-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathreshape_op.cc
688 lines (614 loc) · 28.4 KB
/
reshape_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
} // namespace framework
namespace imperative {
class OpBase;
} // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
} // namespace platform
} // namespace paddle
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
inline std::vector<int> get_new_shape(
const std::vector<const Tensor *> &list_new_shape_tensor) {
// get tensor from
std::vector<int> vec_new_shape;
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
auto tensor = list_new_shape_tensor[i];
PADDLE_ENFORCE_EQ(
tensor->dims(), framework::make_ddim({1}),
platform::errors::InvalidArgument(
"If the element type of 'shape' in ReshapeOp is Tensor, "
"the element's shape must be [1]. But received the element's shape "
"is [%s]",
tensor->dims()));
if (platform::is_gpu_place(tensor->place()) ||
platform::is_xpu_place(tensor->place())) {
framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
} else {
vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
}
}
return vec_new_shape;
}
class ReshapeOp : public framework::OperatorWithKernel {
public:
ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
platform::errors::InvalidArgument(
"Input(X) of ReshapeOp should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
platform::errors::InvalidArgument(
"Output(Out) of ReshapeOp should not be null."));
if (ctx->HasInputs("ShapeTensor")) {
// top prority shape
auto ShapeTensor = ctx->Inputs("ShapeTensor");
PADDLE_ENFORCE_GT(
ShapeTensor.size(), 0,
platform::errors::InvalidArgument(
"When `shape` in ReshapeOp is a list or tuple "
"which contains Tensor, the shape's size can't be zero. "
"But received shape's size is %d.",
ShapeTensor.size()));
auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
const int64_t copy_dim_val = 0;
auto in_dims = ctx->GetInputDim("X");
for (size_t i = 0; i < infer_shape.size(); ++i) {
if (infer_shape[i] == copy_dim_val) {
PADDLE_ENFORCE_LT(
static_cast<int>(i), in_dims.size(),
platform::errors::InvalidArgument(
"The index of 0 in `shape` must be less than "
"the input tensor X's dimensions. But received shape[%d] "
"= 0, X's dimensions = %d, X's shape = [%s].",
i, in_dims.size(), in_dims));
infer_shape[i] = in_dims[i];
}
}
auto infer_out_dims = framework::make_ddim(infer_shape);
ctx->SetOutputDim("Out", infer_out_dims);
return;
}
const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
if (ctx->HasInput("Shape") && shape.empty()) {
auto shape_dims = ctx->GetInputDim("Shape");
int num_ele = 1;
for (int i = 0; i < shape_dims.size(); ++i) {
num_ele *= shape_dims[i];
}
auto vec_dims = std::vector<int>(num_ele, -1);
auto out_dims = framework::make_ddim(vec_dims);
ctx->SetOutputDim("Out", out_dims);
ctx->ShareLoD("X", /*->*/ "Out");
return;
}
if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
// If true, set the shape of Output(Out) according to Input(Shape) in
// ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
ctx->ShareLoD("X", /*->*/ "Out");
return;
}
PADDLE_ENFORCE_EQ(!shape.empty(), true,
platform::errors::InvalidArgument(
"The parameter 'shape' in ReshapeOp must be set. "
"But received 'shape' is empty."));
auto x_dims = ctx->GetInputDim("X");
auto out_dims = ValidateShape(shape, x_dims);
ctx->SetOutputDim("Out", out_dims);
if (x_dims[0] == out_dims[0]) {
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx->ShareLoD("X", /*->*/ "Out");
}
}
static framework::DDim ValidateShape(const std::vector<int> shape,
const framework::DDim &in_dims) {
const int64_t in_size = framework::product(in_dims);
auto in_dims_vec = framework::vectorize(in_dims);
bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
[](int64_t i) { return i > 0; });
// only one dimension can be set to -1, whose size will be automatically
// infered.
const int64_t unk_dim_val = -1;
const int64_t copy_dim_val = 0;
std::vector<int64_t> output_shape(shape.size(), 0);
int64_t capacity = 1;
int unk_dim_idx = -1;
for (size_t i = 0; i < shape.size(); ++i) {
if (shape[i] == unk_dim_val) {
PADDLE_ENFORCE_EQ(
unk_dim_idx, -1,
platform::errors::InvalidArgument(
"Only one dimension value of 'shape' in ReshapeOp can "
"be -1. But received shape = [%s], shape[%d] is also -1.",
framework::make_ddim(shape), i));
unk_dim_idx = i;
} else if (shape[i] == copy_dim_val) {
PADDLE_ENFORCE_LT(
static_cast<int>(i), in_dims.size(),
platform::errors::InvalidArgument(
"The index of 0 in `shape` must be less than "
"the input tensor X's dimensions. "
"But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
"X's dimensions = %d.",
framework::make_ddim(shape), i, in_dims, in_dims.size()));
} else {
PADDLE_ENFORCE_GT(
shape[i], 0,
platform::errors::InvalidArgument(
"Each dimension value of 'shape' in ReshapeOp must not "
"be negative except one unknown dimension. "
"But received shape = [%s], shape[%d] = %d.",
framework::make_ddim(shape), i, shape[i]));
}
capacity *= (shape[i] ? shape[i] : in_dims[i]);
output_shape[i] =
(shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
}
if (unk_dim_idx != -1) {
if (all_positive) {
// in_size < 0 and is un-determinate in compile time, skip the check,
// for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
// capacity = -24, in_size = -8, output_shape[0] = 0
// the following check will fail.
output_shape[unk_dim_idx] = -in_size / capacity;
PADDLE_ENFORCE_EQ(
output_shape[unk_dim_idx] * capacity, -in_size,
platform::errors::InvalidArgument(
"The 'shape' attribute in ReshapeOp is invalid. "
"The input tensor X'size must be divisible by known "
"capacity of 'shape'. "
"But received X's shape = [%s], X's size = %d, "
"'shape' is [%s], known capacity of 'shape' is %d.",
in_dims, in_size, framework::make_ddim(shape), capacity));
} else {
output_shape[unk_dim_idx] = -1;
}
} else {
if (all_positive) {
PADDLE_ENFORCE_EQ(
capacity, in_size,
platform::errors::InvalidArgument(
"The 'shape' in ReshapeOp is invalid. "
"The input tensor X'size must be equal to the capacity of "
"'shape'. "
"But received X's shape = [%s], X's size = %d, 'shape' is "
"[%s], the capacity of 'shape' is %d.",
in_dims, in_size, framework::make_ddim(shape), capacity));
}
}
return framework::make_ddim(output_shape);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "ShapeTensor") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
};
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor). The input tensor of reshape operator.");
AddInput("Shape",
"(Tensor<int32>, optional). Target shape of reshape operator. "
"It has a higher priority than Attr(shape) but a lower priority "
"than Input(ShapeTensor). The Attr(shape) still should be "
"set correctly to guarantee shape inference in compile time.")
.AsDispensable();
AddInput(
"ShapeTensor",
"(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
"It has the highest priority compare with Input(Shape) and "
"Attr(shape)."
"The shape of the element in vector must be [1].")
.AsDuplicable()
.AsDispensable();
AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
AddAttr<std::vector<int>>(
"shape",
"(std::vector<int>) Target shape of reshape operator."
"It has the lowest priority compare with Input(Shape) and "
" Input(ShapeTensor).")
.SetDefault({});
AddComment(R"DOC(
Reshape Operator.
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Examples:
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Note:
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
2. More than one dimensions in Attr(shape) can be set to 0, which means the real
dimension value will be copied from Input(X) at runtime. Note that the index of
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
Attr(shape) still should be set correctly to guarantee shape inference in
compile-time.
)DOC");
}
};
class ReshapeGradOp : public framework::OperatorWithKernel {
public:
ReshapeGradOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("X"), true,
platform::errors::InvalidArgument("Input(X) shouldn't be null."));
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
platform::errors::InvalidArgument(
"Input(Out@GRAD) shouldn't be null."));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
}
};
class ReshapeKernel {
public:
void operator()(const framework::ExecutionContext &ctx) const {
auto *out = ctx.Output<framework::LoDTensor>("Out");
auto *in = ctx.Input<framework::LoDTensor>("X");
framework::DDim out_dims = out->dims();
auto list_new_shape_tensor =
ctx.MultiInput<framework::Tensor>("ShapeTensor");
if (list_new_shape_tensor.size() > 0) {
// have shape tensor
auto new_shape = get_new_shape(list_new_shape_tensor);
out_dims = ReshapeOp::ValidateShape(new_shape, in->dims());
} else {
auto *shape_tensor = ctx.HasInput("Shape")
? ctx.Input<framework::LoDTensor>("Shape")
: nullptr;
if (shape_tensor) {
auto *shape_data = shape_tensor->data<int>();
framework::Tensor cpu_shape_tensor;
if (platform::is_gpu_place(shape_tensor->place()) ||
platform::is_xpu_place(shape_tensor->place())) {
TensorCopySync(*shape_tensor, platform::CPUPlace(),
&cpu_shape_tensor);
shape_data = cpu_shape_tensor.data<int>();
}
auto shape =
std::vector<int>(shape_data, shape_data + shape_tensor->numel());
out_dims = ReshapeOp::ValidateShape(shape, in->dims());
}
}
out->Resize(out_dims);
out->mutable_data(ctx.GetPlace(), in->type());
framework::TensorCopy(
*in, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), out);
out->Resize(out_dims);
}
};
class ReshapeGradKernel {
public:
void operator()(const framework::ExecutionContext &ctx) const {
auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto in_dims = d_x->dims();
d_x->mutable_data(ctx.GetPlace(), d_out->type());
framework::TensorCopy(
*d_out, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), d_x);
d_x->Resize(in_dims);
}
};
class ReshapeDoubleGradKernel {
public:
void operator()(const framework::ExecutionContext &ctx) const {
auto *dd_x = ctx.Input<framework::Tensor>("DDX");
auto *dd_out = ctx.Output<framework::Tensor>("DDOut");
auto out_dims = dd_out->dims();
dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
framework::TensorCopy(
*dd_x, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), dd_out);
dd_out->Resize(out_dims);
}
};
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
public:
Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: ReshapeOp(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
platform::errors::InvalidArgument(
"Output(XShape) of ReshapeOp should not be null."));
const auto &x_dims = ctx->GetInputDim("X");
std::vector<int64_t> xshape_dims(x_dims.size() + 1);
xshape_dims[0] = 0;
for (int i = 0; i < x_dims.size(); ++i) {
xshape_dims[i + 1] = x_dims[i];
}
ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
ctx->ShareLoD("X", /*->*/ "XShape");
ReshapeOp::InferShape(ctx);
}
};
class Reshape2OpMaker : public ReshapeOpMaker {
public:
void Make() override {
ReshapeOpMaker::Make();
AddOutput("XShape",
"XShape is just used to store the shape and lod of X, which will "
"be used in FlattenGradOp.")
.AsIntermediate();
AddAttr<bool>(
"use_quantizer",
"(bool, default false) "
"This parameter is no longer used. Use 'mkldnn_data_type' instead.")
.SetDefault(false);
AddAttr<std::string>(
"mkldnn_data_type",
"(string, default \"float32\"). Data type of mkldnn kernel")
.SetDefault("float32")
.InEnum({"float32", "int8", "bfloat16"});
}
};
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("reshape2_grad");
grad_op->SetInput("XShape", this->Output("XShape"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
grad_op->SetAttrMap(this->Attrs());
}
};
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("reshape2_grad_grad");
grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
grad_op->SetAttrMap(this->Attrs());
}
};
class Reshape2GradOp : public framework::OperatorWithKernel {
public:
Reshape2GradOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("XShape"), true,
platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
platform::errors::InvalidArgument(
"Input(Out@GRAD) shouldn't be null."));
auto xshape_dims = ctx->GetInputDim("XShape");
auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
ctx->ShareLoD("XShape", framework::GradVarName("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "ShapeTensor") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
};
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
public:
Reshape2DoubleGradOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
platform::errors::InvalidArgument(
"Input(X@GRAD_GRAD) shouldn't be null."));
if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
ctx->ShareDim("DOut", "DDOut");
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "ShapeTensor") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
};
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
{framework::GradVarName("Out"),
framework::GradVarName("X")});
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
"DOut");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(
reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
ops::ReshapeOpInplaceInferer);
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
ops::ReshapeGradInplaceInferer);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
ops::ReshapeKernel, int, ops::ReshapeKernel,
int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
double, ops::ReshapeGradKernel, int,
ops::ReshapeGradKernel, int64_t,
ops::ReshapeGradKernel);
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
ops::Reshape2GradMaker<paddle::framework::OpDesc>,
ops::Reshape2GradMaker<paddle::imperative::OpBase>,
ops::ReshapeOpInplaceInferer);
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
ops::ReshapeGradInplaceInferer);
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
ops::ReshapeDoubleGradInplaceInferer,
ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
REGISTER_OP_CPU_KERNEL_FUNCTOR(
reshape2, float, ops::ReshapeKernel, double, ops::ReshapeKernel, int8_t,
ops::ReshapeKernel, uint8_t, ops::ReshapeKernel, int, ops::ReshapeKernel,
int64_t, ops::ReshapeKernel, bool, ops::ReshapeKernel,
paddle::platform::bfloat16, ops::ReshapeKernel,
paddle::platform::complex<float>, ops::ReshapeKernel,
paddle::platform::complex<double>, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(
reshape2_grad, float, ops::ReshapeGradKernel, double,
ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, bool,
ops::ReshapeGradKernel, paddle::platform::bfloat16, ops::ReshapeGradKernel,
paddle::platform::complex<float>, ops::ReshapeGradKernel,
paddle::platform::complex<double>, ops::ReshapeGradKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(
reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel, bool,
ops::ReshapeDoubleGradKernel, paddle::platform::bfloat16,
ops::ReshapeDoubleGradKernel, paddle::platform::complex<float>,
ops::ReshapeDoubleGradKernel, paddle::platform::complex<double>,
ops::ReshapeDoubleGradKernel);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
ops::ReshapeKernel, int, ops::ReshapeKernel,
uint8_t, ops::ReshapeKernel, int64_t,
ops::ReshapeKernel, plat::float16,
ops::ReshapeKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
double, ops::ReshapeGradKernel, int,
ops::ReshapeGradKernel, int64_t,
ops::ReshapeGradKernel, uint8_t,
ops::ReshapeGradKernel, plat::float16,
ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
ops::ReshapeKernel, int, ops::ReshapeKernel,
uint8_t, ops::ReshapeKernel, int64_t,
ops::ReshapeKernel, plat::float16,
ops::ReshapeKernel, bool, ops::ReshapeKernel,
plat::complex<float>, ops::ReshapeKernel,
plat::complex<double>, ops::ReshapeKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(
reshape2_grad, float, ops::ReshapeGradKernel, double,
ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, plat::float16,
ops::ReshapeGradKernel, bool, ops::ReshapeGradKernel, plat::complex<float>,
ops::ReshapeGradKernel, plat::complex<double>, ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(
reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel,
plat::float16, ops::ReshapeDoubleGradKernel, bool,
ops::ReshapeDoubleGradKernel, plat::complex<float>,
ops::ReshapeDoubleGradKernel, plat::complex<double>,
ops::ReshapeDoubleGradKernel);
#endif
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
ops::ReshapeKernel, int, ops::ReshapeKernel,
int64_t, ops::ReshapeKernel, plat::float16,
ops::ReshapeKernel, bool, ops::ReshapeKernel,
plat::complex<float>, ops::ReshapeKernel,
plat::complex<double>, ops::ReshapeKernel);
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
double, ops::ReshapeGradKernel, int,
ops::ReshapeGradKernel, int64_t,
ops::ReshapeGradKernel, plat::float16,
ops::ReshapeGradKernel, bool,
ops::ReshapeGradKernel, plat::complex<float>,
ops::ReshapeGradKernel, plat::complex<double>,
ops::ReshapeGradKernel);
#endif