SiNGR: Brain Tumor Segmentation via Signed Normalized Geodesic Transform Regression
Accepted as a paper conference at MICCAI 2024
Arxiv: Link
We provide file env.yaml
for dependencies. If generating the Geodesic files is needed, use pip install -r requirements_geo.txt
.
Alternatively, it is possible to use fast implementation of Geodesic: pip install FastGeodis
.
conda env create -f env.yaml
conda activate singr
pip install -e .
cd mlpipeline/utils
python split_brats.py
python split_lggflair.py
cd mlpipeline/utils
python geodesic_transform.py --label_name "fast_sgc_margin" \
--dataset ${DATASET} \
--root_dir ${ROOT_DIr} \
--gt_dir ${GT_DIR} \
--output_dir ${OUTPUT_DIR}
python -m mlpipeline.train.run experiment=${EXP_NAME} \
model.params.cfg.arch=${ARCH_NAME}
where
- <EXP_NAME>: experiment setting can be
brats_uncertainty_sem_seg
,brats_sem_seg
,lgg_uncertainty_sem_seg
, orlgg_sem_seg
. - <ARCH_NAME>: architecture name can be
EoFormer
,Unet3D
,UnetPP3D
,SegResNet
,UNETR
,SwinUNETR
,TransBTS
, orNestedFormer
.
python -m mlpipeline.train.evaluate \
--config=${EXP_NAME} \
--output_dir=/path/to/inference_results/${EXP_NAME} \
--log_dir=/path/to/eval/${EXP_NAME} \
--visual_dir=/path/to/visuals \
--metadata_path=/path/to/test_split.pkl \
--dataset_name=${DATASET} \
--seeds=${SEEDS} \
--folds=0
where
- DATASET: is either
brats
orlgg
.