm_decomp( out = reshape(out, x_dims); if (scale) { auto scale_cast = reshape(scale.get(), slice_shape); - scale_cast = ConverToMT(scale_cast); + scale_cast = ConvertToMT(scale_cast); out = out * scale_cast; } if (bias) { auto bias_cast = reshape(bias.get(), slice_shape); - bias_cast = ConverToMT(bias_cast); + bias_cast = ConvertToMT(bias_cast); out = out + bias_cast; } std::vector res_shape(1, -1); auto mean_out = reshape(mean_, res_shape); auto variance_out = reshape(rsqrt_var, res_shape); - auto res = ConverToOrig(out, org_dtype); + auto res = ConvertToOrig(out, org_dtype); return std::make_tuple(res, mean_out, variance_out); } @@ -985,7 +985,7 @@ std::tuple group_norm_decomp( } auto org_dtype = x.dtype(); - Tensor x_cast = ConverToMT(x); + Tensor x_cast = ConvertToMT(x); Tensor x_dim_t; Tensor out, mean_, var_; @@ -1047,7 +1047,7 @@ std::tuple group_norm_decomp( } else { scale_cast = scale.get(); } - scale_cast = ConverToMT(scale_cast); + scale_cast = ConvertToMT(scale_cast); out = out * scale_cast; } Tensor bias_cast; @@ -1057,7 +1057,7 @@ std::tuple group_norm_decomp( } else { bias_cast = bias.get(); } - bias_cast = ConverToMT(bias_cast); + bias_cast = ConvertToMT(bias_cast); out = out + bias_cast; } Tensor mean_out, var_out; @@ -1072,20 +1072,20 @@ std::tuple group_norm_decomp( mean_out = reshape(mean_, res_shape); var_out = reshape(var_, res_shape); } - out = ConverToOrig(out, org_dtype); + out = ConvertToOrig(out, org_dtype); return std::make_tuple(out, mean_out, var_out); } template Tensor square_decomp(const Tensor& x) { - auto x_cast = ConverToMT(x); + auto x_cast = ConvertToMT(x); Tensor two; two = full_scalar(2, x_cast.dtype(), x_cast.place()); auto ans = elementwise_pow(x_cast, two); - return ConverToOrig(ans, x.dtype()); + return ConvertToOrig(ans, x.dtype()); } template @@ -1131,7 +1131,7 @@ Tensor sigmoid_cross_entropy_with_logits_decomp( template Tensor mean_all_decomp(const Tensor& x) { - auto x_cast = ConverToMT(x); + auto x_cast = ConvertToMT(x); auto x_shape = x.shape(); Tensor ans; @@ -1147,7 +1147,7 @@ Tensor mean_all_decomp(const Tensor& x) { ans = sum(x_cast) / x_cast.numel(); } - return ConverToOrig(ans, x.dtype()); + return ConvertToOrig(ans, x.dtype()); } template @@ -1243,7 +1243,7 @@ Tensor index_sample_decomp(const Tensor& x, const Tensor& index) { template Tensor elu_decomp(const Tensor& x, const float alpha) { - auto x_cast = ConverToMT(x); + auto x_cast = ConvertToMT(x); Tensor zero; Tensor tmp_res; @@ -1258,16 +1258,16 @@ Tensor elu_decomp(const Tensor& x, const float alpha) { tmp_res = alpha * (exp(x_cast) - 1); } auto ans = where(x_cast > zero, x_cast, tmp_res); - return ConverToOrig(ans, x.dtype()); + return ConvertToOrig(ans, x.dtype()); } template Tensor lerp_decomp(const Tensor& x, const Tensor& y, const Tensor& weight) { - Tensor x_cast = ConverToMT(x); - Tensor y_cast = ConverToMT(y); - Tensor weight_cast = ConverToMT(weight); + Tensor x_cast = ConvertToMT(x); + Tensor y_cast = ConvertToMT(y); + Tensor weight_cast = ConvertToMT(weight); Tensor res = x_cast + weight_cast * (y_cast - x_cast); - return ConverToOrig(res, x.dtype()); + return ConvertToOrig(res, x.dtype()); } template @@ -1420,9 +1420,9 @@ Tensor eye_decomp(const paddle::Scalar& num_rows, int32_t min_num = std::min(num_rows.to(), num_columns.to()); Tensor zero_tensor = full({num_rows.to(), num_columns.to()}, 0, dtype, place); - auto zero_tensor_cast = ConverToMT(zero_tensor); + auto zero_tensor_cast = ConvertToMT(zero_tensor); Tensor diag_one = unsqueeze(full({min_num}, 1, dtype, place), {1}); - auto diag_one_cast = ConverToMT(diag_one); + auto diag_one_cast = ConvertToMT(diag_one); auto start = full({1}, 0, dtype, place); auto stop = full({1}, min_num, dtype, place); @@ -1430,17 +1430,17 @@ Tensor eye_decomp(const paddle::Scalar& num_rows, Tensor index = unsqueeze( backend::arange(start, stop, step, DataType::INT32, place), {1}); - auto index_cast = ConverToMT(index); + auto index_cast = ConvertToMT(index); Tensor res = put_along_axis(zero_tensor_cast, index, diag_one_cast, 1); - return ConverToOrig(res, dtype); + return ConvertToOrig(res, dtype); } template Tensor diag_decomp(const Tensor& x, const int& offset = 0, const float& padding_value = 0.0) { - Tensor cast_x = ConverToMT(x); + Tensor cast_x = ConvertToMT(x); int64_t rank = cast_x.dims().size(); Tensor res; if (rank == 1) { @@ -1482,7 +1482,7 @@ Tensor diag_decomp(const Tensor& x, backend::arange(start, end, stride, DataType::INT64, cast_x.place()); res = take_along_axis(x_flat, indices, 0); } - return ConverToOrig(res, x.dtype()); + return ConvertToOrig(res, x.dtype()); } } // namespace details diff --git a/paddle/fluid/primitive/decomp_rule/decomp_vjp/details.h b/paddle/fluid/primitive/decomp_rule/decomp_vjp/details.h index da7fde9e25a65d..5b5a5edcdd53fc 100644 --- a/paddle/fluid/primitive/decomp_rule/decomp_vjp/details.h +++ b/paddle/fluid/primitive/decomp_rule/decomp_vjp/details.h @@ -52,12 +52,12 @@ void bce_loss_grad(const Tensor& input, Tensor* input_grad) { using MT = typename phi::dtype::MPTypeTrait::Type; if (input_grad) { - auto input_mt = ConverToMT(input); + auto input_mt = ConvertToMT(input); auto term = maximum((1 - input_mt) * input_mt, full_scalar(1e-12, input_mt.dtype())); auto out_base = - ConverToMT(out_grad) * (input_mt - ConverToMT(label)) / term; - set_output(ConverToOrig(out_base, input.dtype()), input_grad); + ConvertToMT(out_grad) * (input_mt - ConvertToMT(label)) / term; + set_output(ConvertToOrig(out_base, input.dtype()), input_grad); } } @@ -324,8 +324,8 @@ void gelu_grad(const Tensor& x, // Automatically promote to fp32 when the input type is fp16 for keeping // consistent with phi kernel - auto promoted_x = ConverToMT(x); - auto promoted_out_grad = ConverToMT(out_grad); + auto promoted_x = ConvertToMT(x); + auto promoted_out_grad = ConvertToMT(out_grad); if (approximate) { float kbeta = M_SQRT2 * M_2_SQRTPI * 0.5; float kkappa = 0.044715; @@ -347,7 +347,7 @@ void gelu_grad(const Tensor& x, auto right_derivative = left * tanh_derivative * inner_derivative; set_output( - ConverToOrig( + ConvertToOrig( promoted_out_grad * (left_derivative + right_derivative), x.type()), x_grad); } else { @@ -358,9 +358,9 @@ void gelu_grad(const Tensor& x, auto cdf = scale(scale(erf(kalpha_ * promoted_x), 1., 1.), 0.5); auto pdf = kbeta_ * exp(scale(promoted_x * promoted_x, -0.5)); - set_output( - ConverToOrig(promoted_out_grad * (cdf + promoted_x * pdf), x.type()), - x_grad); + set_output(ConvertToOrig(promoted_out_grad * (cdf + promoted_x * pdf), + x.type()), + x_grad); } } @@ -849,7 +849,7 @@ void layer_norm_grad(const Tensor& x, auto mean_ = reshape(mean, mean_var_new_shape); auto variance_ = reshape(variance, mean_var_new_shape); - auto x_cast = ConverToMT(x); + auto x_cast = ConvertToMT(x); Tensor scale_cast; if (scale_ptr) { scale_cast = decomp_help.Process(*scale_ptr, x_cast); @@ -857,9 +857,9 @@ void layer_norm_grad(const Tensor& x, // cast dtype to float32 if dtype =float16 or bfloat16 - auto out_grad_cast = ConverToMT(out_grad); + auto out_grad_cast = ConvertToMT(out_grad); if (scale_ptr) { - scale_cast = ConverToMT(scale_cast); + scale_cast = ConvertToMT(scale_cast); } auto x_sub_mean = x_cast - mean_; // M,N @@ -885,7 +885,7 @@ void layer_norm_grad(const Tensor& x, (d_mean + d_std) / decomp_help.GetNormalizedNumel(d_std); auto x_grad_tmp = dx_end - d_mean_d_std; - x_grad_tmp = ConverToOrig(x_grad_tmp, x.dtype()); + x_grad_tmp = ConvertToOrig(x_grad_tmp, x.dtype()); set_output(x_grad_tmp, x_grad); } @@ -895,7 +895,7 @@ void layer_norm_grad(const Tensor& x, auto scale_grad_tmp = (x_sub_mean_mul_sqrt_var_1 * out_grad_cast) .sum(un_normalized_axis, x_cast.dtype(), true); scale_grad_tmp = reshape(scale_grad_tmp, {-1}); - scale_grad_tmp = ConverToOrig(scale_grad_tmp, scale_ptr->dtype()); + scale_grad_tmp = ConvertToOrig(scale_grad_tmp, scale_ptr->dtype()); set_output(scale_grad_tmp, scale_grad); } else { @@ -908,7 +908,7 @@ void layer_norm_grad(const Tensor& x, auto bias_grad_tmp = out_grad_cast.sum(un_normalized_axis, x_cast.dtype(), true); bias_grad_tmp = reshape(bias_grad_tmp, {-1}); - bias_grad_tmp = ConverToOrig(bias_grad_tmp, bias_ptr->dtype()); + bias_grad_tmp = ConvertToOrig(bias_grad_tmp, bias_ptr->dtype()); set_output(bias_grad_tmp, bias_grad); } else { @@ -1007,11 +1007,11 @@ void square_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) { template void exp_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) { if (x_grad) { - Tensor out_promote = ConverToMT(out); - Tensor out_grad_promote = ConverToMT(out_grad); + Tensor out_promote = ConvertToMT(out); + Tensor out_grad_promote = ConvertToMT(out_grad); auto x_grad_tmp = out_promote * out_grad_promote; - set_output(ConverToOrig(x_grad_tmp, out.dtype()), x_grad); + set_output(ConvertToOrig(x_grad_tmp, out.dtype()), x_grad); } } @@ -1043,11 +1043,11 @@ void silu_grad(const Tensor& x, if (x_grad) { auto one = full_scalar(1.0, x.dtype()); - auto x_cast = ConverToMT(x); - auto out_cast = ConverToMT(out); - auto out_grad_cast = ConverToMT(out_grad); + auto x_cast = ConvertToMT(x); + auto out_cast = ConvertToMT(out); + auto out_grad_cast = ConvertToMT(out_grad); auto res = out_grad_cast * sigmoid(x_cast) * (one + x_cast - out_cast); - set_output(ConverToOrig(res, x.dtype()), x_grad); + set_output(ConvertToOrig(res, x.dtype()), x_grad); } } @@ -1240,8 +1240,8 @@ void masked_select_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) { if (x_grad) { - auto promoted_x = ConverToMT(x); - auto promoted_out_grad = ConverToMT(out_grad); + auto promoted_x = ConvertToMT(x); + auto promoted_out_grad = ConvertToMT(out_grad); auto x_num = 1; for (size_t i = 0; i < promoted_x.shape().size(); i++) { @@ -1406,14 +1406,14 @@ void instance_norm_grad(const Tensor& x, std::vector n_reduce_axes = decomp_helper.GetNPlusReduceAxis(); Tensor hw = decomp_helper.GetHW(x); - auto promoted_y_grad = ConverToMT(y_grad); + auto promoted_y_grad = ConvertToMT(y_grad); Tensor x_hat; Tensor std_inv; if (scale_grad || x_grad) { - auto promoted_x = ConverToMT(x); - auto promoted_saved_mean = ConverToMT(saved_mean); - auto promoted_saved_var = ConverToMT(saved_variance); + auto promoted_x = ConvertToMT(x); + auto promoted_saved_mean = ConvertToMT(saved_mean); + auto promoted_saved_var = ConvertToMT(saved_variance); std::vector mean_new_shape{n, c}; for (size_t i = 0; i < reduce_axes.size(); ++i) { @@ -1433,7 +1433,7 @@ void instance_norm_grad(const Tensor& x, : full(IntArray({c}), 1., x.dtype(), x.place()); auto unsqueeze_shape = get_unsqueeze_dims(scale_data_tensor, n_reduce_axes); auto scale_data = reshape(scale_data_tensor, unsqueeze_shape); - auto promoted_scale = ConverToMT(scale_data); + auto promoted_scale = ConvertToMT(scale_data); auto tmp1 = is_reduce_empty ? promoted_y_grad @@ -1444,19 +1444,19 @@ void instance_norm_grad(const Tensor& x, .sum(reduce_axes, promoted_y_grad.dtype(), true); auto result = (promoted_scale * std_inv) * (promoted_y_grad - tmp1 / hw - (x_hat * tmp2 / hw)); - set_output(ConverToOrig(result, x.dtype()), x_grad); + set_output(ConvertToOrig(result, x.dtype()), x_grad); } // scale_grad = x_hat * y_grad.sum(n, h, w) if (scale_grad) { auto result = (promoted_y_grad * x_hat).sum(n_reduce_axes); auto scale_dtype = scale.get_ptr() ? scale.get().dtype() : x.dtype(); - set_output(ConverToOrig(result, scale_dtype), scale_grad); + set_output(ConvertToOrig(result, scale_dtype), scale_grad); } // d_bias = y_grad.sum(n, h, w) if (bias_grad) { auto result = promoted_y_grad.sum(n_reduce_axes); auto scale_dtype = scale.get_ptr() ? scale.get().dtype() : x.dtype(); - set_output(ConverToOrig(result, scale_dtype), bias_grad); + set_output(ConvertToOrig(result, scale_dtype), bias_grad); } } @@ -1938,8 +1938,8 @@ void batch_norm_grad(const Tensor& x, Tensor* bias_grad) { use_global_stats = is_test || use_global_stats; - Tensor x_data = ConverToMT(x); - Tensor out_grad_data = ConverToMT(out_grad); + Tensor x_data = ConvertToMT(x); + Tensor out_grad_data = ConvertToMT(out_grad); Tensor mean_data; Tensor rsqrt_var; @@ -1975,7 +1975,7 @@ void batch_norm_grad(const Tensor& x, x_grad_data = reshape(scale.get(), scale_bias_new_shape) * x_grad_data; } - x_grad_data = ConverToOrig(x_grad_data, x.dtype()); + x_grad_data = ConvertToOrig(x_grad_data, x.dtype()); set_output(x_grad_data, x_grad); } else { auto part1 = rsqrt_var; @@ -1990,7 +1990,7 @@ void batch_norm_grad(const Tensor& x, out_grad_data - mean_temp1 - (x_data - mean_data) * mean_temp2; auto x_grad_data = part1 * part2; - x_grad_data = ConverToOrig(x_grad_data, x.dtype()); + x_grad_data = ConvertToOrig(x_grad_data, x.dtype()); set_output(x_grad_data, x_grad); } if (scale_grad) { @@ -2313,8 +2313,8 @@ void group_norm_grad(const Tensor& x, int g_num = C / groups; - Tensor x_data = ConverToMT(x); - Tensor out_grad_data = ConverToMT(out_grad); + Tensor x_data = ConvertToMT(x); + Tensor out_grad_data = ConvertToMT(out_grad); auto shape_group = std::vector({N, groups, g_num}); @@ -2348,7 +2348,7 @@ void group_norm_grad(const Tensor& x, Tensor d2; Tensor p1; if (scale) { - scale_data = ConverToMT(scale_data); + scale_data = ConvertToMT(scale_data); d1 = (reshape(sum_y_grad_mul_x * scale_data, shape_group)) .sum(std::vector({2}), dtype, false); @@ -2383,7 +2383,7 @@ void group_norm_grad(const Tensor& x, auto tmp_2 = reshape(x_data, whole_group_shape) * p2 + p3; auto x_grad_data = tmp_1 + tmp_2; x_grad_data = reshape(x_grad_data, x.shape()); - x_grad_data = ConverToOrig(x_grad_data, x.dtype()); + x_grad_data = ConvertToOrig(x_grad_data, x.dtype()); set_output(x_grad_data, x_grad); } @@ -2782,9 +2782,9 @@ void logcumsumexp_grad(const Tensor& x, if (x_grad) { reverse = !reverse; Tensor tmp, lowest, x_grad_tmp; - Tensor x_cast = ConverToMT(x); - Tensor out_cast = ConverToMT(out); - Tensor out_grad_cast = ConverToMT(out_grad); + Tensor x_cast = ConvertToMT(x); + Tensor out_cast = ConvertToMT(out); + Tensor out_grad_cast = ConvertToMT(out_grad); const Tensor out_grad_log = log(abs(out_grad_cast)); auto out_grad_dtype = out_grad_cast.dtype(); @@ -2859,7 +2859,7 @@ void logcumsumexp_grad(const Tensor& x, x_grad_tmp = reshape(out_grad_pos - out_grad_neg, x_cast.shape()); } - set_output(ConverToOrig(x_grad_tmp, x.dtype()), x_grad); + set_output(ConvertToOrig(x_grad_tmp, x.dtype()), x_grad); } } @@ -2973,8 +2973,8 @@ void kthvalue_grad(const Tensor& x, bool keepdim, Tensor* x_grad) { if (x_grad) { - auto x_cast = ConverToMT(x); - auto out_grad_cast = ConverToMT(out_grad); + auto x_cast = ConvertToMT(x); + auto out_grad_cast = ConvertToMT(out_grad); // put_along_axis doesn't support zero dim if (x.dims().size() == 0) { by_pass(out_grad, x_grad); @@ -3020,7 +3020,7 @@ void kthvalue_grad(const Tensor& x, x_grad_tmp = put_along_axis(zero_tensor, indices_, out_grad_, axis); } } - set_output(ConverToOrig(x_grad_tmp, x.dtype()), x_grad); + set_output(ConvertToOrig(x_grad_tmp, x.dtype()), x_grad); } } @@ -3033,9 +3033,9 @@ void argsort_grad(const Tensor& indices, bool stable, Tensor* x_grad) { if (x_grad) { - auto indices_cast = ConverToMT(indices); - auto x_cast = ConverToMT(x); - auto out_grad_cast = ConverToMT(out_grad); + auto indices_cast = ConvertToMT(indices); + auto x_cast = ConvertToMT(x); + auto out_grad_cast = ConvertToMT(out_grad); if (axis < 0) { axis += x_cast.dims().size(); @@ -3052,7 +3052,7 @@ void argsort_grad(const Tensor& indices, x_grad_tmp = put_along_axis(zero_tensor, indices_cast, out_grad_cast, axis); - set_output(ConverToOrig(x_grad_tmp, x.dtype()), x_grad); + set_output(ConvertToOrig(x_grad_tmp, x.dtype()), x_grad); } } @@ -3200,8 +3200,8 @@ void kron_grad(const Tensor& x, } if (y_grad) { Tensor zero = full({1}, 0, DataType::INT32, y.place()); - auto x_cast = ConverToMT(x); - auto out_grad_cast = ConverToMT(out_grad); + auto x_cast = ConvertToMT(x); + auto out_grad_cast = ConvertToMT(out_grad); Tensor out_grad_tmp; Tensor y_grad_tmp; @@ -3279,7 +3279,7 @@ void kron_grad(const Tensor& x, } } y_grad_tmp = backend::reshape( - ConverToOrig(out_grad_tmp, out_grad.dtype()), shape64(y)); + ConvertToOrig(out_grad_tmp, out_grad.dtype()), shape64(y)); } else { auto x_shape = x_cast.shape(); auto y_shape = y.shape(); @@ -3305,7 +3305,7 @@ void kron_grad(const Tensor& x, tile_grad(y_, out_grad_tmp, IntArray(x_dim), &y_grad_tmp); y_grad_tmp = - reshape(ConverToOrig(y_grad_tmp, y.dtype()), y.shape()); + reshape(ConvertToOrig(y_grad_tmp, y.dtype()), y.shape()); } set_output(y_grad_tmp, y_grad); } @@ -3318,11 +3318,11 @@ void take_along_axis_grad(const Tensor& arr, int axis, Tensor* arr_grad) { if (arr_grad) { - auto arr_cast = ConverToMT(arr); - auto out_grad_cast = ConverToMT(out_grad); + auto arr_cast = ConvertToMT(arr); + auto out_grad_cast = ConvertToMT(out_grad); // put_along_axis doesn't support zero dim if (arr_cast.dims().size() == 0) { - by_pass(ConverToOrig(out_grad_cast, out_grad.dtype()), arr_grad); + by_pass(ConvertToOrig(out_grad_cast, out_grad.dtype()), arr_grad); return; } @@ -3343,7 +3343,7 @@ void take_along_axis_grad(const Tensor& arr, } auto arr_grad_tmp = put_along_axis(zero_tensor, indices, out_grad_cast, axis); - set_output(ConverToOrig(arr_grad_tmp, arr.dtype()), arr_grad); + set_output(ConvertToOrig(arr_grad_tmp, arr.dtype()), arr_grad); } } diff --git a/paddle/fluid/primitive/decomp_utils/decomp_utils.h b/paddle/fluid/primitive/decomp_utils/decomp_utils.h index de89fca34db7cf..66330348998e7e 100644 --- a/paddle/fluid/primitive/decomp_utils/decomp_utils.h +++ b/paddle/fluid/primitive/decomp_utils/decomp_utils.h @@ -284,7 +284,7 @@ static bool has_dynamic_shape(const std::vector& shape, } template -Tensor ConverToMT(const Tensor& x) { +Tensor ConvertToMT(const Tensor& x) { bool need_cast = x.dtype() == phi::DataType::FLOAT16 || x.dtype() == phi::DataType::BFLOAT16 || x.dtype() == phi::DataType::UINT16; @@ -295,7 +295,7 @@ Tensor ConverToMT(const Tensor& x) { } template -Tensor ConverToOrig(const Tensor& out, phi::DataType input_dtype) { +Tensor ConvertToOrig(const Tensor& out, phi::DataType input_dtype) { bool need_cast = out.dtype() != input_dtype; if (need_cast) { return cast(out, input_dtype);