|
| 1 | +# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License") |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import unittest |
| 16 | + |
| 17 | +import numpy as np |
| 18 | +import paddle |
| 19 | + |
| 20 | +from fastdeploy.model_executor.ops.gpu import eagle_get_hidden_states |
| 21 | + |
| 22 | + |
| 23 | +def ComputeOrderKernel( |
| 24 | + seq_lens_this_time, |
| 25 | + seq_lens_encoder, |
| 26 | + base_model_seq_lens_this_time, |
| 27 | + base_model_seq_lens_encoder, |
| 28 | + accept_nums, |
| 29 | + position_map, |
| 30 | + output_token_num, |
| 31 | + bsz, |
| 32 | + actual_draft_token_num, |
| 33 | + input_token_num, |
| 34 | +): |
| 35 | + in_offset = 0 |
| 36 | + out_offset = 0 |
| 37 | + for i in range(bsz): |
| 38 | + cur_base_model_seq_lens_this_time = base_model_seq_lens_this_time[i] |
| 39 | + # cur_base_model_seq_lens_encoder = base_model_seq_lens_encoder[i] |
| 40 | + cur_seq_lens_this_time = seq_lens_this_time[i] |
| 41 | + accept_num = accept_nums[i] |
| 42 | + cur_seq_lens_encoder = seq_lens_encoder[i] |
| 43 | + # 1. eagle encoder. Base step=1 |
| 44 | + if cur_seq_lens_encoder > 0: |
| 45 | + for j in range(cur_seq_lens_encoder): |
| 46 | + position_map[in_offset] = out_offset |
| 47 | + in_offset += 1 |
| 48 | + out_offset += 1 |
| 49 | + # 2. Base model stop at last verify-step. |
| 50 | + elif cur_base_model_seq_lens_this_time != 0 and cur_seq_lens_this_time == 0: |
| 51 | + in_offset += cur_base_model_seq_lens_this_time |
| 52 | + # 4. stopped |
| 53 | + elif cur_base_model_seq_lens_this_time == 0 and cur_seq_lens_this_time == 0: # end |
| 54 | + pass |
| 55 | + else: |
| 56 | + for i in range(accept_num): |
| 57 | + position_map[in_offset] = out_offset |
| 58 | + in_offset += 1 |
| 59 | + out_offset += 1 |
| 60 | + in_offset += cur_base_model_seq_lens_this_time - accept_num |
| 61 | + output_token_num[0] = out_offset |
| 62 | + |
| 63 | + |
| 64 | +def rebuildHiddenStatesKernel(input, position_map, out, dim_embed, elem_cnt): |
| 65 | + for elem_idx in range(elem_cnt): |
| 66 | + ori_token_idx = int(elem_idx / dim_embed) |
| 67 | + token_idx = position_map[ori_token_idx] |
| 68 | + if token_idx >= 0: |
| 69 | + offset = elem_idx % dim_embed |
| 70 | + out[token_idx][offset] = input[ori_token_idx][offset] |
| 71 | + |
| 72 | + |
| 73 | +def eagle_get_hidden_states_ref( |
| 74 | + input, |
| 75 | + seq_lens_this_time, |
| 76 | + seq_lens_encoder, |
| 77 | + seq_lens_decoder, |
| 78 | + stop_flags, |
| 79 | + accept_nums, |
| 80 | + base_model_seq_lens_this_time, |
| 81 | + base_model_seq_lens_encoder, |
| 82 | + actual_draft_token_num, |
| 83 | +): |
| 84 | + input_token_num = input.shape[0] |
| 85 | + dim_embed = input.shape[1] |
| 86 | + bsz = seq_lens_this_time.shape[0] |
| 87 | + position_map = paddle.full([input_token_num], 0xFFFFFFFF, seq_lens_this_time.dtype) |
| 88 | + output_token_num = paddle.empty([1], seq_lens_this_time.dtype) |
| 89 | + ComputeOrderKernel( |
| 90 | + seq_lens_this_time, |
| 91 | + seq_lens_encoder, |
| 92 | + base_model_seq_lens_this_time, |
| 93 | + base_model_seq_lens_encoder, |
| 94 | + accept_nums, |
| 95 | + position_map, |
| 96 | + output_token_num, |
| 97 | + bsz, |
| 98 | + actual_draft_token_num, |
| 99 | + input_token_num, |
| 100 | + ) |
| 101 | + |
| 102 | + output_token_num_cpu = output_token_num[0] |
| 103 | + out = paddle.empty([output_token_num_cpu, dim_embed], input.dtype) |
| 104 | + elem_cnt = input_token_num * dim_embed |
| 105 | + rebuildHiddenStatesKernel(input, position_map, out, dim_embed, elem_cnt) |
| 106 | + return out |
| 107 | + |
| 108 | + |
| 109 | +class TestEagleGetHiddenStates(unittest.TestCase): |
| 110 | + def test_eagle_get_hidden_states(self): |
| 111 | + np.random.seed(2023) |
| 112 | + paddle.seed(2023) |
| 113 | + bs = 2 |
| 114 | + input_token_num = 10 |
| 115 | + dim_embed = 512 |
| 116 | + actual_draft_token_num = np.random.randint(2, 6, dtype=np.int32) |
| 117 | + |
| 118 | + seq_lens_this_time = np.random.randint(0, 2, bs, dtype=np.int32) |
| 119 | + seq_lens_encoder = np.random.randint(0, input_token_num // bs + 1, bs, dtype=np.int32) |
| 120 | + accept_nums = np.random.randint(0, actual_draft_token_num + 1, bs, dtype=np.int32) |
| 121 | + base_model_seq_lens_this_time = np.random.randint(0, input_token_num // bs + 1, bs, dtype=np.int32) |
| 122 | + base_model_seq_lens_encoder = np.random.randint(0, 2, bs, dtype=np.int32) |
| 123 | + |
| 124 | + seq_lens_decoder = np.random.randint(0, input_token_num // bs + 1, bs, dtype=np.int32) |
| 125 | + stop_flags = np.random.randint(0, 2, bs, dtype=np.int32) |
| 126 | + |
| 127 | + seq_lens_this_time_tensor = paddle.to_tensor(seq_lens_this_time, dtype=paddle.int32) |
| 128 | + seq_lens_encoder_tensor = paddle.to_tensor(seq_lens_encoder, dtype=paddle.int32) |
| 129 | + accept_nums_tensor = paddle.to_tensor(accept_nums, dtype=paddle.int32) |
| 130 | + base_model_seq_lens_this_time_tensor = paddle.to_tensor(base_model_seq_lens_this_time, dtype=paddle.int32) |
| 131 | + base_model_seq_lens_encoder_tensor = paddle.to_tensor(base_model_seq_lens_encoder, dtype=paddle.int32) |
| 132 | + |
| 133 | + seq_lens_decoder_tensor = paddle.to_tensor(seq_lens_decoder, dtype=paddle.int32) |
| 134 | + stop_flags_tensor = paddle.to_tensor(stop_flags, dtype=paddle.int32) |
| 135 | + |
| 136 | + input = np.random.randint(0, 10, (input_token_num, dim_embed), dtype=np.int32) |
| 137 | + input_tensor = paddle.to_tensor(input, dtype=paddle.float16) |
| 138 | + out = eagle_get_hidden_states( |
| 139 | + input_tensor, |
| 140 | + seq_lens_this_time_tensor, |
| 141 | + seq_lens_encoder_tensor, |
| 142 | + seq_lens_decoder_tensor, |
| 143 | + stop_flags_tensor, |
| 144 | + accept_nums_tensor, |
| 145 | + base_model_seq_lens_this_time_tensor, |
| 146 | + base_model_seq_lens_encoder_tensor, |
| 147 | + actual_draft_token_num, |
| 148 | + ) |
| 149 | + out_ref = eagle_get_hidden_states_ref( |
| 150 | + input_tensor, |
| 151 | + seq_lens_this_time_tensor, |
| 152 | + seq_lens_encoder_tensor, |
| 153 | + seq_lens_decoder_tensor, |
| 154 | + stop_flags_tensor, |
| 155 | + accept_nums_tensor, |
| 156 | + base_model_seq_lens_this_time_tensor, |
| 157 | + base_model_seq_lens_encoder_tensor, |
| 158 | + actual_draft_token_num, |
| 159 | + ) |
| 160 | + np.testing.assert_allclose(out.numpy(), out_ref.numpy()) |
| 161 | + |
| 162 | + |
| 163 | +if __name__ == "__main__": |
| 164 | + unittest.main() |
0 commit comments