Skip to content

Latest commit

 

History

History
62 lines (47 loc) · 1.51 KB

README.md

File metadata and controls

62 lines (47 loc) · 1.51 KB

Stage-wise Face Alignment using Global and Local Regressors

This is a caffe-python implementation on Windows 10 for face alignment.

We implemented two-kind of methods.

Method1 repeat global and local regression after initialization regression

Method2 repeat local refinement regression after initialization regression

Evaluation on 300w public test set

Method Common Challenging Full
Stage(Projection) 8.24 12.56 9.07
Stage(Adjustment) 6.25 10.16 7.02
Stage(Global1) 4.66 8.20 5.35
Stage(Local1) 3.45 6.49 4.05
Stage(Global2) 3.59 6.62 4.18
Stage(Local2) 3.29 6.14 3.85
Stage(Global3) 3.48 6.37 4.05
Stage(Local3) 3.28 6.09 3.83
Regression(Wild, simple net) 4.07 6.90 4.62
Regression(Wild, ResNet50) 3.72 6.44 4.25

Usage

For Training

  1. Clone the repository
git clone https://github.com/hyunsungP/facelignmentregression
  1. make data files (.h5)
make_wild_input.py

and so on.

  1. make data file list
    Refer to models/list_train_*.txt

  2. training
    On console window with caffe

caffe train --solver=models/ZF_solver.prototxt --gpu=0

Other network are same.

For Testing

Change prototxt path in the source code.

test_300w_public.py

Other models will be uploaded.