Skip to content

Commit ef4a1aa

Browse files
authored
【Hackathon 9th No.61、65】add test_draft_model_update (#3940)
* add draft_model_update test * fix * fix * fix * fix * fix
1 parent f213ae1 commit ef4a1aa

File tree

2 files changed

+413
-0
lines changed

2 files changed

+413
-0
lines changed
Lines changed: 248 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,248 @@
1+
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License")
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
16+
import unittest
17+
18+
import numpy as np
19+
import paddle
20+
21+
from fastdeploy.model_executor.ops.gpu import draft_model_update
22+
23+
24+
def is_in_end(id, end_ids, length):
25+
flag = False
26+
for i in range(length):
27+
if id == end_ids[i]:
28+
return True
29+
return flag
30+
31+
32+
# recalculate data offset, offset_new is starting from index 0
33+
def get_inter_next_tokens_start_offset(inter_next_tokens, max_seq_len, start_id, offset):
34+
offset_new = start_id + offset
35+
return inter_next_tokens[int(offset_new / max_seq_len)][int(offset_new % max_seq_len)]
36+
37+
38+
def draft_model_update_kernel(
39+
inter_next_tokens,
40+
draft_tokens,
41+
pre_ids,
42+
seq_lens_this_time,
43+
seq_lens_encoder,
44+
seq_lens_decoder,
45+
step_idx,
46+
output_cum_offsets,
47+
stop_flags,
48+
not_need_stop,
49+
max_dec_len,
50+
end_ids,
51+
base_model_draft_tokens,
52+
bsz,
53+
max_draft_token,
54+
pre_id_length,
55+
max_base_model_draft_token,
56+
end_ids_len,
57+
max_seq_len,
58+
substep,
59+
prefill_one_step_stop,
60+
):
61+
stop_sum = 0
62+
for tid in range(bsz):
63+
stop_flag_now_int = 0
64+
draft_token_now = draft_tokens[tid]
65+
pre_ids_now = pre_ids[tid]
66+
base_model_draft_tokens_now = base_model_draft_tokens[tid]
67+
next_tokens_start_id = tid * max_seq_len - output_cum_offsets[tid]
68+
# next_tokens_start =
69+
seq_len_this_time = seq_lens_this_time[tid]
70+
seq_len_encoder = seq_lens_encoder[tid]
71+
seq_len_decoder = seq_lens_decoder[tid]
72+
73+
# 1. update step_idx && seq_lens_dec
74+
if not stop_flags[tid]: # seq_lens_decoder > 0 or seq_lens_encoder > 0
75+
token_this_time = -1
76+
# decoder step
77+
if seq_len_decoder > 0 and seq_len_encoder <= 0:
78+
seq_lens_decoder[tid] += seq_len_this_time
79+
token_this_time = get_inter_next_tokens_start_offset(
80+
inter_next_tokens, max_seq_len, next_tokens_start_id, seq_len_this_time - 1
81+
)
82+
draft_token_now[0] = token_this_time
83+
base_model_draft_tokens_now[substep + 1] = token_this_time
84+
step_idx[tid] += seq_len_this_time
85+
pre_ids_now[step_idx[tid]] = token_this_time
86+
else:
87+
token_this_time = get_inter_next_tokens_start_offset(
88+
inter_next_tokens, max_seq_len, next_tokens_start_id, 0
89+
)
90+
91+
# seq_lens_decoder[tid] = seq_lens_encoder[tid]
92+
seq_lens_decoder[tid] = seq_len_encoder + seq_len_decoder
93+
seq_lens_encoder[tid] = 0
94+
pre_ids_now[1] = token_this_time
95+
step_idx[tid] += 1
96+
draft_token_now[0] = token_this_time
97+
base_model_draft_tokens_now[substep + 1] = token_this_time
98+
99+
# multi_end
100+
if is_in_end(token_this_time, end_ids, end_ids_len) or prefill_one_step_stop:
101+
stop_flags[tid] = True
102+
stop_flag_now_int = 1
103+
# max_dec_len
104+
elif step_idx[tid] >= max_dec_len[tid]:
105+
stop_flags[tid] = True
106+
draft_token_now[seq_len_this_time - 1] = end_ids[0]
107+
base_model_draft_tokens_now[substep + 1] = end_ids[0]
108+
stop_flag_now_int = 1
109+
else:
110+
draft_token_now[0] = -1
111+
base_model_draft_tokens_now[substep + 1] = -1
112+
stop_flag_now_int = 1
113+
114+
# 2. set end
115+
if not stop_flags[tid]:
116+
seq_lens_this_time[tid] = 1
117+
else:
118+
seq_lens_this_time[tid] = 0
119+
seq_lens_encoder[tid] = 0
120+
121+
stop_sum = stop_sum + stop_flag_now_int
122+
not_need_stop[0] = stop_sum < bsz
123+
124+
125+
def draft_model_update_ref(
126+
inter_next_tokens,
127+
draft_tokens,
128+
pre_ids,
129+
seq_lens_this_time,
130+
seq_lens_encoder,
131+
seq_lens_decoder,
132+
step_idx,
133+
output_cum_offsets,
134+
stop_flags,
135+
not_need_stop,
136+
max_dec_len,
137+
end_ids,
138+
base_model_draft_tokens,
139+
max_seq_len,
140+
substep,
141+
):
142+
seq_lens_this_time_shape = seq_lens_this_time.shape
143+
real_bsz = seq_lens_this_time_shape[0]
144+
end_ids_len = end_ids.shape[0]
145+
max_draft_token = draft_tokens.shape[1]
146+
pre_id_length = pre_ids.shape[1]
147+
max_base_model_draft_token = base_model_draft_tokens.shape[1]
148+
149+
prefill_one_step_stop = False
150+
import os
151+
152+
env = os.getenv("PREFILL_NODE_ONE_STEP_STOP")
153+
if env == "1":
154+
prefill_one_step_stop = True
155+
156+
draft_model_update_kernel(
157+
inter_next_tokens,
158+
draft_tokens,
159+
pre_ids,
160+
seq_lens_this_time,
161+
seq_lens_encoder,
162+
seq_lens_decoder,
163+
step_idx,
164+
output_cum_offsets,
165+
stop_flags,
166+
not_need_stop,
167+
max_dec_len,
168+
end_ids,
169+
base_model_draft_tokens,
170+
real_bsz,
171+
max_draft_token,
172+
pre_id_length,
173+
max_base_model_draft_token,
174+
end_ids_len,
175+
max_seq_len,
176+
substep,
177+
prefill_one_step_stop,
178+
)
179+
180+
181+
class TestDraftModelUpdate(unittest.TestCase):
182+
def test_draft_model_update(self):
183+
self._run_paddle_test()
184+
185+
def _run_paddle_test(self):
186+
np.random.seed(42)
187+
paddle.seed(42)
188+
189+
max_bsz = 128
190+
max_draft_token = 3
191+
pre_id_length = 3
192+
max_seq_len = 100
193+
max_base_model_draft_token = 4
194+
substep = 2
195+
196+
inter_next_tokens = paddle.randint(1, 100, shape=(max_bsz, max_seq_len), dtype="int64")
197+
draft_tokens = paddle.randint(1, 100, shape=(max_bsz, max_draft_token), dtype="int64")
198+
pre_ids = paddle.randint(1, 100, shape=(max_bsz, pre_id_length), dtype="int64")
199+
seq_lens_this_time = paddle.randint(1, 2, shape=(max_bsz,), dtype="int32")
200+
seq_lens_encoder = paddle.randint(1, 10, shape=(max_bsz,), dtype="int32")
201+
seq_lens_decoder = paddle.randint(1, 10, shape=(max_bsz,), dtype="int32")
202+
step_idx = paddle.randint(1, 10, shape=(max_bsz,), dtype="int64")
203+
output_cum_offsets = paddle.randint(0, 2, shape=(max_bsz,), dtype="int32")
204+
output_cum_offsets[0] = 0
205+
stop_flags = paddle.zeros([max_bsz], dtype="bool")
206+
not_need_stop = paddle.zeros([1], dtype="bool").to(device=paddle.CPUPlace())
207+
max_dec_len = paddle.randint(100, 102, shape=(max_bsz,), dtype="int64")
208+
end_ids = paddle.to_tensor([2], dtype="int64")
209+
base_model_draft_tokens = paddle.randint(1, 10, shape=(max_bsz, max_base_model_draft_token), dtype="int64")
210+
211+
inputs = (
212+
inter_next_tokens,
213+
draft_tokens,
214+
pre_ids,
215+
seq_lens_this_time,
216+
seq_lens_encoder,
217+
seq_lens_decoder,
218+
step_idx,
219+
output_cum_offsets,
220+
stop_flags,
221+
not_need_stop,
222+
max_dec_len,
223+
end_ids,
224+
base_model_draft_tokens,
225+
max_seq_len,
226+
substep,
227+
)
228+
# inplace modify, need to clone inputs
229+
inputs_clone = [x.clone() if isinstance(x, paddle.Tensor) else x for x in inputs]
230+
draft_model_update(*inputs)
231+
draft_model_update_ref(*inputs_clone)
232+
idx_list = (
233+
1,
234+
2,
235+
3,
236+
4,
237+
5,
238+
6,
239+
8,
240+
9,
241+
12,
242+
)
243+
for i in idx_list:
244+
np.testing.assert_allclose(inputs[i].numpy(), inputs_clone[i].numpy())
245+
246+
247+
if __name__ == "__main__":
248+
unittest.main()

0 commit comments

Comments
 (0)