-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathsoftmax_op.cc
260 lines (223 loc) · 9.8 KB
/
softmax_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/softmax_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
class SoftmaxOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("X"), true,
platform::errors::NotFound("Input(X) of SoftmaxOp is not found."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("Out"), true,
platform::errors::NotFound("Output(Out) of SoftmaxOp is not found."));
auto dim_x = ctx->GetInputDim("X");
auto rank_x = dim_x.size();
auto axis = ctx->Attrs().Get<int>("axis");
PADDLE_ENFORCE_GE(axis, -rank_x,
platform::errors::InvalidArgument(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X)."));
PADDLE_ENFORCE_LT(axis, rank_x,
platform::errors::InvalidArgument(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X)."));
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
ctx->ShareLoD("X", /*->*/ "Out");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
// choose cudnn kernel if the runtime supported.
framework::LibraryType library_{framework::LibraryType::kPlain};
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if (platform::CanCUDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kCUDNN;
}
#endif
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
this->CanMKLDNNBeUsed(ctx, input_data_type)) {
library_ = framework::LibraryType::kMKLDNN;
layout_ = framework::DataLayout::kMKLDNN;
}
#endif
#ifndef PADDLE_WITH_ASCEND_CL
if (input_data_type == framework::proto::VarType::FP16) {
PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
platform::errors::InvalidArgument(
"float16 can only be used on GPU place"));
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
library_);
}
};
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"The input tensor of softmax, "
"whose dimension :attr:`axis` is the input_feature_dimensions.");
AddOutput("Out", "The normalized values with the same shape as X.");
AddAttr<int>("axis",
"The dimension index of Input(x) to perform softmax,"
"default -1 for last dimension")
.SetDefault(-1);
AddAttr<bool>(
"use_cudnn",
"(bool, default false) Only used in cudnn kernel, need install cudnn")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
"An optional string from: \"NHWC\", \"NCHW\". "
"Defaults to \"NHWC\". Specify the data format of the output data, "
"the input will be transformed automatically. ")
.SetDefault("AnyLayout");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"mkldnn_data_type",
"(string, default \"float32\"). Data type of mkldnn kernel")
.SetDefault("float32")
.InEnum({"float32", "bfloat16"});
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true.")
.SetDefault(false);
AddComment(R"DOC(
Softmax Operator.
The input of the softmax operator is a tensor of any rank. The output tensor
has the same shape as the input.
The dimension :attr:`axis` of the input tensor will be permuted to the last.
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is as same as the dimension :attr:`axis` of the input
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
K-dimensional vector of real values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
For each row $i$ and each column $j$ in the matrix, we have:
$$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
)DOC");
}
};
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
protected:
std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
const override {
static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
return m;
}
};
class SoftmaxOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("Out"), true,
platform::errors::InvalidArgument("Input(Out) is not found."));
PADDLE_ENFORCE_EQ(
ctx->HasInput(framework::GradVarName("Out")), true,
platform::errors::InvalidArgument("Input(Out@GRAD) is not found."));
PADDLE_ENFORCE_EQ(
ctx->GetInputDim("Out"),
ctx->GetInputDim(framework::GradVarName("Out")),
platform::errors::InvalidArgument("Input(Out) and its gradients "
"should have a same shape."));
ctx->SetOutputDim(framework::GradVarName("X"),
ctx->GetInputDim(framework::GradVarName("Out")));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
// choose cudnn kernel if the runtime supported.
framework::LibraryType library_{framework::LibraryType::kPlain};
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
auto input_data_type = OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if (platform::CanCUDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kCUDNN;
}
#endif
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
this->CanMKLDNNBeUsed(ctx, input_data_type)) {
library_ = framework::LibraryType::kMKLDNN;
layout_ = framework::DataLayout::kMKLDNN;
}
#endif
if (input_data_type == framework::proto::VarType::FP16) {
if (!(platform::is_gpu_place(ctx.GetPlace()) ||
platform::is_npu_place(ctx.GetPlace())))
PADDLE_THROW(platform::errors::InvalidArgument(
"float16 can only be used on GPU/NPU place"));
}
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
library_);
}
};
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("softmax_grad");
op->SetInput("Out", this->Output("Out"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetAttrMap(this->Attrs());
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
ops::SoftmaxOpInferVarType,
ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
ops::SoftmaxInplaceInferer);
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
REGISTER_OP_CPU_KERNEL(
softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
softmax_grad,
ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);