|
| 1 | +import os |
| 2 | +import unittest |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import paddle |
| 6 | + |
| 7 | +from fastdeploy.model_executor.ops.gpu import masked_per_token_quant |
| 8 | + |
| 9 | + |
| 10 | +def masked_per_token_quant_ref(input_tensor, recv_expert_count, block_size): |
| 11 | + """ |
| 12 | + Paddle API implementation of masked_per_token_quant |
| 13 | +
|
| 14 | + Args: |
| 15 | + input_tensor: Input tensor with shape [num_local_expert, num_max_tokens_per_expert, hidden_size] |
| 16 | + recv_expert_count: Expert token count tensor with shape [num_local_expert] |
| 17 | + block_size: Quantization block size |
| 18 | +
|
| 19 | + Returns: |
| 20 | + Tuple of (quantized_tensor, scale_tensor) |
| 21 | + """ |
| 22 | + MAX_VALUE = 448.0 |
| 23 | + epsilon = 1e-10 |
| 24 | + |
| 25 | + # Get dimensions |
| 26 | + input_shape = input_tensor.shape |
| 27 | + num_local_expert = input_shape[0] |
| 28 | + num_max_tokens_per_expert = input_shape[1] |
| 29 | + hidden_size = input_shape[2] |
| 30 | + |
| 31 | + # CUDA kernel uses: hidden_size_scale = hidden_size / block_size (integer division) |
| 32 | + # This assumes hidden_size is divisible by block_size |
| 33 | + hidden_size_scale = hidden_size // block_size |
| 34 | + |
| 35 | + # Check environment variable for fine-grained range |
| 36 | + use_finegrained_range = False |
| 37 | + env_var = os.getenv("PER_TOKEN_QUANT_FP8_USE_FINEGRAINED_RANGE") |
| 38 | + if env_var: |
| 39 | + use_finegrained_range = bool(int(env_var)) |
| 40 | + |
| 41 | + # Create mask for valid tokens based on recv_expert_count |
| 42 | + token_indices = paddle.arange(num_max_tokens_per_expert, dtype="int32").unsqueeze( |
| 43 | + 0 |
| 44 | + ) # [1, num_max_tokens_per_expert] |
| 45 | + expert_counts = recv_expert_count.unsqueeze(1) # [num_local_expert, 1] |
| 46 | + valid_mask = token_indices < expert_counts # [num_local_expert, num_max_tokens_per_expert] |
| 47 | + |
| 48 | + # Reshape input for block-wise processing |
| 49 | + # [num_local_expert, num_max_tokens_per_expert, hidden_size_scale, block_size] |
| 50 | + reshaped_input = paddle.reshape( |
| 51 | + input_tensor, [num_local_expert, num_max_tokens_per_expert, hidden_size_scale, block_size] |
| 52 | + ).astype("float32") |
| 53 | + |
| 54 | + # Calculate max absolute values per block |
| 55 | + max_abs_val = paddle.max( |
| 56 | + paddle.abs(reshaped_input), axis=-1, keepdim=True |
| 57 | + ) # [num_local_expert, num_max_tokens_per_expert, hidden_size_scale, 1] |
| 58 | + max_abs_val = paddle.clip(max_abs_val, min=epsilon) |
| 59 | + |
| 60 | + # Apply valid mask - set invalid tokens' max values to epsilon |
| 61 | + valid_mask_expanded = valid_mask.unsqueeze(2).unsqueeze(3) # [num_local_expert, num_max_tokens_per_expert, 1, 1] |
| 62 | + max_abs_val = paddle.where(valid_mask_expanded, max_abs_val, paddle.to_tensor(epsilon)) |
| 63 | + |
| 64 | + # Apply fine-grained range if enabled |
| 65 | + if use_finegrained_range: |
| 66 | + max_abs_val *= 7.0 |
| 67 | + |
| 68 | + # Calculate scale |
| 69 | + scale = max_abs_val / MAX_VALUE |
| 70 | + |
| 71 | + # Quantize |
| 72 | + quanted_value = reshaped_input / scale |
| 73 | + |
| 74 | + # Convert to float8_e4m3fn and reshape back |
| 75 | + quanted_x_reshaped = quanted_value.astype("float8_e4m3fn") |
| 76 | + quanted_x = paddle.reshape(quanted_x_reshaped, [num_local_expert, num_max_tokens_per_expert, hidden_size]) |
| 77 | + |
| 78 | + # Apply valid mask to quantized output - convert to float32 first, then back to float8_e4m3fn |
| 79 | + valid_mask_full = valid_mask.unsqueeze(2) # [num_local_expert, num_max_tokens_per_expert, 1] |
| 80 | + quanted_x_float32 = quanted_x.astype("float32") |
| 81 | + quanted_x_masked_float32 = paddle.where(valid_mask_full, quanted_x_float32, paddle.zeros_like(quanted_x_float32)) |
| 82 | + quanted_x = quanted_x_masked_float32.astype("float8_e4m3fn") |
| 83 | + |
| 84 | + # Prepare scale output - squeeze the last dimension |
| 85 | + quanted_scale = paddle.squeeze(scale, axis=-1) # [num_local_expert, num_max_tokens_per_expert, hidden_size_scale] |
| 86 | + |
| 87 | + # Apply valid mask to scale |
| 88 | + valid_mask_scale = valid_mask.unsqueeze(2) # [num_local_expert, num_max_tokens_per_expert, 1] |
| 89 | + quanted_scale = paddle.where(valid_mask_scale, quanted_scale, paddle.zeros_like(quanted_scale)) |
| 90 | + |
| 91 | + return quanted_x, quanted_scale |
| 92 | + |
| 93 | + |
| 94 | +class TestMaskedPerTokenQuant(unittest.TestCase): |
| 95 | + def setUp(self) -> None: |
| 96 | + paddle.seed(2024) |
| 97 | + self.num_local_expert = 2 |
| 98 | + self.num_max_tokens_per_expert = 4 |
| 99 | + self.hidden_size = 256 |
| 100 | + self.block_size = 128 |
| 101 | + self.dtype = paddle.bfloat16 |
| 102 | + |
| 103 | + self.input_tensor = paddle.randn( |
| 104 | + [self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype |
| 105 | + ) |
| 106 | + self.recv_expert_count = paddle.to_tensor([3, 2], dtype="int32") |
| 107 | + |
| 108 | + # Get reference results from paddle implementation |
| 109 | + self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref( |
| 110 | + self.input_tensor, self.recv_expert_count, self.block_size |
| 111 | + ) |
| 112 | + |
| 113 | + def _mask_invalid_tokens(self, quanted_x, quanted_scale, recv_expert_count): |
| 114 | + """Apply mask to zero out invalid tokens""" |
| 115 | + token_indices = paddle.arange(self.num_max_tokens_per_expert, dtype="int32").unsqueeze(0) |
| 116 | + expert_counts = recv_expert_count.unsqueeze(1) |
| 117 | + valid_mask = token_indices < expert_counts |
| 118 | + |
| 119 | + # Apply mask to quantized values - convert to float32 first |
| 120 | + valid_mask_full = valid_mask.unsqueeze(2) |
| 121 | + quanted_x_float32 = quanted_x.astype("float32") |
| 122 | + quanted_x_masked_float32 = paddle.where( |
| 123 | + valid_mask_full, quanted_x_float32, paddle.zeros_like(quanted_x_float32) |
| 124 | + ) |
| 125 | + quanted_x_masked = quanted_x_masked_float32.astype("float8_e4m3fn") |
| 126 | + |
| 127 | + # Apply mask to scale values |
| 128 | + valid_mask_scale = valid_mask.unsqueeze(2) |
| 129 | + quanted_scale_masked = paddle.where(valid_mask_scale, quanted_scale, paddle.zeros_like(quanted_scale)) |
| 130 | + |
| 131 | + return quanted_x_masked, quanted_scale_masked |
| 132 | + |
| 133 | + def test_masked_per_token_quant_basic(self): |
| 134 | + """Test basic functionality against CUDA kernel""" |
| 135 | + quanted_x_cuda, quanted_scale_cuda = masked_per_token_quant( |
| 136 | + self.input_tensor, self.recv_expert_count, self.block_size |
| 137 | + ) |
| 138 | + |
| 139 | + quanted_x_cuda_masked, quanted_scale_cuda_masked = self._mask_invalid_tokens( |
| 140 | + quanted_x_cuda, quanted_scale_cuda, self.recv_expert_count |
| 141 | + ) |
| 142 | + |
| 143 | + # Check output shapes |
| 144 | + self.assertEqual(quanted_x_cuda.shape, self.quanted_x_ref.shape) |
| 145 | + self.assertEqual(quanted_scale_cuda.shape, self.quanted_scale_ref.shape) |
| 146 | + |
| 147 | + # Check dtypes |
| 148 | + self.assertEqual(quanted_x_cuda.dtype, paddle.float8_e4m3fn) |
| 149 | + self.assertEqual(quanted_scale_cuda.dtype, paddle.float32) |
| 150 | + |
| 151 | + # Compare scale values (using masked versions) |
| 152 | + np.testing.assert_allclose( |
| 153 | + self.quanted_scale_ref.numpy(), quanted_scale_cuda_masked.numpy(), rtol=1e-5, atol=1e-6 |
| 154 | + ) |
| 155 | + |
| 156 | + # Compare quantized values (convert to float32 for comparison, using masked versions) |
| 157 | + quant_diff = paddle.mean( |
| 158 | + paddle.abs(quanted_x_cuda_masked.astype("float32") - self.quanted_x_ref.astype("float32")) |
| 159 | + ) / paddle.mean(paddle.abs(self.quanted_x_ref.astype("float32")) + 1e-9) |
| 160 | + diff_val = float(quant_diff.numpy().item()) |
| 161 | + self.assertLess(diff_val, 0.01, msg="Quantized values should be close") |
| 162 | + |
| 163 | + |
| 164 | +class TestMaskedPerTokenQuantCase1(TestMaskedPerTokenQuant): |
| 165 | + """Test with float16 input""" |
| 166 | + |
| 167 | + def setUp(self) -> None: |
| 168 | + paddle.seed(2024) |
| 169 | + self.num_local_expert = 3 |
| 170 | + self.num_max_tokens_per_expert = 6 |
| 171 | + self.hidden_size = 512 |
| 172 | + self.block_size = 128 |
| 173 | + self.dtype = paddle.float16 |
| 174 | + |
| 175 | + self.input_tensor = paddle.randn( |
| 176 | + [self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype |
| 177 | + ) |
| 178 | + self.recv_expert_count = paddle.to_tensor([4, 2, 5], dtype="int32") |
| 179 | + |
| 180 | + self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref( |
| 181 | + self.input_tensor, self.recv_expert_count, self.block_size |
| 182 | + ) |
| 183 | + |
| 184 | + |
| 185 | +class TestMaskedPerTokenQuantCase2(TestMaskedPerTokenQuant): |
| 186 | + """Test with different hidden size""" |
| 187 | + |
| 188 | + def setUp(self) -> None: |
| 189 | + paddle.seed(2024) |
| 190 | + self.num_local_expert = 4 |
| 191 | + self.num_max_tokens_per_expert = 8 |
| 192 | + self.hidden_size = 384 # 3 * 128 |
| 193 | + self.block_size = 128 |
| 194 | + self.dtype = paddle.bfloat16 |
| 195 | + |
| 196 | + self.input_tensor = paddle.randn( |
| 197 | + [self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype |
| 198 | + ) |
| 199 | + self.recv_expert_count = paddle.to_tensor([6, 3, 7, 1], dtype="int32") |
| 200 | + |
| 201 | + self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref( |
| 202 | + self.input_tensor, self.recv_expert_count, self.block_size |
| 203 | + ) |
| 204 | + |
| 205 | + |
| 206 | +class TestMaskedPerTokenQuantCase3(TestMaskedPerTokenQuant): |
| 207 | + """Test with all experts having max tokens""" |
| 208 | + |
| 209 | + def setUp(self) -> None: |
| 210 | + paddle.seed(2024) |
| 211 | + self.num_local_expert = 2 |
| 212 | + self.num_max_tokens_per_expert = 4 |
| 213 | + self.hidden_size = 256 |
| 214 | + self.block_size = 128 |
| 215 | + self.dtype = paddle.bfloat16 |
| 216 | + |
| 217 | + self.input_tensor = paddle.randn( |
| 218 | + [self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype |
| 219 | + ) |
| 220 | + # All experts use all tokens |
| 221 | + self.recv_expert_count = paddle.to_tensor([4, 4], dtype="int32") |
| 222 | + |
| 223 | + self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref( |
| 224 | + self.input_tensor, self.recv_expert_count, self.block_size |
| 225 | + ) |
| 226 | + |
| 227 | + |
| 228 | +class TestMaskedPerTokenQuantEdgeCases(unittest.TestCase): |
| 229 | + """Test edge cases""" |
| 230 | + |
| 231 | + def test_zero_tokens_expert(self): |
| 232 | + """Test expert with zero tokens""" |
| 233 | + paddle.seed(2024) |
| 234 | + input_tensor = paddle.randn([2, 4, 256], dtype="bfloat16") |
| 235 | + recv_expert_count = paddle.to_tensor([0, 2], dtype="int32") # First expert has no tokens |
| 236 | + |
| 237 | + quanted_x_ref, quanted_scale_ref = masked_per_token_quant_ref(input_tensor, recv_expert_count, 128) |
| 238 | + |
| 239 | + # First expert should be all zeros - convert to float32 for comparison |
| 240 | + expert_0_quanted = quanted_x_ref[0].astype("float32") |
| 241 | + self.assertTrue(paddle.all(expert_0_quanted == 0), "Expert with zero tokens should be all zero") |
| 242 | + self.assertTrue(paddle.all(quanted_scale_ref[0] == 0), "Expert with zero tokens should have zero scales") |
| 243 | + |
| 244 | + # Second expert should have valid values - convert to float32 for comparison |
| 245 | + expert_1_quanted = quanted_x_ref[1, :2].astype("float32") |
| 246 | + self.assertTrue(paddle.any(expert_1_quanted != 0), "Expert with tokens should have non-zero values") |
| 247 | + |
| 248 | + |
| 249 | +if __name__ == "__main__": |
| 250 | + unittest.main() |
0 commit comments