|
| 1 | +from config_analyzer import TensorConfig, APIConfig, analyse_configs |
| 2 | +from tqdm import tqdm |
| 3 | +import random |
| 4 | + |
| 5 | +def is_0_size_tensor(tensor_config): |
| 6 | + for i in tensor_config.shape: |
| 7 | + if i == 0: |
| 8 | + return True |
| 9 | + return False |
| 10 | + |
| 11 | +def is_0D_tensor(tensor_config): |
| 12 | + return len(tensor_config.shape) == 0 |
| 13 | + |
| 14 | +def tensor_numel(tensor_config): |
| 15 | + numel = 1 |
| 16 | + for i in tensor_config.shape: |
| 17 | + numel = numel * i |
| 18 | + return numel |
| 19 | + |
| 20 | +def get_tensor_configs(api_config): |
| 21 | + tensor_configs = [] |
| 22 | + for arg_config in api_config.args: |
| 23 | + if isinstance(arg_config, TensorConfig): |
| 24 | + tensor_configs.append(arg_config) |
| 25 | + elif isinstance(arg_config, list): |
| 26 | + for j in range(len(arg_config)): |
| 27 | + if isinstance(arg_config[j], TensorConfig): |
| 28 | + tensor_configs.append(arg_config[j]) |
| 29 | + elif isinstance(arg_config, tuple): |
| 30 | + for j in range(len(arg_config)): |
| 31 | + if isinstance(arg_config[j], TensorConfig): |
| 32 | + tensor_configs.append(arg_config[j]) |
| 33 | + |
| 34 | + for key, arg_config in api_config.kwargs.items(): |
| 35 | + if isinstance(arg_config, TensorConfig): |
| 36 | + tensor_configs.append(arg_config) |
| 37 | + elif isinstance(arg_config, list): |
| 38 | + for j in range(len(arg_config)): |
| 39 | + if isinstance(arg_config[j], TensorConfig): |
| 40 | + tensor_configs.append(arg_config[j]) |
| 41 | + elif isinstance(arg_config, tuple): |
| 42 | + for j in range(len(arg_config)): |
| 43 | + if isinstance(arg_config[j], TensorConfig): |
| 44 | + tensor_configs.append(arg_config[j]) |
| 45 | + return tensor_configs |
| 46 | + |
| 47 | +file_list = [ |
| 48 | + "/host_home/wanghuan29/APItest/PaddleAPITest/EB45/EBRL.txt", |
| 49 | +] |
| 50 | + |
| 51 | +if __name__ == '__main__': |
| 52 | + for file in file_list: |
| 53 | + api_configs = analyse_configs(file) |
| 54 | + for api_config in tqdm(api_configs): |
| 55 | + tensor_configs = get_tensor_configs(api_config) |
| 56 | + for tensor_config in tensor_configs: |
| 57 | + if tensor_numel(tensor_config) >= 2147483647: |
| 58 | + print(api_config.config) |
| 59 | + break |
| 60 | + |
0 commit comments