|
| 1 | +# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import unittest |
| 16 | + |
| 17 | +import numpy as np |
| 18 | +import paddle |
| 19 | + |
| 20 | +from fastdeploy.model_executor.ops.gpu import eagle_get_self_hidden_states |
| 21 | + |
| 22 | + |
| 23 | +def computeOrder(last_seq_lens_this_time, seq_lens_this_time, step_idx, src_map, bsz): |
| 24 | + in_offset = 0 |
| 25 | + out_offset = 0 |
| 26 | + for i in range(bsz): |
| 27 | + cur_seq_lens_this_time = seq_lens_this_time[i] |
| 28 | + cur_last_seq_lens_this_time = last_seq_lens_this_time[i] |
| 29 | + if step_idx[i] == 1 and cur_seq_lens_this_time > 0: |
| 30 | + in_offset += 1 |
| 31 | + src_map[out_offset] = in_offset - 1 |
| 32 | + out_offset += 1 |
| 33 | + elif cur_seq_lens_this_time > 0: |
| 34 | + in_offset += cur_last_seq_lens_this_time |
| 35 | + src_map[out_offset] = in_offset - 1 |
| 36 | + out_offset += 1 |
| 37 | + else: |
| 38 | + if step_idx[i] == 1: |
| 39 | + in_offset += 1 if cur_last_seq_lens_this_time > 0 else 0 |
| 40 | + else: |
| 41 | + in_offset += cur_last_seq_lens_this_time |
| 42 | + |
| 43 | + return (out_offset, src_map) |
| 44 | + |
| 45 | + |
| 46 | +def rebuildSelfHiddenStatesKernel(input, src_map, out, dim_embed, elem_cnt): |
| 47 | + for elem_id in range(elem_cnt): |
| 48 | + output_token_idx = elem_id // dim_embed |
| 49 | + input_token_idx = src_map[output_token_idx] |
| 50 | + offset = elem_id % dim_embed |
| 51 | + out[output_token_idx * dim_embed + offset] = input[input_token_idx * dim_embed + offset] |
| 52 | + return out |
| 53 | + |
| 54 | + |
| 55 | +def ref_eagle_get_self_hidden_states(input, last_seq_lens_this_time, seq_lens_this_time, step_idx): |
| 56 | + input_token_num = input.shape[0] |
| 57 | + dim_embed = input.shape[1] |
| 58 | + bsz = seq_lens_this_time.shape[0] |
| 59 | + src_map = np.full(input_token_num, -1, seq_lens_this_time.dtype) |
| 60 | + output_token_num, src_map = computeOrder(last_seq_lens_this_time, seq_lens_this_time, step_idx, src_map, bsz) |
| 61 | + out = np.full([output_token_num * dim_embed], -1, input.dtype) |
| 62 | + elem_cnt = output_token_num * dim_embed |
| 63 | + out = rebuildSelfHiddenStatesKernel(input, src_map, out, dim_embed, elem_cnt) |
| 64 | + out = out.reshape([output_token_num, dim_embed]) |
| 65 | + return out |
| 66 | + |
| 67 | + |
| 68 | +class TestEagleGetSelfHiddenStates(unittest.TestCase): |
| 69 | + def test_eagle_get_self_hidden_states(self): |
| 70 | + paddle.seed(2023) |
| 71 | + np.random.seed(2023) |
| 72 | + bs = np.random.randint(1, 8 + 1, dtype=np.int32) |
| 73 | + input_token_num = np.random.randint(2 * 1024, 4 * 1024 + 1, dtype=np.int32) |
| 74 | + dim_embed = np.array(1024, dtype=np.int32) |
| 75 | + |
| 76 | + last_seq_lens_this_time = np.random.randint(0, input_token_num // bs, bs, dtype=np.int32) |
| 77 | + seq_lens_this_time = np.random.randint(0, input_token_num // bs, bs, dtype=np.int32) |
| 78 | + step_idx = np.arange(0, bs, dtype=np.int32) |
| 79 | + |
| 80 | + last_seq_lens_this_time_tensor = paddle.to_tensor(last_seq_lens_this_time, dtype=paddle.int32) |
| 81 | + seq_lens_this_time_tensor = paddle.to_tensor(seq_lens_this_time, dtype=paddle.int32) |
| 82 | + step_idx_tensor = paddle.to_tensor(step_idx, dtype=paddle.int64) |
| 83 | + |
| 84 | + input = np.random.randint(0, 10, (input_token_num, dim_embed), dtype=np.int32) |
| 85 | + input_tensor = paddle.to_tensor(input, dtype=paddle.float16) |
| 86 | + gpu_out = eagle_get_self_hidden_states( |
| 87 | + input_tensor, |
| 88 | + last_seq_lens_this_time_tensor, |
| 89 | + seq_lens_this_time_tensor, |
| 90 | + step_idx_tensor, |
| 91 | + ) |
| 92 | + out_ref = np.array([5, 4, 2, 8], dtype=np.float16) |
| 93 | + np.testing.assert_allclose(gpu_out.numpy()[0][0:4], out_ref) |
| 94 | + |
| 95 | + |
| 96 | +if __name__ == "__main__": |
| 97 | + unittest.main() |
0 commit comments