Skip to content
Merged
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
121 changes: 121 additions & 0 deletions tests/operators/test_fused_rotary_position_encoding.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import paddle

from fastdeploy.model_executor.ops.gpu import fused_rotary_position_encoding


class TestFusedRotaryPositionEncoding(unittest.TestCase):
def setUp(self):
paddle.set_device("gpu")
np.random.seed(42)

def _make_cos_sin_cache(self, num_tokens: int, rot_dim: int) -> np.ndarray:
"""Generate cos/sin cache."""
assert rot_dim % 2 == 0, "rot_dim must be even"
half_dim = rot_dim // 2
cos_np = np.random.rand(num_tokens, half_dim).astype("float32")
sin_np = np.random.rand(num_tokens, half_dim).astype("float32")
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

要使用真实的公示计算得出,不可以使用随机数,其他位置也一样,只能是input是随机数

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done, Thx.

return np.concatenate([cos_np, sin_np], axis=1)

def _run_op(
self,
query_np: np.ndarray,
key_np: np.ndarray,
position_ids_np: np.ndarray,
cos_sin_cache_np: np.ndarray,
head_size: int,
is_neox: bool,
) -> tuple[np.ndarray, np.ndarray]:
"""Run fused_rotary_position_encoding operator."""
query = paddle.to_tensor(query_np, dtype="float32")
key = paddle.to_tensor(key_np, dtype="float32")
position_ids = paddle.to_tensor(position_ids_np, dtype="int32")
cos_sin_cache = paddle.to_tensor(cos_sin_cache_np, dtype="float32")

fused_rotary_position_encoding(query, key, position_ids, cos_sin_cache, head_size, is_neox)
return query.numpy(), key.numpy()

def test_basic_case(self):
num_tokens, num_heads, head_size = 4, 2, 6
num_kv_heads, rot_dim = 2, 4

query_np = np.random.rand(num_tokens, num_heads, head_size).astype("float32")
key_np = np.random.rand(num_tokens, num_kv_heads, head_size).astype("float32")
position_ids_np = np.arange(num_tokens, dtype="int32")
cos_sin_cache_np = self._make_cos_sin_cache(num_tokens, rot_dim)

query_out, key_out = self._run_op(
query_np, key_np, position_ids_np, cos_sin_cache_np, head_size, is_neox=False
)

self.assertEqual(query_out.shape, query_np.shape)
self.assertEqual(key_out.shape, key_np.shape)
self.assertFalse(np.allclose(query_out, query_np))
self.assertFalse(np.allclose(key_out, key_np))

def test_neox_mode(self):
"""Test NEox mode."""
num_tokens, num_heads, head_size = 3, 2, 8
num_kv_heads, rot_dim = 2, 8

query_np = np.random.rand(num_tokens, num_heads, head_size).astype("float32")
key_np = np.random.rand(num_tokens, num_kv_heads, head_size).astype("float32")
position_ids_np = np.arange(num_tokens, dtype="int32")
cos_sin_cache_np = self._make_cos_sin_cache(num_tokens, rot_dim)

query_out, key_out = self._run_op(query_np, key_np, position_ids_np, cos_sin_cache_np, head_size, is_neox=True)

self.assertEqual(query_out.shape, query_np.shape)
self.assertEqual(key_out.shape, key_np.shape)
self.assertFalse(np.allclose(query_out, query_np))
self.assertFalse(np.allclose(key_out, key_np))

def test_large_num_tokens(self):
"""Test with a large number of tokens."""
num_tokens, num_heads, head_size = 10, 2, 4
num_kv_heads, rot_dim = 2, 4

query_np = np.random.rand(num_tokens, num_heads, head_size).astype("float32")
key_np = np.random.rand(num_tokens, num_kv_heads, head_size).astype("float32")
position_ids_np = np.arange(num_tokens, dtype="int32")
cos_sin_cache_np = self._make_cos_sin_cache(num_tokens, rot_dim)

query_out, key_out = self._run_op(
query_np, key_np, position_ids_np, cos_sin_cache_np, head_size, is_neox=False
)

self.assertEqual(query_out.shape, query_np.shape)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

为什么这里只assert了shape

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done, Thx.

self.assertEqual(key_out.shape, key_np.shape)

def test_exceed_max_tokens(self):
"""Test exceeding maximum number of tokens."""
num_tokens, num_heads, head_size = 65537, 1, 4
num_kv_heads, rot_dim = 1, 4

query_np = np.random.rand(num_tokens, num_heads, head_size).astype("float32")
key_np = np.random.rand(num_tokens, num_kv_heads, head_size).astype("float32")
position_ids_np = np.arange(num_tokens, dtype="int32")
cos_sin_cache_np = self._make_cos_sin_cache(num_tokens, rot_dim)

with self.assertRaises(Exception):
self._run_op(query_np, key_np, position_ids_np, cos_sin_cache_np, head_size, is_neox=False)


if __name__ == "__main__":
unittest.main()
Loading