|
| 1 | +/* Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | +http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#include "paddle/phi/infermeta/spmd_rules/index_put.h" |
| 16 | + |
| 17 | +#include "glog/logging.h" |
| 18 | +#include "paddle/phi/core/distributed/auto_parallel/dist_attr.h" |
| 19 | +#include "paddle/phi/core/distributed/auto_parallel/inferspmd_utils.h" |
| 20 | +#include "paddle/phi/core/distributed/auto_parallel/utils.h" |
| 21 | +#include "paddle/phi/infermeta/spmd_rules/spmd_rule_macro_define.h" |
| 22 | +#include "paddle/phi/infermeta/spmd_rules/utils.h" |
| 23 | + |
| 24 | +namespace phi::distributed { |
| 25 | +SpmdInfo IndexPutInferSpmd(const DistMetaTensor& x, |
| 26 | + const std::vector<DistMetaTensor>& indices, |
| 27 | + const DistMetaTensor& value, |
| 28 | + const bool accumulate) { |
| 29 | + // Step0: verify input args based on group_norm logic |
| 30 | + auto x_shape = common::vectorize(x.dims()); |
| 31 | + int indices_size = indices.size(); |
| 32 | + auto indices_shape = common::vectorize(indices[0].dims()); |
| 33 | + auto value_shape = common::vectorize(value.dims()); |
| 34 | + int x_ndim = static_cast<int>(x_shape.size()); |
| 35 | + int indices_ndim = static_cast<int>(indices_shape.size()); |
| 36 | + int value_ndim = static_cast<int>(value_shape.size()); |
| 37 | + |
| 38 | + TensorDistAttr x_dist_attr_src = x.dist_attr(); |
| 39 | + std::vector<TensorDistAttr> indices_dist_attrs_src; |
| 40 | + std::transform(indices.begin(), |
| 41 | + indices.end(), |
| 42 | + std::back_inserter(indices_dist_attrs_src), |
| 43 | + [](auto& meta) { return meta.dist_attr(); }); |
| 44 | + TensorDistAttr value_dist_attr_src = value.dist_attr(); |
| 45 | + |
| 46 | + std::vector<int64_t> x_dims_mapping = x_dist_attr_src.dims_mapping(); |
| 47 | + |
| 48 | + PADDLE_ENFORCE_GE(x_ndim, |
| 49 | + indices_size, |
| 50 | + common::errors::InvalidArgument( |
| 51 | + "The ndim of x in index_put should be " |
| 52 | + "greater than or equal to the size of indices, " |
| 53 | + "but got x_ndim:[%d],indices_size:[%d].", |
| 54 | + x_ndim, |
| 55 | + indices_size)); |
| 56 | + |
| 57 | + PADDLE_ENFORCE_LE( |
| 58 | + value_ndim, |
| 59 | + x_ndim - indices_size + 1, |
| 60 | + common::errors::InvalidArgument("The ndim of value in index_put should " |
| 61 | + "be less than or equal to [%d], " |
| 62 | + "but got value_ndim:[%d].", |
| 63 | + x_ndim - indices_size + 1, |
| 64 | + value_ndim)); |
| 65 | + PADDLE_ENFORCE_EQ( |
| 66 | + indices_ndim, |
| 67 | + 1, |
| 68 | + common::errors::InvalidArgument( |
| 69 | + "The ndim of indices in index_put should be equal to 1, " |
| 70 | + "but got indices_ndim:[%d].", |
| 71 | + indices_ndim)); |
| 72 | + for (int i = 0; i < indices_size; i++) { |
| 73 | + PADDLE_ENFORCE_EQ( |
| 74 | + indices[i].dims().size(), |
| 75 | + 1, |
| 76 | + common::errors::InvalidArgument( |
| 77 | + "The ndim of indices[%d] in index_put should be equal to 1, " |
| 78 | + "but got indices[%d] ndim:[%d].", |
| 79 | + i, |
| 80 | + i, |
| 81 | + indices[i].dims().size())); |
| 82 | + } |
| 83 | + std::string alphabet = "ijklmnopqrstuvwxyz"; |
| 84 | + std::string x_axes(x_ndim, '1'); |
| 85 | + for (int i = 0; i < x_ndim; ++i) { |
| 86 | + x_axes[i] = alphabet[i]; |
| 87 | + } |
| 88 | + std::string value_axes(value_ndim, '1'); |
| 89 | + int index = indices_size - 1; |
| 90 | + for (int i = 0; i < value_ndim; ++i) { |
| 91 | + value_axes[i] = x_axes[index++]; |
| 92 | + } |
| 93 | + |
| 94 | + // Step1: set dims_mapping for input |
| 95 | + for (int i = 0; i < indices_size; i++) { |
| 96 | + x_dims_mapping[i] = -1; |
| 97 | + } |
| 98 | + std::unordered_map<std::string, int64_t> axis_to_dim_map = |
| 99 | + ShardingMergeForTensors({{x_axes, x_dims_mapping}}); |
| 100 | + // Step2: set dims_mapping for output |
| 101 | + TensorDistAttr out_dist_attr = CopyTensorDistAttrForOutput(x_dist_attr_src); |
| 102 | + out_dist_attr.set_dims_mapping(x_dims_mapping); |
| 103 | + // Step3: update input dims mapping |
| 104 | + TensorDistAttr x_dist_attr_dst = CopyTensorDistAttrForOutput(x_dist_attr_src); |
| 105 | + x_dist_attr_dst.set_dims_mapping(x_dims_mapping); |
| 106 | + TensorDistAttr value_dist_attr_dst = |
| 107 | + CopyTensorDistAttrForOutput(value.dist_attr()); |
| 108 | + value_dist_attr_dst.set_dims_mapping( |
| 109 | + GetDimsMappingForAxes(value_axes, axis_to_dim_map)); |
| 110 | + std::vector<TensorDistAttr> indices_dist_attrs_dst = indices_dist_attrs_src; |
| 111 | + for (auto& input_attr : indices_dist_attrs_dst) { |
| 112 | + input_attr.set_dims_mapping(std::vector<int64_t>{-1}); |
| 113 | + } |
| 114 | + // Step4: Log SpmdInfo |
| 115 | + LOG_SPMD_INPUT(x); |
| 116 | + // LOG_SPMD_INPUT(indices); |
| 117 | + VLOG(4) << "name: indices"; |
| 118 | + VLOG(4) << "ndim: " << std::to_string(indices_ndim) << " " |
| 119 | + << "indices_size: " << std::to_string(indices_size) << " " |
| 120 | + << "indices_dist_attr_src: [" << indices_dist_attrs_src[0].to_string() |
| 121 | + << "] " |
| 122 | + << "indices_dist_attr_dst: [" << indices_dist_attrs_dst[0].to_string() |
| 123 | + << "]"; |
| 124 | + |
| 125 | + LOG_SPMD_INPUT(value); |
| 126 | + LOG_SPMD_OUTPUT(out_dist_attr); |
| 127 | + |
| 128 | + return {{x_dist_attr_dst, indices_dist_attrs_dst, value_dist_attr_dst}, |
| 129 | + {out_dist_attr}}; |
| 130 | +} |
| 131 | + |
| 132 | +SpmdInfo IndexPutGradInferSpmd(const DistMetaTensor& x, |
| 133 | + const std::vector<DistMetaTensor>& indices, |
| 134 | + const DistMetaTensor& value, |
| 135 | + const DistMetaTensor& out_grad, |
| 136 | + const bool accumulate) { |
| 137 | + // Step0: verify input args based on group_norm logic |
| 138 | + auto x_shape = common::vectorize(x.dims()); |
| 139 | + int indices_size = indices.size(); |
| 140 | + auto indices_shape = common::vectorize(indices[0].dims()); |
| 141 | + auto value_shape = common::vectorize(value.dims()); |
| 142 | + auto out_grad_shape = common::vectorize(out_grad.dims()); |
| 143 | + int x_ndim = static_cast<int>(x_shape.size()); |
| 144 | + int indices_ndim = static_cast<int>(indices_shape.size()); |
| 145 | + int value_ndim = static_cast<int>(value_shape.size()); |
| 146 | + int out_grad_ndim = static_cast<int>(out_grad_shape.size()); |
| 147 | + TensorDistAttr x_dist_attr_src = x.dist_attr(); |
| 148 | + std::vector<TensorDistAttr> indices_dist_attrs_src; |
| 149 | + std::transform(indices.begin(), |
| 150 | + indices.end(), |
| 151 | + std::back_inserter(indices_dist_attrs_src), |
| 152 | + [](auto& meta) { return meta.dist_attr(); }); |
| 153 | + TensorDistAttr value_dist_attr_src = value.dist_attr(); |
| 154 | + TensorDistAttr out_grad_dist_attr_src = out_grad.dist_attr(); |
| 155 | + std::vector<int64_t> x_dims_mapping = x_dist_attr_src.dims_mapping(); |
| 156 | + PADDLE_ENFORCE_EQ( |
| 157 | + out_grad_ndim, |
| 158 | + x_ndim, |
| 159 | + common::errors::InvalidArgument( |
| 160 | + "The ndim of out_grad in index_put_grad should be equal to the " |
| 161 | + "ndim of x, but got out_grad_ndim:[%d],x_ndim:[%d].", |
| 162 | + out_grad_ndim, |
| 163 | + x_ndim)); |
| 164 | + PADDLE_ENFORCE_GE(x_ndim, |
| 165 | + indices_size, |
| 166 | + common::errors::InvalidArgument( |
| 167 | + "The ndim of x in index_put should be " |
| 168 | + "greater than or equal to the size of indices, " |
| 169 | + "but got x_ndim:[%d],indices_size:[%d].", |
| 170 | + x_ndim, |
| 171 | + indices_size)); |
| 172 | + |
| 173 | + PADDLE_ENFORCE_LE( |
| 174 | + value_ndim, |
| 175 | + x_ndim - indices_size + 1, |
| 176 | + common::errors::InvalidArgument("The ndim of value in index_put should " |
| 177 | + "be less than or equal to [%d], " |
| 178 | + "but got value_ndim:[%d].", |
| 179 | + x_ndim - indices_size + 1, |
| 180 | + value_ndim)); |
| 181 | + PADDLE_ENFORCE_EQ( |
| 182 | + indices_ndim, |
| 183 | + 1, |
| 184 | + common::errors::InvalidArgument( |
| 185 | + "The ndim of indices in index_put should be equal to 1, " |
| 186 | + "but got indices_ndim:[%d].", |
| 187 | + indices_ndim)); |
| 188 | + for (int i = 0; i < indices_size; i++) { |
| 189 | + PADDLE_ENFORCE_EQ( |
| 190 | + indices[i].dims().size(), |
| 191 | + 1, |
| 192 | + common::errors::InvalidArgument( |
| 193 | + "The ndim of indices[%d] in index_put should be equal to 1, " |
| 194 | + "but got indices[%d] ndim:[%d].", |
| 195 | + i, |
| 196 | + i, |
| 197 | + indices[i].dims().size())); |
| 198 | + } |
| 199 | + std::string alphabet = "ijklmnopqrstuvwxyz"; |
| 200 | + std::string x_axes(x_ndim, '1'); |
| 201 | + for (int i = 0; i < x_ndim; ++i) { |
| 202 | + x_axes[i] = alphabet[i]; |
| 203 | + } |
| 204 | + std::string value_axes(value_ndim, '1'); |
| 205 | + int index = indices_size - 1; |
| 206 | + for (int i = 0; i < value_ndim; ++i) { |
| 207 | + value_axes[i] = x_axes[index++]; |
| 208 | + } |
| 209 | + // Step1: set x_dims_mapping |
| 210 | + for (int i = 0; i < indices_size; i++) { |
| 211 | + x_dims_mapping[i] = -1; |
| 212 | + } |
| 213 | + std::unordered_map<std::string, int64_t> axis_to_dim_map = |
| 214 | + ShardingMergeForTensors({{x_axes, x_dims_mapping}}); |
| 215 | + // Step2: set dims_mapping for output |
| 216 | + TensorDistAttr x_grad_dist_attr = |
| 217 | + CopyTensorDistAttrForOutput(x_dist_attr_src); |
| 218 | + x_grad_dist_attr.set_dims_mapping(x_dims_mapping); |
| 219 | + TensorDistAttr value_grad_dist_attr = |
| 220 | + CopyTensorDistAttrForOutput(value_dist_attr_src); |
| 221 | + value_grad_dist_attr.set_dims_mapping( |
| 222 | + GetDimsMappingForAxes(value_axes, axis_to_dim_map)); |
| 223 | + // Step3: update input dims mapping |
| 224 | + TensorDistAttr x_dist_attr_dst = CopyTensorDistAttrForOutput(x_dist_attr_src); |
| 225 | + x_dist_attr_dst.set_dims_mapping(x_dims_mapping); |
| 226 | + TensorDistAttr out_grad_dist_attr_dst = |
| 227 | + CopyTensorDistAttrForOutput(x_dist_attr_src); |
| 228 | + out_grad_dist_attr_dst.set_dims_mapping(x_dims_mapping); |
| 229 | + TensorDistAttr value_dist_attr_dst = |
| 230 | + CopyTensorDistAttrForOutput(value.dist_attr()); |
| 231 | + value_dist_attr_dst.set_dims_mapping( |
| 232 | + GetDimsMappingForAxes(value_axes, axis_to_dim_map)); |
| 233 | + std::vector<TensorDistAttr> indices_dist_attrs_dst = indices_dist_attrs_src; |
| 234 | + for (auto& input_attr : indices_dist_attrs_dst) { |
| 235 | + input_attr.set_dims_mapping(std::vector<int64_t>{-1}); |
| 236 | + } |
| 237 | + // Step4: Log SpmdInfo |
| 238 | + LOG_SPMD_INPUT(x); |
| 239 | + // LOG_SPMD_INPUT(indices); |
| 240 | + VLOG(4) << "name: indices"; |
| 241 | + VLOG(4) << "ndim: " << std::to_string(indices_ndim) << " " |
| 242 | + << "indices_size: " << std::to_string(indices_size) << " " |
| 243 | + << "indices_dist_attr_src: [" << indices_dist_attrs_src[0].to_string() |
| 244 | + << "] " |
| 245 | + << "indices_dist_attr_dst: [" << indices_dist_attrs_dst[0].to_string() |
| 246 | + << "]"; |
| 247 | + |
| 248 | + LOG_SPMD_INPUT(value); |
| 249 | + LOG_SPMD_INPUT(out_grad); |
| 250 | + LOG_SPMD_OUTPUT(x_grad_dist_attr); |
| 251 | + LOG_SPMD_OUTPUT(value_grad_dist_attr); |
| 252 | + |
| 253 | + return {{x_dist_attr_dst, |
| 254 | + indices_dist_attrs_dst, |
| 255 | + value_dist_attr_dst, |
| 256 | + out_grad_dist_attr_dst}, |
| 257 | + {x_grad_dist_attr, value_grad_dist_attr}}; |
| 258 | +} |
| 259 | + |
| 260 | +} // namespace phi::distributed |
0 commit comments