forked from zwt233/GAMLP
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
137 lines (119 loc) · 6.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import time
import numpy as np
import torch
import torch.nn as nn
import dgl
import dgl.function as fn
from load_dataset import load_dataset
import torch.nn.functional as F
from torch.nn.parameter import Parameter
import math
import uuid
import random
from model import R_GAMLP,JK_GAMLP,NARS_JK_GAMLP,NARS_R_GAMLP,R_GAMLP_RLU,JK_GAMLP_RLU,NARS_JK_GAMLP_RLU,NARS_R_GAMLP_RLU
def gen_model_mag(args,num_feats,in_feats,num_classes):
if args.method=="R_GAMLP":
# error
return NARS_R_GAMLP(in_feats, args.hidden, num_classes, args.num_hops+1,num_feats,args.alpha,args.n_layers_1,args.n_layers_2,args.n_layers_3,args.act,args.dropout, args.input_drop, args.att_drop,args.label_drop,args.pre_process,args.residual,args.pre_dropout,args.bns)
elif args.method=="JK_GAMLP":
return NARS_JK_GAMLP(in_feats, args.hidden, num_classes, args.num_hops+1,num_feats,args.alpha,args.n_layers_1,args.n_layers_2,args.n_layers_3,args.act,args.dropout, args.input_drop, args.att_drop,args.label_drop,args.pre_process,args.residual,args.pre_dropout,args.bns)
def gen_model_mag_rlu(args,num_feats,in_feats,num_classes):
if args.method=="R_GAMLP_RLU":
return NARS_R_GAMLP_RLU(in_feats, args.hidden, num_classes, args.num_hops+1,num_feats,args.alpha,args.n_layers_1,args.n_layers_2,args.n_layers_3,args.act,args.dropout, args.input_drop, args.att_drop,args.label_drop,args.pre_process,args.residual,args.pre_dropout,args.bns)
elif args.method=="JK_GAMLP_RLU":
return NARS_JK_GAMLP_RLU(in_feats, args.hidden, num_classes, args.num_hops+1,num_feats,args.alpha,args.n_layers_1,args.n_layers_2,args.n_layers_3,args.act,args.dropout, args.input_drop, args.att_drop,args.label_drop,args.pre_process,args.residual,args.pre_dropout,args.bns)
def gen_model(args,in_size,num_classes):
if args.method=="R_GAMLP":
return R_GAMLP(in_size, args.hidden, num_classes,args.num_hops+1,
args.dropout, args.input_drop,args.att_drop,args.alpha,args.n_layers_1,args.n_layers_2,args.act,args.pre_process,args.residual,args.pre_dropout,args.bns)
elif args.method=="JK_GAMLP":
return JK_GAMLP(in_size, args.hidden, num_classes,args.num_hops+1,
args.dropout, args.input_drop,args.att_drop,args.alpha,args.n_layers_1,args.n_layers_2,args.act,args.pre_process,args.residual,args.pre_dropout,args.bns)
def gen_model_rlu(args,in_size,num_classes):
if args.method=="R_GAMLP_RLU":
return R_GAMLP_RLU(in_size, args.hidden, num_classes,args.num_hops+1,
args.dropout, args.input_drop,args.att_drop,args.label_drop,args.alpha,args.n_layers_1,args.n_layers_2,args.n_layers_3,args.act,args.pre_process,args.residual,args.pre_dropout,args.bns)
elif args.method=="JK_GAMLP_RLU":
return JK_GAMLP_RLU(in_size, args.hidden, num_classes,args.num_hops+1,
args.dropout, args.input_drop,args.att_drop,args.label_drop,args.alpha,args.n_layers_1,args.n_layers_2,args.n_layers_3,args.act,args.pre_process,args.residual,args.pre_dropout,args.bns)
def set_seed(seed=0):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
dgl.random.seed(seed)
def train_rlu(model, train_loader, enhance_loader, optimizer, evaluator, device, xs, labels, label_emb, predict_prob,gama):
model.train()
loss_fcn = nn.CrossEntropyLoss()
y_true, y_pred = [], []
total_loss = 0
iter_num=0
for idx_1, idx_2 in zip(train_loader, enhance_loader):
idx = torch.cat((idx_1, idx_2), dim=0)
feat_list = [x[idx].to(device) for x in xs]
y = labels[idx_1].to(torch.long).to(device)
optimizer.zero_grad()
output_att= model(feat_list, label_emb[idx].to(device))
L1 = loss_fcn(output_att[:len(idx_1)], y)*(len(idx_1)*1.0/(len(idx_1)+len(idx_2)))
teacher_soft = predict_prob[idx_2].to(device)
teacher_prob = torch.max(teacher_soft, dim=1, keepdim=True)[0]
L3 = (teacher_prob*(teacher_soft*(torch.log(teacher_soft+1e-8)-torch.log_softmax(output_att[len(idx_1):], dim=1)))).sum(1).mean()*(len(idx_2)*1.0/(len(idx_1)+len(idx_2)))
loss = L1 + L3*gama
loss.backward()
optimizer.step()
y_true.append(labels[idx_1].to(torch.long))
y_pred.append(output_att[:len(idx_1)].argmax(dim=-1, keepdim=True).cpu())
total_loss += loss
iter_num += 1
loss = total_loss / iter_num
approx_acc = evaluator(torch.cat(y_true, dim=0),torch.cat(y_pred, dim=0))
return loss, approx_acc
def train(model, feats, labels, loss_fcn, optimizer, train_loader,label_emb,evaluator):
model.train()
device = labels.device
total_loss = 0
iter_num=0
y_true=[]
y_pred=[]
for batch in train_loader:
batch_feats = [x[batch].to(device) for x in feats]
output_att=model(batch_feats,label_emb[batch].to(device))
y_true.append(labels[batch].to(torch.long))
y_pred.append(output_att.argmax(dim=-1, keepdim=True).cpu())
L1 = loss_fcn(output_att, labels[batch])
loss_train = L1
total_loss = loss_train
optimizer.zero_grad()
loss_train.backward()
optimizer.step()
iter_num+=1
loss = total_loss / iter_num
acc = evaluator(torch.cat(y_true, dim=0),torch.cat(y_pred, dim=0))
return loss,acc
@torch.no_grad()
def test(model, feats, labels, test_loader, evaluator, label_emb):
model.eval()
device = labels.device
preds = []
true=[]
for batch in test_loader:
batch_feats = [feat[batch].to(device) for feat in feats]
preds.append(torch.argmax(model(batch_feats,label_emb[batch].to(device)), dim=-1))
true.append(labels[batch])
true=torch.cat(true)
preds = torch.cat(preds, dim=0)
res = evaluator(preds, true)
return res
@torch.no_grad()
def gen_output_torch(model, feats, test_loader, device, label_emb):
model.eval()
preds = []
for batch in test_loader:
batch_feats = [feat[batch].to(device) for feat in feats]
preds.append(model(batch_feats,label_emb[batch].to(device)).cpu())
preds = torch.cat(preds, dim=0)
return preds