|
| 1 | +import unittest |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import paddle |
| 5 | + |
| 6 | +from fastdeploy.model_executor.ops.gpu import rebuild_padding |
| 7 | + |
| 8 | + |
| 9 | +def RebuildPaddingKernel( |
| 10 | + out, |
| 11 | + tmp_out, |
| 12 | + cu_seqlens_q, |
| 13 | + seq_len_this_time, |
| 14 | + seq_lens_decoder, |
| 15 | + seq_lens_encoder, |
| 16 | + bsz, |
| 17 | +): |
| 18 | + for bi in range(bsz): |
| 19 | + seq_id = 0 |
| 20 | + if seq_len_this_time[bi] == 0: |
| 21 | + continue |
| 22 | + if seq_lens_decoder[bi] == 0 and seq_lens_encoder[bi] == 0: |
| 23 | + continue |
| 24 | + if seq_lens_encoder[bi] > 0: |
| 25 | + seq_id = seq_lens_encoder[bi] - 1 |
| 26 | + out[bi] = tmp_out[cu_seqlens_q[bi] + seq_id][:] |
| 27 | + |
| 28 | + |
| 29 | +def RebuildAppendPaddingKernel( |
| 30 | + out, |
| 31 | + tmp_out, |
| 32 | + cu_seqlens_q, |
| 33 | + seq_len_this_time, |
| 34 | + seq_lens_decoder, |
| 35 | + seq_lens_encoder, |
| 36 | + output_padding_offset, |
| 37 | + max_input_length, |
| 38 | + token_num, |
| 39 | + need_delete_token_num, |
| 40 | +): |
| 41 | + for token_id in range(token_num - need_delete_token_num): |
| 42 | + bi = int(token_id / max_input_length) |
| 43 | + if seq_len_this_time[bi] == 0 or (seq_lens_decoder[bi] == 0 and seq_lens_encoder[bi] == 0): |
| 44 | + continue |
| 45 | + ori_token_id = token_id + output_padding_offset[token_id] |
| 46 | + seq_id = 0 |
| 47 | + if seq_lens_encoder[bi] > 0: |
| 48 | + seq_id = seq_lens_encoder[bi] - 1 |
| 49 | + cum_offset_bi = bi * max_input_length - cu_seqlens_q[bi] |
| 50 | + input_token_id = ori_token_id - cum_offset_bi + seq_id |
| 51 | + out[token_id] = tmp_out[input_token_id][:] |
| 52 | + |
| 53 | + |
| 54 | +def rebuild_padding_ref( |
| 55 | + tmp_out, # [token_num, dim_embed] |
| 56 | + cu_seqlens_q, # [bsz+1, 1] |
| 57 | + seq_len_this_time, |
| 58 | + seq_lens_decoder, |
| 59 | + seq_lens_encoder, |
| 60 | + output_padding_offset, |
| 61 | + max_input_length, |
| 62 | +): |
| 63 | + |
| 64 | + tmp_out_shape = tmp_out.shape |
| 65 | + token_num = tmp_out_shape[0] |
| 66 | + dim_embed = tmp_out_shape[1] |
| 67 | + bsz = cu_seqlens_q.shape[0] - 1 |
| 68 | + |
| 69 | + out = np.zeros([bsz, dim_embed]) |
| 70 | + if output_padding_offset is not None: |
| 71 | + need_delete_token_num = 0 |
| 72 | + for i in range(bsz): |
| 73 | + if seq_lens_encoder[i] > 0: |
| 74 | + need_delete_token_num += seq_lens_encoder[i] - 1 |
| 75 | + out = np.zeros([token_num - need_delete_token_num, dim_embed]) |
| 76 | + else: |
| 77 | + out = np.zeros([bsz, dim_embed]) |
| 78 | + |
| 79 | + if output_padding_offset is not None: |
| 80 | + RebuildAppendPaddingKernel( |
| 81 | + out, |
| 82 | + tmp_out, |
| 83 | + cu_seqlens_q, |
| 84 | + seq_len_this_time, |
| 85 | + seq_lens_decoder, |
| 86 | + seq_lens_encoder, |
| 87 | + output_padding_offset, |
| 88 | + max_input_length, |
| 89 | + token_num, |
| 90 | + need_delete_token_num, |
| 91 | + ) |
| 92 | + else: |
| 93 | + RebuildPaddingKernel( |
| 94 | + out, |
| 95 | + tmp_out, |
| 96 | + cu_seqlens_q, |
| 97 | + seq_len_this_time, |
| 98 | + seq_lens_decoder, |
| 99 | + seq_lens_encoder, |
| 100 | + bsz, |
| 101 | + ) |
| 102 | + return out |
| 103 | + |
| 104 | + |
| 105 | +class TestRebuildPadding(unittest.TestCase): |
| 106 | + # test no offset |
| 107 | + def test_rebuild_padding_no_offset(self): |
| 108 | + token_num = 100 |
| 109 | + dim_embed = 256 |
| 110 | + # bsz = 4 |
| 111 | + max_input_length = 512 |
| 112 | + # tmp_out: [token_num, dim_embed] |
| 113 | + tmp_out = np.random.randn(token_num, dim_embed).astype(np.float32) |
| 114 | + # cu_seqlens_q: [bsz + 1],accumulate the number of tokens for each batch. |
| 115 | + cu_seqlens_q = np.array( |
| 116 | + [0, 1, 21, 22, 42, 43, 63, 64, 84], dtype=np.int32 |
| 117 | + ) # Assume there are 4 batches, and the total token_num = 100. |
| 118 | + |
| 119 | + # Simulated sequence length information |
| 120 | + seq_len_this_time = np.array([1, 20, 1, 20, 1, 20, 1, 20], dtype=np.int32) |
| 121 | + seq_lens_encoder = np.array([0, 20, 0, 20, 0, 20, 0, 20], dtype=np.int32) |
| 122 | + seq_lens_decoder = np.array([21, 0, 21, 0, 21, 0, 21, 0], dtype=np.int32) |
| 123 | + out_no_offset_ref = rebuild_padding_ref( |
| 124 | + tmp_out=tmp_out, |
| 125 | + cu_seqlens_q=cu_seqlens_q, |
| 126 | + seq_len_this_time=seq_len_this_time, |
| 127 | + seq_lens_decoder=seq_lens_decoder, |
| 128 | + seq_lens_encoder=seq_lens_encoder, |
| 129 | + output_padding_offset=None, |
| 130 | + max_input_length=max_input_length, |
| 131 | + ) |
| 132 | + |
| 133 | + tmp_out = paddle.to_tensor(tmp_out) |
| 134 | + cu_seqlens_q = paddle.to_tensor(cu_seqlens_q) |
| 135 | + seq_len_this_time = paddle.to_tensor(seq_len_this_time) |
| 136 | + seq_lens_decoder = paddle.to_tensor(seq_lens_decoder) |
| 137 | + seq_lens_encoder = paddle.to_tensor(seq_lens_encoder) |
| 138 | + |
| 139 | + out_no_offset = rebuild_padding( |
| 140 | + tmp_out, |
| 141 | + cu_seqlens_q, |
| 142 | + seq_len_this_time, |
| 143 | + seq_lens_decoder, |
| 144 | + seq_lens_encoder, |
| 145 | + None, |
| 146 | + max_input_length, |
| 147 | + ) |
| 148 | + np.testing.assert_allclose(out_no_offset.numpy(), out_no_offset_ref) |
| 149 | + |
| 150 | + # test with offset |
| 151 | + def test_rebuild_padding_with_offset(self): |
| 152 | + paddle.seed(42) |
| 153 | + token_num = 100 |
| 154 | + dim_embed = 256 |
| 155 | + # bsz = 4 |
| 156 | + max_input_length = 512 |
| 157 | + # tmp_out: [token_num, dim_embed] |
| 158 | + tmp_out = np.random.randn(token_num, dim_embed).astype(np.float32) |
| 159 | + # cu_seqlens_q: [bsz + 1],accumulate the number of tokens for each batch. |
| 160 | + cu_seqlens_q = np.array( |
| 161 | + [0, 1, 21, 22, 42, 43, 63, 64, 84], dtype=np.int32 |
| 162 | + ) # Assume there are 4 batches, and the total token_num = 100. |
| 163 | + |
| 164 | + # Simulated sequence length information |
| 165 | + seq_len_this_time = np.array([1, 20, 1, 20, 1, 20, 1, 20], dtype=np.int32) |
| 166 | + seq_lens_encoder = np.array([0, 20, 0, 20, 0, 20, 0, 20], dtype=np.int32) |
| 167 | + seq_lens_decoder = np.array([21, 0, 21, 0, 21, 0, 21, 0], dtype=np.int32) |
| 168 | + |
| 169 | + num_output_tokens = 80 |
| 170 | + output_padding_offset = np.random.randint(0, 10, [num_output_tokens], dtype=np.int32) |
| 171 | + out_with_offset_ref = rebuild_padding_ref( |
| 172 | + tmp_out=tmp_out, |
| 173 | + cu_seqlens_q=cu_seqlens_q, |
| 174 | + seq_len_this_time=seq_len_this_time, |
| 175 | + seq_lens_decoder=seq_lens_decoder, |
| 176 | + seq_lens_encoder=seq_lens_encoder, |
| 177 | + output_padding_offset=output_padding_offset, |
| 178 | + max_input_length=max_input_length, |
| 179 | + ) |
| 180 | + |
| 181 | + tmp_out = paddle.to_tensor(tmp_out) |
| 182 | + cu_seqlens_q = paddle.to_tensor(cu_seqlens_q) |
| 183 | + seq_len_this_time = paddle.to_tensor(seq_len_this_time) |
| 184 | + seq_lens_decoder = paddle.to_tensor(seq_lens_decoder) |
| 185 | + seq_lens_encoder = paddle.to_tensor(seq_lens_encoder) |
| 186 | + output_padding_offset = paddle.to_tensor(output_padding_offset) |
| 187 | + out_with_offset = rebuild_padding( |
| 188 | + tmp_out, |
| 189 | + cu_seqlens_q, |
| 190 | + seq_len_this_time, |
| 191 | + seq_lens_decoder, |
| 192 | + seq_lens_encoder, |
| 193 | + output_padding_offset, |
| 194 | + max_input_length, |
| 195 | + ) |
| 196 | + np.testing.assert_allclose(out_with_offset.numpy(), out_with_offset_ref) |
| 197 | + |
| 198 | + |
| 199 | +if __name__ == "__main__": |
| 200 | + unittest.main() |
0 commit comments